В результате каких процессов изменяются свойства каучука при вулканизации
Ранее мы многократно упоминали понятие вулканизации и определили, что вулканизация это процесс перевода каучука в резину, посредством поперечной сшивки макромолекул в непрерывную трехмерную сетку. Процесс сшивки происходит при повышенных температурах в присутствии инициирующих агентов, аналогичных по природе и механизму действия системам инициирования полимеризации. Классическими вулканизующими системами стали комбинации серы и активаторов вулканизации (перекисных, азосоединений, диазоаминные комплексы и пр. ОВИС).
При вулканизации происходит образование поперечных связей между макромолекулами каучука, что снижает подвижность макромолекул относительно друг друга. Это приводит к повышению жесткости материала, уменьшает его деформационные показатели и ряд других параметров. Наибольшие изменения при поперечной сшивке, претерпевают следующие показатели эластомеров: твердость, прочность при растяжении, напряжение при заданном удлинении (модуль), относительное удлинение, эластичность, остаточная деформация, морозостойкость, набухаемость в растворителях и пластификаторах, газопроницаемость, удельное электрическое сопротивление и др.
Количественным критерием вулканизации служит степень вулканизации (степень сшивания каучука), характеризующая количество поперечных связей на единицу массы эластомера. Так же используется показатель Мс – средняя молекулярная масса участка полимерной цепи между узлами поперечной сшивки. Чем меньше Мс, тем выше степень вулканизации.
Твердость вулканизатов монотонно возрастает с увеличением степени сшивки. На прочность вулканизата при удлинении, степень сшивки влияет неравномерно. На рисунке представлена зависимость прочности вулканизата при растяжении от модуля при удлинении (характеризующего степень вулканизации). Зависимости соответствуют эластомерам: 1 – кристаллизующийся натуральный каучук, 2 – некристаллизующийся бутадиен-стирольный каучук.
Зависимость проходит через максимум, что вызвано повышением прочности каучука при увеличении числа поперечных связей, предотвращающих относительное смещение ММ и “течение” материала под действием нагрузки. После максимума, степень сшивки настолько высока, что поперечные связи препятствуют ориентации ММ в направлении растяжения. Это вызывает локальные напряжения в структуре и разрывы отдельных связей (как участков цепи, так и поперечных мостиков). Большинство резин имеют степень сшивки, соответствующие максимальной прочности при растяжении. Исключение составляют резины для уплотнительных прокладок, для которых важнее жесткость, и ряд аналогичных случаев.
Относительное и остаточное удлинение, при увеличении степени вулканизации, снижаются, стремясь к некоторому минимальному значению. Между эластичностью вулканизата и степенью сшивки определена математическая зависимость:
W=1/2pRTMc-1(l12+l22+l32-3)
Где W – модуль эластичности, p – плотность вулканизата, R – универсальная газовая постоянная, T – температура испытаний, Mc – средняя молекулярная масса участков полимерной цепи между узлами сшивки, l1, l2, и l3 – отношение длины растянутого образца к длине недеформированного образца по трем координатам. Зависимость эластичности вулканизата от степени сшивки представлена на графике.
Область 1 называют областью мягких резин, область 2 – область “кожеподобного состояния”, 3 – область твердых резин. Оптимальной считается степень сшивания, соответствующая точке “А”.
Повышение степени сшивки вызывает повышение способности вулканизатов проявлять высокоэластические свойства при низких температурах. Морозостойкость резин при этом практически не меняется. Теплостойкость резин не имеет четкой зависимости от степени сшивки, большее влияние оказывает природа (химический состав) поперечных мостиков.
Повышение степени сшивания резин снижает подвижность ММ и возможность их перемещения под действием проникающих молекул растворителей, пластификаторов и газов. Поэтому газопроницаемость и набухание в растворителях снижаются при увеличении степени вулканизации. Между равновесной степенью набухания резин и степенью вулканизации существует определенная зависимость (конкретный вид которой зависит от ММ каучука, природы вулканизаторов и химического состава каучука). Это используют для определения степени вулканизации резин в лабораториях.
При вулканизации так же изменяются и другие показатели резин. В малой степени изменяются: сопротивление многократным деформациям (усталостная прочность), динамические потери, теплообразование при многократных деформациях (потери на внутренне трение), износостойкость и др.
К химическим реакциям и технологическим тонкостям процессов вулканизации мы вернемся немного позже.
Источник
Каучук, добываемый в природе, не всегда подходит для изготовления деталей. Это вызвано тем, что его природная эластичность очень низка, и очень зависит от внешней температуры. При температурах близких к 0, каучук становится твердым или при дальнейшем понижении он становится хрупким. При температуре порядка + 30 градусов каучук начинает размягчаться и при дальнейшем нагреве переходит в состояние расплава. При обратном охлаждении своих изначальных свойств он не восстанавливает.
Кроме того природный каучук может быть с легкостью растворен органическими соединениями.
Для закрепления ряда достоинств каучука и устранения его недостатков применяют такой технический прием как вулканизация каучука.
Вулканизация
Вулканизация, так называют один из технологических процессов, применяемых на производстве резины. Во время этого процесса сырой каучук, натурального или искусственного происхождения, становится резиной.
У каучука, прошедшего через вулканизацию, заметно улучшается прочность, химическая стойкость, эластичность, повышается устойчивость к воздействию высоких и низких температур и ряд других технических свойств. Суть этого процесса заключается в следующем – под воздействием высокой температуре и определенного давления происходит связывание линейных макромолекул в единую целое. Эта система носит название вулканизационной сетки.
По окончании процесса вулканизации между макромолекулами создаются поперечные связи. Их количество и структура определяется способом проведения этой операции. Во время этого процесса определенные свойства каучука изменяются не линейно, а с прохождением через определенные точки максимума и минимума. Точка, в которой проявляются оптимальные свойства резины, называется оптимумом вулканизации.
Вулканизация каучука
Для обеспечения необходимых эксплуатационных и технических свойств резины в каучук добавляют различные вещества и материалы – сажу, мел, размягчители и пр.
На практике применяют несколько методов вулканизации, но их объединяет одно – обработка сырья вулканизационной серой. В некоторых учебниках и нормативных документах говорится о том, что в качестве вулканизирующих агентов могут быть использованы сернистые соединения, но на самом деле они могут считаться таковыми, только потому, что они содержат в себе серу. Иначе, они могут оказывать влияние вулканизацию ровно, так же как и остальные вещества, которые не содержат соединений серы.
Некоторое время назад, проводились исследования в отношении проведения обработки каучука органическими соединениями и некоторыми веществами, например:
- фосфор;
- селен;
- тринитробензол и ряд других.
Но проведенные исследования показали, что никакого практической ценности эти вещества в части вулканизации не имеют.
Процесс вулканизации
Процесс вулканизации каучука можно разделить на холодный и горячий. Первый, может быть разделен на два типа. Первый подразумевает использование полухлористой серы. Механизм вулканизации с применением этого вещества выглядит таким образом. Заготовку, выполненную из натурального каучука, размещают в парах этого вещества (S2Cl2) или в ее растворе, выполненный на основе какого-либо растворителя. Растворитель должен отвечать двум требованиям:
- Он не должен вступать в реакцию с полухлористой серой.
- Он должен растворять каучук.
Как правило, в качестве растворителя можно использовать сероуглерод, бензин и ряд других. Наличие полухлористой серы в жидкости не дает каучуку растворяться. Суть этого процесса заключается в насыщении каучука этим химикатом.
Длительность процесса вулканизации с участием S2Cl2 в результате определяет технические характеристики готового изделия, в том числе эластичность и прочность.
Время вулканизации в 2% — м растворе может составлять несколько секунд или минут. Если процесс будет затянут по времени, то может произойти так называемая перевулканизация, то есть заготовки теряют пластичность и становятся очень хрупкими. Опыт говорит о том, что при толщине изделия порядка одного миллиметра операцию вулканизации можно проводить несколько секунд.
Эта технология вулканизации является оптимальным решением для обработки деталей с тонкой стенкой – трубки, перчатки и пр. Но, в этом случае необходимо строго соблюдать режимы обработки иначе, верхний слой деталей может быть вулканизирован больше, чем внутренние слои.
По окончании операции вулканизации, полученные детали необходимо промыть или водой, или щелочным раствором.
Существует и второй способ холодной вулканизации. Каучуковые заготовки с тонкой стенкой, помещают в атмосферу, насыщенную SO2. Через определенное время, заготовки перемещают в камеру, где закачан H2S (сероводород). Время выдержки заготовок в таких камерах составляет 15 – 25 минут. Этого времени достаточно для завершения вулканизации. Эту технологию с успехом применяют для обработки клееных швов, что придает им высокую прочность.
Специальные каучуки обрабатывают с применением синтетических смол, вулканизация с их использованием не отличается от той, что описана выше.
Горячая вулканизация
Технология такой вулканизации выглядит следующим образом. К отформованной из сырого каучука добавляют определенное количество серы и специальных добавок. Как правило, объем серы должен лежать в диапазоне 5 – 10% конечная цифра определяется исходя из предназначения и твердости будущей детали. Кроме серы, добавляют так называемый роговой каучук (эбонит), содержащий 20 – 50% серы. На следующем этапе происходит формование заготовок из полученного материала и их нагрев, т.е. вулканизация.
Нагрев проводят различными методами. Заготовки помещают в металлические формы или закатывают в ткань. Полученные конструкции укладывают в печь разогретую до 130 – 140 градусов Цельсия. В целях повышения эффективности вулканизации в печи может быть создано избыточное давление.
Сформированные заготовки могут быть уложены в автоклав, в котором находиться перегретый водяной пар. Либо их помещают в нагреваемый пресс. По сути, этот метод наиболее распространен на практике.
Свойства каучука прошедшего вулканизацию зависят от множества условий. Именно поэтому вулканизацию относят к самым сложным операциям, применяемым в производстве резины. Кроме того, немаловажную роль играет и качество сырья и метод его предварительной обработки. Нельзя забывать и об объеме добавляемой серы, температуры, продолжительность и метод вулканизации. В конце концов, на свойства готового продукта оказывает и наличие примесей разного происхождения. Действительно наличие многих примесей позволяет выполнить правильную вулканизацию.
В последние годы в резиновой промышленности стали использовать ускорители. Эти вещества добавленные в каучуковую смесь ускоряют протекающие процессы, снижают энергозатраты, другими словами эти добавки оптимизируют обработку заготовки.
При реализации горячей вулканизации на воздухе необходимо присутствие свинцовой окиси, кроме того может потребоваться присутствие свинцовых солей в купе с органическими кислотами или с соединениями которые содержат кислотные гидроокислы.
В качестве ускорителей применяют такие вещества как:
- тиурамидсульфид;
- ксантогенаты;
- меркаптобензотиазол.
Вулканизация, проводимая под воздействием водяного пара может существенно сократиться если использовать такие химические вещества, как щелочи: Са(ОН)2, MgO, NaOH, КОН, или соли Na2CО3, Na2CS3. Кроме того, ускорению процессов поспособствуют соли калия.
Существуют и органические ускорители, это амина, и целая группа соединений, которые не входят в какую-либо группу. Например, это производные от таких веществ как амины, аммиак и ряд других.
На производстве чаще всего применяют дифенилгуанидин, гексаметилентетрамин и многие другие. Не редки случаи, когда для усиления активности ускорителей используют окись цинка.
Кроме добавок и ускорителей не последнюю роль играет и окружающая среда. К примеру, наличие атмосферного воздуха создает неблагоприятные условия для проведения вулканизации при стандартном давлении. Кроме воздуха, отрицательное воздействие оказывают угольный ангидрид и азот. Между тем, аммиак или сероводород оказывают положительной воздействие на процесс вулканизации.
Процедура вулканизации придает каучуку новые свойства и модифицирует существующие. В частности, улучшается его эластичность и пр. контролировать процесс вулканизации можно контролировать, постоянно замеряя изменяемые свойства. Как правило, для этого используют определение усилия на разрыв и растяжение на разрыв. Но эти метод контроля не отличаются точностью и его не применяют.
Резина как продукт вулканизации каучука
Техническая резина – это композиционный материал, содержащий в своем составе до 20 компонентов, обеспечивающих различные свойства этого материала. Резину получают путем вулканизации каучука. Как отмечалось выше, в процессе вулканизации происходит образование макромолекул, обеспечивающие эксплуатационные свойства резины, так обеспечивается высокая прочность резины.
Главное отличие резины от множества других материалов тем, что она обладает способностью к эластичным деформациям, которые могут происходить при разных температурах, начиная от комнатной и заканчивая куда более низкими. Резина значительно превышает каучук по ряду характеристик, например, ее отличает эластичность и прочность, стойкость к температурным перепадам, воздействию агрессивных сред и многое другое.
Цемент для вулканизации
Цемент для вулканизации используют для операции самовулканизации, она может начинаться с 18 градусов и для горячей вулканизации до 150 градусов. Этот цемент не включает в свой состав углеводороды. Существует также цемент типа ОТР, используемый для нанесения на шероховатые поверхности внутри шин, а также на Тип Топ RAD- и PN-пластыри серии OTR с увеличенным временем высыхания. Применение такого цемента позволяет достичь длительных сроков эксплуатации восстановленных шин, применяемых на специальной строительной технике с большим пробегом.
Технология горячей вулканизации шин своими руками
Для выполнения горячей вулканизации покрышки или камеры понадобится пресс. Реакция сварки каучука и детали происходит за определенный период времени. Это время зависит от размера ремонтируемого участка. Опыт показывает, что для устранения повреждения глубиной в 1 мм, при соблюдении заданной температуры, потребуется 4 минуты. То есть для ремонта дефекта глубиной в 3 мм, придется затратить 12 минут чистого времени. Подготовительное время в расчет не принимаем. А между тем выведение вулканизационного устройства в режим, в заисимости от модели может занять порядка 1 часа.
Температура, необходимая для проведения горячей вулканизации лежит в пределах от 140 до 150 градусов Цельсия. Для достижения такой температуры нет необходимости в использовании промышленного оборудования. Для самостоятельного ремонта шин вполне допустимо применение домашних электробытовых приборов, к примеру, утюга.
Устранение дефектов автомобильной покрышки или камеры при помощи устройства для вулканизации – это довольно трудоемкая операция. У него существует множество тонкостей и деталей, и поэтому рассмотрим основные этапы ремонта.
- Для обеспечения доступа к месту повреждения необходимо покрышку снять с колеса.
- Зачистить рядом с местом повреждения резину. Ее поверхность должна стать шероховатой.
- С применением сжатого воздуха обдуть обработанное место. Корд, появившийся наружу необходимо удалить, его можно откусить кусачками. Резина должна быть обработана специальным составом для обезжиривания. Обработка должна быть проведена с двух сторон, снаружи и изнутри.
- С внутренней стороны, на место повреждения должна быть уложена заранее подготовленная в размер заплатка. Укладку начинают со стороны борта покрышки в сторону центра.
- С наружной стороны на место повреждения необходимо положить куски сырой резины, нарезанные на кусочки по 10 – 15 мм, предварительно их необходимо прогреть на плите.
- Уложенный каучук надо прижать и разровнять по поверхности шины. При этом надо следить за тем, что бы слой сырой резины был выше рабочей поверхности камеры на 3 – 5 мм.
- Через несколько минут, с использование УШМ (угловая шлифмашина), необходимо снять слой наложенной сырой резины. В том случае, если оголенная поверхность рыхлая, то есть в ней присутствует воздух, всю нанесенную резину требуется убрать и операцию нанесения каучука повторить. Если в ремонтном слое нет воздуха, то есть, поверхность ровная и не содержит пор, ремонтируемую деталь, можно отправлять под разогретый до указанной выше температуры.
- Для точного расположения шины на прессе имеет смысл пометить центр дефектного места мелом. Для предотвращения прилипания нагретых пластин к резине, между ними надо проложить плотную бумагу.
Вулканизатор своими руками
Любое устройство для горячей вулканизации должно содержать два компонента:
- нагревательный элемент;
- пресс.
Для самостоятельного изготовления вулканизатора могут потребоваться:
- утюг;
- электрическая плитка;
- поршень от ДВС.
Вулканизатор, который изготовлен своими руками, необходимо оснастить его регулятором, который сможет его выключить по достижении рабочей температуры (140-150 градусов Цельсия). Для эффективного прижима можно использовать обыкновенную струбцину.
Источник
Основные способы вулканизации каучуков. Для проведения основного химического процесса резиновой технологии – вулканизации – применяются вулканизующие агенты. Химизм процесса вулканизации заключается в образовании пространственной сетки, включающей линейные или разветвленные макромолекулы каучука и поперечные связи. Технологически вулканизация заключается в обработке резиновой смеси при температурах от нормальной до 220˚С под давлением и реже без него.
В большинстве случаев промышленная вулканизация проводится вулканизующими системами, включающими вулканизующий агент, ускорители и активаторы вулканизации и способствующими более эффективному протеканию процессов образования пространственной сетки.
Химическое взаимодействие между каучуком и вулканизующим агентом определяется химической активностью каучука, т.е. степенью ненасыщенности его цепей, наличием функциональных групп.
Химическая активность ненасыщенных каучуков обусловлена наличием в основной цепи двойных связей и повышенной подвижностью атомов водорода в a-метиленовых группах, соседних с двойной связью. Поэтому ненасыщенные каучуки можно вулканизовать всеми соединениями, взаимодействующими с двойной связью и соседними с ней группами.
Основным вулканизующим агентом для ненасыщенных каучуков является сера, которая обычно используется в виде вулканизующей системы совместно с ускорителями и их активаторами. Кроме серы можно использовать органические и неорганические пероксиды, алкилфенолформальдегидные смолы (АФФС), диазосоединения, полигалоидные соединения.
Химическая активность насыщенных каучуков существенно ниже активности ненасыщенных, поэтому для вулканизации нужно использовать вещества с высокой реакционной способностью, например различные пероксиды.
Вулканизация ненасыщенных и насыщенных каучуков может проводиться не только в присутствии химических вулканизующих агентов, но и под влиянием физических воздействий, инициирующих химические превращения. Это излучения высоких энергий (радиационная вулканизация), ультрафиолетовое излучение (фотовулканизация), длительное воздействие высоких температур (термовулканизация), действие ударных волн и некоторых других источников.
Каучуки, имеющие функциональные группы, можно вулканизовать по этим группам с помощью веществ, взаимодействующих с функциональными группами с образованием поперечной связи.
Основные закономерности процесса вулканизации. Независимо от типа каучука и применяемой вулканизующей системы в процессе вулканизации происходят некоторые характерные изменения свойств материала:
· Резко уменьшается пластичность резиновой смеси, появляется прочность и эластичность вулканизатов. Так, прочность сырой резиновой смеси на основе НК не превышает 1,5 МПа, а прочность вулканизованного материала – не менее 25 МПа.
· Существенно снижается химическая активность каучука: у ненасыщенных каучуков уменьшается количество двойных связей, у насыщенных каучуков и каучуков с функциональными группами – число активных центров. За счет этого повышается устойчивость вулканизата к окислительным и другим агрессивным воздействиям.
· Увеличивается устойчивость вулканизованного материала к действию пониженных и повышенных температур. Так, НК затвердевает при 0ºС и становится липким при +100ºС, а вулканизат сохраняет прочность и эластичность в температурном интервале от –20 до +100ºС.
Такой характер изменения свойств материала при вулканизации однозначно свидетельствует о протекании процессов структурирования, заканчивающихся формированием трехмерной пространственной сетки. Для того чтобы вулканизат сохранил эластичность, поперечные связи должны быть достаточно редкими. Так, в случае НК термодинамическая гибкость цепи сохраняется, если одна поперечная связь приходится на 600 атомов углерода основной цепи.
Процесс вулканизации характеризуется также некоторыми общими закономерностями изменения свойств в зависимости от времени вулканизации при постоянной температуре.
Поскольку наиболее существенно изменяются вязкостные свойства смесей, для исследования кинетики вулканизации используют сдвиговые ротационные вискозиметры, в частности реометры Монсанто. Эти приборы позволяют исследовать процесс вулканизации при температурах от 100 до 200ºС в течение 12 – 360 мин с различными сдвиговыми усилиями. Самописец прибора выписывает зависимость крутящего момента от времени вулканизации при постоянной температуре, т.е. кинетическую кривую вулканизации, имеющую S-образную форму и несколько участков, соответствующих стадиям процесса (рис. 3).
Первая стадия вулканизации называется индукционным периодом, стадией подвулканизации или стадией преждевременной вулканизации. На этой стадии резиновая смесь должна сохранять текучесть и хорошо заполнять всю форму, поэтому ее свойства характеризуются минимальным моментом сдвига Ммин (минимальная вязкость) и временем ts, в течение которого сдвиговый момент увеличивается на 2 единицы по сравнению с минимальным.
Рис. 3. Типичная реометрическая кривая вулканизации 1 – Ммин; 2 – Ммин+2; 3 – Ммакс; 4 – М90 |
Продолжительность индукционного периода зависит от активности вулканизационной системы. Выбор вулканизующей системы с тем или иным значением ts определяется массой изделия. При вулканизации происходит сначала прогрев материала до температуры вулканизации, и вследствие низкой теплопроводности каучука время прогрева пропорционально массе изделия. По этой причине для вулканизации изделий большой массы должны выбираться вулканизующие системы, которые обеспечивают достаточно длительный индукционный период, а для изделий с малой массой – наоборот.
Вторая стадия называется главным периодом вулканизации. По завершении индукционного периода в массе резиновой смеси накапливаются активные частицы, вызывающие быстрое структурирование и соответственно нарастание крутящего момента до некоторого максимального значения Ммакс. Однако завершением второй стадии считается не время достижения Ммакс, а время t90, соответствующее М90. Этот момент определяется по формуле
М90=0,9 DМ + Ммин,
где DМ – разность крутящих моментов (DМ=Ммакс – Ммин).
Время t90 – это оптимум вулканизации, величина которого зависит от активности вулканизующей системы. Угол наклона кривой в главном периоде характеризует скорость вулканизации.
Третья стадия процесса называется стадией перевулканизации, которой в большинстве случаев на кинетической кривой соответствует горизонтальный участок с постоянными свойствами. Эта зона называется плато вулканизации. Чем шире плато, тем устойчивее смесь к перевулканизации.
Ширина плато и дальнейший ход кривой в основном зависят от химической природы каучука. В случае ненасыщенных линейных каучуков, таких как НК и СКИ-3, плато неширокое и затем происходит ухудшение свойств, т.е. спад кривой (рис. 3, кривая а). Процесс ухудшения свойств на стадии перевулканизации называется реверсией. Причиной реверсии является деструкция не только основных цепей, но и образовавшихся поперечных связей под действием высокой температуры.
В случае насыщенных каучуков и ненасыщенных каучуков с разветвленной структурой (значительное количество двойных связей в боковых 1,2-звеньях) в зоне перевулканизации свойства изменяются незначительно, а в ряде случаев даже улучшаются (рис. 3, кривые б и в), поскольку термоокисление двойных связей боковых звеньев сопровождается дополнительным структурированием.
Поведение резиновых смесей на стадии перевулканизации важно в производстве массивных изделий, особенно автомобильных покрышек, поскольку за счет реверсии может произойти перевулканизация наружных слоев при недовулканизации внутренних. В этом случае требуются вулканизующие системы, которые обеспечивали бы продолжительный индукционный период для равномерного прогрева покрышки, высокую скорость в главном периоде и широкое плато вулканизации на стадии перевулканизации.
Источник