В виде какого класса соединений азот содержится в теле живого организма азот

В виде какого класса соединений азот содержится в теле живого организма азот thumbnail

Взаимосвязи организмов и окружающей среды

Сообщение

№ 53
КОНКУРЕНЦИЯ, КООПЕРАЦИЯ И СИМБИОЗ

Между организмами разных видов, составляющими тот или иной биоценоз, складываются взаимовредные, взаимовыгодные, выгодные для одной и невыгодные или безразличные для другой стороны и другие, более тонкие взаимоотношения.

Одной из форм взаимовредных биотических взаимоотношений между организмами является конкуренция. Она возникает между особями одного или разных видов вследствие ограниченности ресурсов среды. Учёные различают межвидовую и внутривидовую конкуренцию.

Межвидовая конкуренция происходит в том случае, когда разные виды организмов обитают на одной территории и имеют похожие потребности в ресурсах среды. Это приводит к постепенному вытеснению одного вида организмов другим, имеющим преимущества в использовании ресурсов. Например, два вида тараканов – рыжий и чёрный – конкурируют друг с другом за место обитания – жилище человека. Это ведёт к постепенному вытеснению чёрного таракана рыжим, так как у последнего более короткий жизненный цикл, он быстрее размножается и лучше использует ресурсы.

Внутривидовая конкуренция имеет более острый характер, чем межвидовая, так как у особей одного вида потребности в ресурсах всегда одинаковы. В результате такой конкуренции особи ослабляют друг друга, что ведёт к гибели менее приспособленных, то есть к естественному отбору. Внутривидовая конкуренция, возникающая между особями одного вида за одинаковые ресурсы среды, отрицательно сказывается на них. Например, берёзы в одном лесу конкурируют друг с другом за свет, влагу и минеральные вещества почвы, что приводит к их взаимному угнетению
и самоизреживанию.

Среди биотических отношений между организмами в природных сообществах встречается взаимовыгодное сожительство. Оно построено, как правило, на пищевых и пространственных связях, когда два или более видов организмов совместно используют для своей жизнедеятельности различные ресурсы среды. Степень взаимовыгодного сожительства между организмами бывает различной – от врéменных контактов (кооперация) до такого состояния, когда присутствие партнёра становится обязательным условием жизни каждого из них (симбиоз).

Кооперация наблюдается между раком-отшельником и актинией, прикрепившейся к его убежищу – раковине, оставшейся от моллюска. Рак переносит актинию и подкармливает её остатками пищи, а она защищает его стрекательными клетками, которыми вооружены её щупальца.

Пример симбиоза – взаимоотношения между деревьями леса и шляпочными грибами: подберёзовиками, белыми и др. Шляпочные грибы оплетают нитями грибницы корни деревьев и благодаря образующейся при этом микоризе получают из растений органические вещества. Микориза усиливает способность корневых систем у деревьев к всасыванию воды из почвы. Кроме того, деревья получают при помощи микоризы от шляпочных грибов необходимые минеральные вещества.

Задание

Используя содержание текста «Конкуренция, кооперация и симбиоз», ответьте на вопросы и выполните задание.

1) Почему внутривидовая конкуренция имеет более ожесточённый характер?

2) Что партнёры извлекают (получают) из взаимовыгодных отношений? Объясните на конкретном примере.

3) К чему приводит вытеснение одних особей другими в результате конкуренции?

№ 54
СРЕДЫ ОБИТАНИЯ ОРГАНИЗМОВ

Водная среда обитания была первой освоена организмами. Она имеет высокую плотность, давление, малое содержание кислорода. Высокая плотность создаёт опору для тела. Так, одноклеточные водоросли, простейшие, медузы имеют выросты на теле, увеличивающие площадь соприкосновения с водой, что обеспечивает их плавучесть. Другие водные обитатели, например рыбы, удерживают тело в толще воды при помощи плавательного пузыря. Сопротивление воды организмы преодолевают благодаря обтекаемой форме тела и плавникам. Недостаток кислорода в воде компенсируется жаберным дыханием или дыханием через поверхность тела.

Наземно-воздушная среда обитания характеризуется низкой плотностью и давлением, высоким содержанием кислорода. Ей присущи значительные перепады температуры и неравномерное распределение влаги. Обитатели наземно-воздушной среды имеют ряд общих черт строения. Так, у растений и животных развились опорные и проводящие системы, механизмы терморегуляции и дыхания, защитные образования, помогающие сберечь влагу. Большинство обитателей наземно-воздушной среды активно передвигаются, в связи с чем у них появились рычажные конечности, а у некоторых – крылья и выросты, обеспечивающие полёт.

Почвенная среда обитания характеризуется высокой плотностью, отсутствием света, незначительными температурными колебаниями, низким содержанием кислорода и высоким – углекислого газа. Для почвенных организмов характерны небольшие размеры тела, прочные кожные покровы, недоразвитость или отсутствие органов зрения.

Задание

Используя содержание текста “Среды обитания организмов”, ответьте на следующие вопросы.

1) Какие приспособления имеются у животных, освоивших водную среду обитания?

2) Какие физико-химические особенности характерны для наземно-воздушной среды обитания?

3) Какая существующая в природе среда не упомянута в приведенном тексте?

№ 55
КОНКУРЕНЦИЯ И ПАРАЗИТИЗМ

Между организмами разных видов, составляющими тот или иной биоценоз, складываются взаимовредные, взаимовыгодные, выгодные для одной и невыгодные или безразличные для другой стороны и другие взаимоотношения.

Одной из форм взаимовредных биотических взаимоотношений между организмами является конкуренция. Она возникает между особями одного или разных видов вследствие ограниченности ресурсов среды. Учёные различают межвидовую и внутривидовую конкуренцию.

Межвидовая конкуренция происходит в том случае, когда разные виды организмов обитают на одной территории и имеют похожие потребности в ресурсах среды. Это приводит к постепенному вытеснению одного вида организмов другим, имеющим преимущества в использовании ресурсов. Например, два вида тараканов – рыжий и чёрный – конкурируют друг с другом за место обитания – жилище человека. Это ведёт к постепенному вытеснению чёрного таракана рыжим, так как у последнего более короткий жизненный цикл, он быстрее размножается и лучше использует ресурсы.

Внутривидовая конкуренция имеет более острый характер, чем межвидовая, так как у особей одного вида потребности в ресурсах всегда одинаковы. В результате такой конкуренции особи ослабляют друг друга, что ведёт к гибели менее приспособленных, то есть к естественному отбору. Внутривидовая конкуренция, возникающая между особями одного вида за одинаковые ресурсы среды, отрицательно сказывается на них. Например, берёзы в одном лесу конкурируют друг с другом за свет, влагу и минеральные вещества почвы, что приводит к их взаимному угнетению и самоизреживанию.

Одной из форм полезно-вредных биотических взаимоотношений между организмами является паразитизм, когда один вид – паразит – использует другой – хозяина – в качестве среды обитания и источника пищи, нанося ему вред.

Организмы-паразиты в процессе эволюции выработали приспособления к паразитическому образу жизни. Например, многие виды обладают органами прикрепления – присосками, крючочками, шипиками – и имеют высокую плодовитость. В процессе приспособления к паразитическому образу жизни некоторые паразиты утратили ряд органов или приобрели более простое их строение. Например, у паразитических плоских червей, живущих во внутренних органах позвоночных животных, плохо развиты органы чувств и нервная система, а у некоторых червей-паразитов отсутствуют органы пищеварения.

Отношения между паразитом и хозяином подчинены определённым закономерностям. Паразиты принимают участие в регуляции численности хозяев, тем самым обеспечивая действие естественного отбора. Негативные отношения между паразитом и хозяином в процессе эволюции могут перейти в нейтральные. В этом случае преимущество среди паразитов получают те виды, которые способны длительно использовать организм хозяина, не приводя его к гибели. В свою очередь, в процессе естественного отбора растёт сопротивляемость организма хозяина паразитам, в результате чего приносимый ими вред становится менее ощутимым.

Задание

Используя содержание текста «Конкуренция и паразитизм», ответьте на следующие вопросы.

1) Почему отношения рыжего и чёрного тараканов нельзя назвать паразитизмом?

2) Как паразит влияет на организм хозяина?

3) Какую биологическую роль играют паразиты в отношении своих хозяев?

Задание

Используя содержание текста «Конкуренция и паразитизм», ответьте на вопросы.

1) Почему возникают конкурентные отношения в природе?

2) Почему отношения берёз одного возраста в лесу нельзя назвать паразитизмом?

3) Какую биологическую роль играют паразиты в отношении своих хозяев?

Задание

Используя содержание текста «Конкуренция и паразитизм», ответьте на вопросы.

1) Почему отношения печёночного сосальщика и коровы нельзя назвать конкуренцией?

2) Какой пример из текста иллюстрирует внутривидовую конкуренцию?

3) Какие виды паразитов получают преимущество в процессе эволюции?

№ 56
КРУГОВОРОТ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ

В биосфере, как и в каждой экосистеме, постоянно осуществляется круговорот углерода, азота, водорода, кислорода, фосфора, серы и других химических элементов.

Растения получают азот в основном из разлагающегося мёртвого органического вещества посредством деятельности бактерий, которые превращают азот белков в усвояемую растениями форму. Другой источник – свободный азот атмосферы – растениям непосредственно недоступен. Но его связывают, т.е. переводят в другие химические формы, некоторые группы бактерий, они обогащают им почву. Естественная фиксация азота успешно используется в сельском хозяйстве, например, при внесении определённых видов цианобактерий на рисовые поля.

Многие растения находятся в симбиозе с азотфиксирующими бактериями, образующими клубеньки на корнях. Перерабатывая отмершие растения или трупы животных, бактерии превращают азот органических соединений в газообразный и вновь возвращают его в атмосферу.

Углекислый газ поглощается растениями в процессе фотосинтеза, он преобразуется в углеводы и далее – в другие органические соединения.
В их составе углерод затем поступает в цепи питания и возвращается в атмосферу снова в форме углекислого газа в результате дыхания, брожения или сгорания топлива. Часть углерода накапливается в почве в виде органических соединений. В морской воде углерод содержится в виде угольной кислоты и её растворимых солей.

В процессе круговорота углерода в биосфере образовались энергетические ресурсы: нефть, каменный уголь, горючие газы, которые широко используются человеком.

Задание

Используя содержание текста «Круговорот химических элементов», ответьте на следующие вопросы.

1) В виде какого класса соединений азот содержится в теле живого организма?

2) Какие процессы, происходящие в организмах, влияют на повышение концентрации углекислого газа в атмосфере?

3) Какой из способов повышения плодородия почвы и увеличения урожайности культурных растений, основанный на круговороте химических элементов, Вы можете назвать, опираясь на текст?

 
Перейти на другой форум:

Источник

Выполнила: учитель химии и биологии ГБОУ СОШ №880 Лунина Наталия Александровн...

Описание презентации по отдельным слайдам:

1 слайд

Выполнила: учитель химии и биологии ГБОУ СОШ №880 Лунина Наталия Александровн

Описание слайда:

Выполнила: учитель химии и биологии ГБОУ СОШ №880 Лунина Наталия Александровна Презентация по биологии для 9 класса на тему:

2 слайд

Ознакомиться с азотсодержащими продуктами питания Узнать значение азота в жив

Описание слайда:

Ознакомиться с азотсодержащими продуктами питания Узнать значение азота в живых организмах Рассмотреть виды и функции белков Выявить последствия дефицита и избытка азота

3 слайд

Продукты животного происхождения: мясо, рыба, птица, молоко и молочные продук

Описание слайда:

Продукты животного происхождения: мясо, рыба, птица, молоко и молочные продукты. Продукты растительного происхождения: горох, соя, чечевица, орехи, грибы. Основные источники поступления в животный организм азота

4 слайд

В животном организме содержится 10 –17% азота (по массе), в шерсти и рогах –

Описание слайда:

В животном организме содержится 10 –17% азота (по массе), в шерсти и рогах – около 15%. Азот в животных организмах Хотя название «азот» означает «не поддерживающий жизни», на самом деле – это необходимый для жизнедеятельности элемент. Животные и человек получают азот в виде белков и других азотсодержащих продуктов из растений и животных. Азот необходим для процессов обмена веществ. Все важнейшие части клеток (цитоплазма, ядро, оболочка и др.) построены из белковых молекул.

5 слайд

Белки – необходимая составная часть питания человека и животных. В желудочно-

Описание слайда:

Белки – необходимая составная часть питания человека и животных. В желудочно-кишечном тракте они расщепляются и всасываются в виде аминокислот и низкомолекулярных пептидов, из которых организм строит свои собственные аминокислоты и белки Некоторые необходимые для жизни аминокислоты (так называемые незаменимые аминокислоты: организм человека синтезировать не способен и получает их с пищей в «готовом» виде. Аминокислота

6 слайд

Строительные белки Виды белков Цитоплазматическаямембрана Волосы - 99% белка

Описание слайда:

Строительные белки Виды белков Цитоплазматическаямембрана Волосы – 99% белка Соединительная и мышечная ткань – 70% белка

7 слайд

Транспортные белки Сократительные белки Белки гормоны и ферменты Защитные бел

Описание слайда:

Транспортные белки Сократительные белки Белки гормоны и ферменты Защитные белки – антитела Виды белков

8 слайд

Белки – рецепторы Все нуклеиновые кислоты – это азотосодержащие вещества ДНК,

Описание слайда:

Белки – рецепторы Все нуклеиновые кислоты – это азотосодержащие вещества ДНК, все виды РНК и АТФ Белки способные узнавать чужеродные антигены (белок гликопротеин)

9 слайд

В организмах плотоядных животных свой  белок образуется за счёт потребляемых

Описание слайда:

В организмах плотоядных животных свой  белок образуется за счёт потребляемых белковых веществ, имеющихся в организмах травоядных животных и в растениях. Анорексия – психосоматическое заболевание, самый распространенный недуг манекенщиц. Болезнь может приводить к белково-энергетической недостаточности. Около 80 % больных анорексией — девушки в возрасте 12—24 лет. Ограничение белков До лечения После лечения

10 слайд

Почвенные микроорганизмы легко превращают мочевину в аммиак путем гидролиза:

Описание слайда:

Почвенные микроорганизмы легко превращают мочевину в аммиак путем гидролиза: СО (NH2)2 + Н2О = 2NН3 + СО2. . Из организма азот выводится вместе с мочой, калом, выдыхаемым воздухом, а также с потом, слюной и волосами. В животных организмов вывода излишков азота происходит путем отщепления аминов (NH2) от органических соединений и выделения их в окружающую среду в виде аммиака NH3, В организме аммиак соединяется с углекислым газом и получается мочевина и вода, хотя частично остается и аммиак. Выведение излишков азота

11 слайд

ЭКСКРЕЦИЯ (выделение), выведение из организма веществ, которые образовались

Описание слайда:

ЭКСКРЕЦИЯ (выделение), выведение из организма веществ, которые образовались в процессе МЕТАБОЛИЗМА. В организме человека массой 70 кг содержится примерно 1,8 кг азота. Содержание азота в крови составляет 3077 мг/л, в волосах – 140 000–157 000 мг/кг, а в ногтях – 146 000–148 000 мг/кг. Суточное потребление азота с продуктами питания составляет 13–16 г. В белке животных и человека содержится 16 — 17% азота. В состав белков человеческого организма входят только 20 аминокислот, хотя в природе их известно около 180, причем 10 из них являются незаменимыми для человека и должны обязательно поступать в организм с животной и растительной пищей. Это интересно Это интересно

12 слайд

https://dic.academic.ru/dic.nsf/bse/61972/%D0%90%D0%B7%D0%BE%D1%82 Власова З.А

Описание слайда:

https://dic.academic.ru/dic.nsf/bse/61972/%D0%90%D0%B7%D0%BE%D1%82 Власова З.А. Биология. Справочник школьника Мамонтов, Захаров, Сонин «Биология. Общие закономерности. 9 класс» https://ruscopybook.com/biology/9_class/

Выберите книгу со скидкой:

В виде какого класса соединений азот содержится в теле живого организма азот

БОЛЕЕ 58 000 КНИГ И ШИРОКИЙ ВЫБОР КАНЦТОВАРОВ! ИНФОЛАВКА

Инфолавка – книжный магазин для педагогов и родителей от проекта «Инфоурок»

В виде какого класса соединений азот содержится в теле живого организма азот

Курс повышения квалификации

В виде какого класса соединений азот содержится в теле живого организма азот

Курс профессиональной переподготовки

Учитель биологии

В виде какого класса соединений азот содержится в теле живого организма азот

Курс профессиональной переподготовки

Учитель биологии и химии

Найдите материал к любому уроку,
указав свой предмет (категорию), класс, учебник и тему:

также Вы можете выбрать тип материала:

Краткое описание документа:

    Азот является одним из главных
элементов жизни, он находится в человеческом организме и необходим нам для
роста и  питания, также имеет важное
значение для жизни растений и животных, поскольку он входит в состав белковых
веществ. Данная  презентация поможет
учащимся узнать, что такое белки, рассмотреть их функции и виды, ограничения
белков и их последствия. Несмотря на необходимость азота для всего живого, он
может оказать пагубное влияние. Мы рассматриваем этот процесс как экскреция
(выделение), выведение из организма веществ, которые образовались в процессе
метаболизма. Для избегания  такого
процесса, мы рассмотрим суточную потребность азота и продукты питания,
включающие в себя этот химический элемент.

Общая информация

Номер материала:

51980033132

Вам будут интересны эти курсы:

Оставьте свой комментарий

Источник

Описание

Содержимое в человеческом организме

Биологическая роль

Источники

Суточная потребность

Недостаток

Избыток

Токсичность

Описание

(вернуться к оглавлению)

Азот представляет собой бесцветный газ без запаха и вкуса, плохо растворимый в воде, с низкими температурами плавления (-210°С) и кипения (-196°С). Простое вещество в виде N2 – основная часть атмосферного воздуха (78 %). Молекула азота обладает очень прочными связями. Состояния, в которых азот может находиться в своих соединениях, исключительно разнообразны.

Круговорот азота в природе тесно связывает геосферу и биосферу, подтверждая их единство. Существует множество бактерий, способных легко переводить одни соединения азота в другие, причем с изменением степени окисления азота. Так, например, в биосфере связывание атмосферного азота N2 и его превращение в аммиак NH3 протекает более легким способом с участием фермента – нитрогеназы. Микроорганизмы, участвующие в этой реакции, присутствуют в корневых клубеньках некоторых растений, а также в сине-зеленых водорослях. Фермент нитрогеназа, содержащий белки, а также молибден Мо и железо Fe, активен только в анаэробных условиях, то есть без участия кислорода.

В природе протекают и другие взаимные превращения соединений азота: нитрификация или окисление NH3 до NO2, а также восстановление нитратиона из удобрений под действием ферментов растений или анаэробных бактерий до NO2 или даже до NH3.

При обычных условиях способность азота реагировать с другими веществами невелика, и он иногда используется как инертный газ. Определяется это исключительно большой прочностью связи в молекуле N2, для ее разрыва требуется много энергии. Поэтому азот реагирует со многими металлами и неметаллами при высоких температурах.

Азот взаимодействует с активными металлами, например, Mg и Li с образованием нитридов. Также он взаимодействует с неметаллами, такими как О2, Н2, галогенами и другими, однако эти реакции возможны, как правило, при высокой температуре и в присутствии катализаторов.

Оксиды азота существуют главным образом за счет ковалентных химических связей N – O, обладают высокой способностью реагировать с другими веществами, поэтому неустойчивы.

N2O – закись азота представляет собой бесцветный газ, растворимый в воде. Называется также «веселящим газом», так как является наркотическим веществом. Применяется в анестезии. Неустойчив, легко разлагается. При повышенной температуре является сильным окислителем.

NO представляет собой бесцветный газ, плохо растворимый в воде. С кислородом NO взаимодействует очень легко с образованием бурого NO2. Молекула NO, по современным представлениям, несмотря на кажущуюся трудность её образования из простых веществ, присутствует в атмосфере в огромных количествах. Считают, что до 7?107 тонн атмосферного азота N2 в год реагируют с кислородом О2 в результате таких высокотемпературных процессов, как сжигание топлива в промышленности и работа транспорта. Показано, что оксиды азота, как и озон, способны взаимодействовать с продуктами неполного сгорания топлива с образованием высокотоксичных пероксонитратов. Под действием солнечной радиации в верхних слоях атмосферы протекают фотохимические реакции с участием NOx, которые катализируются содержащимися там твердыми частицами пыли.

 N2O3 – азотистый ангидрид представляет собой жидкость голубого цвета, существующую только при низкой (ниже чем – 100°С) температуре. Хорошо растворяется в холодной воде с образованием азотистой кислоты (HNO2).

NO2 представляет собой бурую летучую жидкость хорошо растворимую в воде.

N2O5 – ангидрид азотной кислоты (HNO3), при нормальных условиях бесцветное, летучее, кристаллическое гигроскопичное вещество. Медленно разлагается при комнатной температуре. С водой бурно реагирует с образованием азотной кислоты. N2O5 сильный окислитель по отношению ко многим металлам, неметаллам и органическим веществам.

Практически самым важным соединением азота является его гидрид NH3 – аммиак. NH3 представляет из себя бесцветный газ, в 1,7 раза легче воздуха. По своим физико-химическим свойствам сильно отличается от молекулярного азота. Он легко сжимается и более реакционоспособен. Аммиак хорошо растворим в воде, при этом он вступает с водой в химическое взаимодействие. NH3 проявляет восстановительные свойства, в атмосфере кислорода горит.

Азот имеет две кислородсодержащие кислоты – HNO2 и HNO3.

Азотная кислота (HNO3) – наиболее важное соединение азота. Это одна из самых сильных кислот, а концентрированная азотная кислота является сильным окислителем. Однако в зависимости от условий HNO3 восстанавливается до различных продуктов. На ход процесса влияют природа восстановителя, концентрация реагента и температура. Соли азотной кислоты – нитраты – называются селитрами. Нитраты хорошо растворимы, водные растворы нитратов окислительными свойствами не обладают, но их расплавы – сильные окислители. Термическое разложение нитратов протекает по-разному, в зависимости от природы катиона соли.

Азотистая кислота (HNO2) – непрочное соединение, известна только в холодных водных растворах, легко распадается. Это слабая кислота, проявляющая свойства окислителя и восстановителя. Соли азотистой кислоты – нитриты более устойчивы чем сама кислота и также обладают окислительно-восстановительной двойственностью. Нитриты более термически устойчивы чем нитраты и большинство из них хорошо растворимы в воде. Нитриты щелочных металлов плавятся без разложения.  

Содержание в человеческом организме

(вернуться к оглавлению)

Азот входит в состав разнообразных органических соединений – аминокислот, пептидов, пуриновых оснований и многих других, являющихся основой жизнедеятельности. В следствие этого в организме человека он весьма распространен. Он является четвертым по содержанию в человеческом организме биогенным элементом после кислорода, водорода и углерода. Его содержание в теле составляет 3% от массы, из них в мышечной ткани – 7,2%, в костной ткани – 4,3.

В свободной форме N2 поступает с вдыхаемым воздухом. Содержание небелкового азота в цельной крови и плазме почти одинаково и составляет в крови 15–25 ммоль/л. Небелковый азот крови включает азот мочевины (50% от общего количества небелкового азота), аминокислот (25%), эрготионеина (соединение, входящее в состав эритроцитов) (8%), мочевой кислоты (4%), креатина (5%), креатинина (2,5%), аммиака и индикана (0,5%) и других небелковых веществ, содержащих азот (полипептиды, нуклеотиды, нуклеозиды, глутатион, билирубин, холин, гистамин и др.). Таким образом, в состав небелкового азота входит главным образом азот конечных продуктов обмена простых и сложных белков.

Небелковый азот, называется также остаточным, то есть остающимся после осаждения белков. В состав остаточного азота входит также азот аминокислот и полипептидов. В крови постоянно содержится некоторое количество свободных аминокислот. Часть из них попадает в кровь из пищеварительной системы, другая часть аминокислот образуется в результате распада белков ткани. Почти пятую часть содержащихся в плазме аминокислот составляют глутаминовая кислота и глутамин. Содержание свободных аминокислот в сыворотке и плазме крови практически одинаково, но отличается от уровня их в эритроцитах. В норме отношение концентрации азота аминокислот в эритроцитах к содержанию азота аминокислот в плазме колеблется от 1,52 до 1,82. Это отношение отличается большим постоянством, и только при некоторых заболеваниях наблюдается его отклонение от нормы.

К важным небелковым азотистым веществам крови относится также мочевая кислота C5H4N4O3, которая является конечным продуктом обмена белков. В норме концентрация мочевой кислоты в цельной крови составляет 0,18–0,24 ммоль/л (в сыворотке крови – около 0,29 ммоль/л).

Также в результате обмена белков в организме образуется аммиак NH3, который, в свою очередь, является токсичным соединением, в следствие чего, его уровень должен поддерживаться в безопасных пределах. В организме существуют механизмы обезвреживания аммиака. Часть аммиака используется на биосинтез аминокислот. Он связывается при биосинтезе глутамина и аспарагина. Некоторое количество аммиака выводится с мочой в виде аммонийных солей. Наибольшее количество аммиака расходуется на синтез мочевины, которая выводится с мочой в качестве главного конечного продукта белкового обмена в организме человека и животных.

Биологическая роль

(вернуться к оглавлению)

Как уже было сказано выше, азот входит в состав органических соединений, из которых состоят органические формы жизни. Он входит в состав белков, нуклеиновых кислот, гормонов, ферментов, витаминов, то есть можно сказать, что азот в той или иной степени важен для всех органов и систем живого организма, и всех, протекающих в них процессов, поддерживающих его жизнедеятельность.

Известно, что молекулы NO способны проникать в клетки стенок кровеносных сосудов и регулировать кровоток. Кроме того, NO контролирует секрецию инсулина, почечную фильтрацию, репаративные процессы в тканях. Таким образом, NO – двуликая молекула, проявляющая как токсичное, так и несомненно полезное действие. В организме человека NO образуется в количестве примерно равным 100 мг в сутки из аргинина.

Оксид азота является важнейшим для иммунной системы человека веществом. Он стимулирует борьбу организма с патогенами, в том числе и внутриклеточными. Помимо этого, оксид азота играет большую роль в процессе передачи нервных импульсов, в том числе и сам может выступать в роли нейромедиатора, то есть передавать электрохимические импульсы в организме человека. Также оксида азота принимает участие в процессах уничтожения отслуживших свой срок молекул ферментов и «старых» клеток организма.  

Оксид азота способствует образованию вещества, которое снижает силу сердечных сокращений. Однако действие NO кратковременное, несколько секунд, локализованное – вблизи места его синтеза. Подобный эффект, но более длительный оказывает нитроглицерин, который медленнее освобождает NO.

Источники

(вернуться к оглавлению)

Основными источниками азота является вдыхаемый человеком воздух, а также продукты питания, как животного, так и растительного происхождения, содержащие в себе белок.

Суточная потребность

(вернуться к оглавлению)

Суточная потребность азота в составе вышеперечисленных органических веществ с пищей, установлена в размере 8-16 г. Подсчитано, что в состоянии азотистого равновесия организм взрослого здорового человека потребляет и соответственно выделяет примерно 15 г азота в сутки; из экскретируемого с мочой количества азота на долю мочевины приходится около 85%, креатинина – около 5%, аммонийных солей – 3%, мочевой кислоты – 1% и на другие формы – около 6%.

Недостаток

(вернуться к оглавлению)

Вряд ли, представляется возможным оценить, как на организм влияет недостаток азота, поскольку он входит в состав множества необходимых человеку веществ. Поэтому можно оценивать влияние нехватки лишь конкретных его соединений. Например, результатом дефицита азота, как составляющей части белка, является общее замедление роста организма.

Избыток

(вернуться к оглавлению)

У здорового человека колебания в содержании небелкового (остаточного) азота крови незначительны и в основном зависят от количества поступающих с пищей белков. При ряде патологических состояний уровень небелкового азота в крови повышается. Это состояние носит название азотемии. Существуют различные причины возникновения азотемии.  Это может быть недостаточное выделение азотсодержащих продуктов с мочой. Это может быть связано с нарушением функции почек и снижением уровня кровообращения, а также препятствием оттока мочи из почки после ее образования. Продукционная азотемия развивается при избыточном поступлении азотсодержащих продуктов в кровь, как следствие усиленного распада тканевых белков при обширных воспалениях, ранениях, ожогах, кахексии и др. Нередко наблюдаются азотемии смешанного типа.

Как отмечалось, в количественном отношении главным конечным продуктом обмена белков в организме является мочевина (NH2)2CO. Принято считать, что мочевина в 18 раз менее токсична, чем остальные азотистые вещества. При острой почечной недостаточности концентрация мочевины в крови достигает 50–83 ммоль/л (норма 3,3–6,6 ммоль/л). Нарастание содержания мочевины в крови до 16–20 ммоль/л (в расчете на азот мочевины) является признаком нарушения функции почек средней тяжести, до 35 ммоль/л – тяжелым и свыше 50 ммоль/л – очень тяжелым нару