В клетках какого типа ткани содержится большое число митохондрий

В клетках какого типа ткани содержится большое число митохондрий thumbnail

Анонимный вопрос

6 сентября 2019  · 1,8 K

Популяризатор биологии, особенно биохимии и доказательной медицины. Область научной…  · vk.com/mir_mol

  • Короткий ответ: для работы мышцам нужна энергия, а митохондрии эту энергию производят.

  • Длинный ответ. Сначала небольшая терминологическая корректировка. Гладкая мышечная ткань и мышцы сердца состоят из мышечных клеток (гладкомышечных клеток и кардиомиоцитов, соответственно), а вот скелетная ткань – из мышечных волокон (это симпласт, то есть структурно-функциональное объединение клеток, между которыми нет границ). Поэтому ответ будет касаться как мышечных клеток, так и мышечных волокон.

Работа мышц требует больших энергетических затрат, а именно энергия тратится на взаимное скольжение двух сократительных белков – актина и миозина. Генерируется значительная часть энергии митохондриями. Это органоиды, в которых происходит цикл Кребса, а также функционирует дыхательная цепь. Благодаря этим процессам образуется аденозинтрифосфат (АТФ) – основная энергетическая «валюта» в живой природе. Именно поэтому в мышцах много митохондрий.

Какая роль ядрышка в клетке?

Как написано на Википедии: ядрышко представляет собой комплекс белков и рибонуклеопротеидов, формирующийся вокруг участков ДНК, которые содержат гены рРНК — ядрышковых организаторов. Основная функция ядрышка — образование рибосомных субъединиц.

Ссылка на источник, вдруг понадобиться: https://ru.wikipedia.org/wiki/Ядрышко

Какие функции митохондрий?

Студент технического университета, увлекаюсь спортом, интересуюсь философией и…

Митохондрии – это двумембранный сферический или эллипсоидный органоид диаметром обычно около 1 микрометра. Можно выделить две основные функции: 1) роль энергетических станций клеток,

в которых происходит окисление различных веществ с накоплением энергии в виде молекул АТФ; 2) хранение наследственного материала в виде митохондриальной ДНК.

Сравнение растительной животной грибной и бактериальной клетки?

Занимаюсь козами, люблю животных, книги, штангу, учу языки. Круг интересов…

В бактериальной клетке:

  • Нет ядра;

  • Есть цитоплазматическая мембрана;

  • Есть капсула (слизистая структура, плотно связанная с мембраной);

  • Есть клеточная стенка, образована пектином или муреином;

  • Нет контаков между клетками;

  • Вместо хромосом – нуклеоид;

  • В качестве вакуолей – аэросомы;

  • Есть плазмиды, цитоплазма, рибосомы, мезосомы, пили, органеллы для перемещения;

  • Цитоскелет – встречается у некоторых бактерий;

  • Нет пероксисом, лизосом, пластидов, центриолей, митохондрий, эндоплазматического ретикулума или сети, аппарата Гольджи.

В растительной клетке:

  • Есть ядро, которое придает клетке форму, запасает питательные вещества, определяет рамки роста;

  • Есть клеточная мембрана;

  • Нет капсулы;

  • Есть клеточная стенка;

  • Есть контакты между клеткам, представлены плазмодесмами (цитоплазматические “мостики”, соединяющие клетки);

  • Есть хромосомы;

  • Есть вакуоли;

  • Есть цитоплазма, митохондрии, эндоплазматический ретикулум или сеть, аппарат Гольджи, рибосомы, пластиды, цитоскелет, пероксисомы, органеллы для перемещения;

  • Лизосомы обычно не видны;

  • Центриоли есть у низших растений;

  • Нет пилей, мезосом, плазмидов.

В животной клетке:

  • Ядро есть, отвечает за передачу генетической информации;

  • Есть клеточная мембрана;

  • Нет капсулы;

  • Нет клеточной стенки;

  • Есть контакты между клетками, представлены демосомами (обеспечивают структурную целостность слоёв клеток);

  • Есть хромомсомы;

  • Нет вакуолей;

  • Есть цитоплазма, митохондрии, эндоплазматический ретикулум или сеть, аппарат Гольджи, рибосомы, цитоскелет, центриоли, лизосомы, пероксисомы, органеллы для перемещения;

  • Нет пилей, мезосом, плазмидов, пластидов.

В клетке гриба:

  • Есть ядро, присутствуют дикарионы – спаренные ядра в клетке после слияния цитоплазмы. Ядра способны передвигаться из клетки в клетку;

  • Есть клеточная мембрана;

  • Нет капсулы;

  • Есть клеточная стенка, образована хитином;

  • Есть контакты между клетками;

  • Есть хромосомы;

  • Есть вакуоли;

  • Есть цитоплазма, митохондрии, эндоплазматический ретикулум или сеть, аппарат Гольджи, рибосомы, цитоскелет, лизосомы, пероксисомы;

  • Нет пилей, мезосом, плазмидов, пластидов, центриолей, органелл для перемещения.

Читайте также:  В каких содержатся жиры

Каким образом растёт мышечная масса? На биологическом уровне.

За счет нарастания в поперечнике мышечных волокон. Толщины, не длины или увеличения количества волокон! Это называется гипертрофия. Огромный, многоступенчатый и многофакторный процесс, в котором участвуют гормоны (тесто, кортизол, ГР), клетки-сателлиты, расположенные на поверхности мышечных волокон, целый ряд факторов роста и тд. Предел гипертрофии мышц – увеличение поперечника волокна в 2(!) раза. То есть, волокна с самого тощего дистрофана будут не более, чем в 2 раза, тоньше волокон атлета.

Еще рост происходит за счет гиперплазии – явление увеличение количества мышечных волокон, но в отношении человека это малоприменимо. Нет основательных исследований, подтверждающих наличие этого явления у нас. У животных – есть примеры, у человека – не доказано.

На сам рост волокна есть 2 теории, но как факт, тут тоже нет определенного ответа и согласия в научном мире, слишком уж сложный процесс: теория разрушения (микротравмы) и еще какая-то, ее я, честно говоря, не помню. Первая не в пример популярнее, поэтому лучше взять в руки гугл и посмотреть там. 

А еще лучше, учебник физиологии. Там все подробно расписано. Если хочешь грамотно строить свои тренировки или просто знать, как работает твой организм – незаменимое чтиво.

Прочитать ещё 1 ответ

Объясните гуманитарию, что означает понятие “энтропия”?

Филолог, мечтающий стать астрофизиком

Я понимаю так (если понимаю неправильно, пусть знающие люди меня поправят), что, в общем смысле, энтропия – это степень упорядоченности какой-либо системы, мера беспорядка, хаоса. И чем выше беспорядок, тем, соответственно, выше энтропия. И наоборот. Понятие энтропии используется во многих науках, но чаще, как правило, связывается со вторым законом термодинамики, который гласит, что в изолированной системе энтропия не может уменьшаться. Если говорить совсем простыми словами, то система – это нечто организованное, то, что имеет свою структуру, а изолированной можно назвать систему, на которую не оказывается воздействие извне (хотя совсем уж независимую систему найти трудно, так как все предметы и объекты друг с другом взаимодействуют, но это детали). Так вот, оставленное на солнце яблоко со временем сгниет, человек постареет. Энтропия всегда растет. Вселенная стремится к беспорядку. И именно из-за действия энтропии, как предполагается, время не может идти назад, хотя в физике не существует точного закона, постулирующего, что время обязательно должно идти только вперед. Если время пойдет назад, то все явления и вещи начнут сами по себе магическим образом упорядочиваться: разлетевшиеся бумаги сложатся ровной стопочкой, разбитый стакан соберется в целый без единой трещины, люди начнут молодеть. Повернуть время вспять значит упорядочить систему, то есть нарушить второй закон термодинамики. Нет, разбитый стакан, конечно, можно склеить в целый, и дома можно сделать уборку, однако при этом придется затратить какую-то часть энергии, и никакого нарушения в итоге не выйдет. Склеивание стакана и уборка дома – это только видимость уменьшения энтропии, так как даже аккуратно разложенные по местам вещи имеют свойство со временем разлагаться, так что от вездесущей энтропии нам не уйти.

Такие дела.

Прочитать ещё 5 ответов

Источник

Именно такая аналогия приходит, когда познакомишься с этим органоидом. Он явно на особом положении в клетке. Почему? Будем разбираться.

Читайте также:  В каких электроприборах содержаться золото

Итак, чем митохондрии отличаются от прочих органоидов?

1. Граница

Граница-мембрана есть у многих органоидов клетки, но у митохондрий она ещё и двойная, состоящая изнаружнойивнутренней мембран. Усиленный белково-фосфолипидный слой вокруг этой структуры уже сам по себе кое на что намекает. Намекает как минимум на повышенное “стремление” к независимости и обособленности. Внутренняя мембрана митохондрии имеет особые впячиваяния – кристы, по которым этот органоид легко опознаётся, в том числе и школьниками на государственных итоговых экзаменах по биологии 😉

Микрофотография митохондрии, на которой хорошо видны впячивания внутренней мембраны – кристы. Источник фото: Свенсон К., Уэбстер П. Клетка. – М.: Мир, 1980.

2. Собственные органы власти

Как известно, главной молекулой клетки, которая руководит всеми процессами, является ДНК, расположенная в ядре. Как она приобрела могущество и власть? Да точно так же, как приобретают власть в принципе – с помощью информации. “Кто владеет информацией, тот владеет миром” (не мной сказано). Так вот, именно в ДНК записана информация о каждом белке клетки и даже всего организма. А белки – это: а) основа для построения любой биоконструкции, от органоида до Биосферы; б) активные вещества (ферменты и гормоны), регулирующие функционирование этих биологических конструкций. Таким образом, кто владеет информацией о белках клетки, тот владеет клеткой. Клеткой, да не всей…

Митохондрии дела нет до указаний ядерной ДНК. Она их попросту игнорирует. Может себе это позволить, потому как имеет собственную молекулу ДНК – митохондриальную ДНК, содержащую информацию обо всех белках, создающих данный органоид

Внутреннее строение митохондрии

3. Собственная логистика и инфраструктура

Усиленная граница есть, руководящий центр есть. Разве этого не достаточно для независимости? Судите сами – всё это есть и у клеточного ядра, но почему-то оно не может похвастаться автономностью и без органоидов цитоплазмы обречено на гибель, так как самостоятельно не получает энергию, не растёт и не размножается. А митохондрия вполне самодостаточна – в ней в полной мере протекают и пластический, и энергетический обмен, она способна к автономному росту и даже делению (именно так в клетке появляются новые митохондрии).

Как ей это удаётся? Да просто митохондрия имеет всё, что необходимо для существования даже и отдельной клетки, а не то, что её части. У неё есть свои собственные митохондриальные рибосомы, в которых производится собственный митохондриальный белок, а белок – это основа пластического обмена, ведь он – главный строительный материал. Вторая сторона обмена веществ – энергетический обмен – так же без проблем осуществляется в митохондрии. Ещё бы! Ведь она же и отвечает за него в клетке. Извлечение энергии из органических веществ и её запас в виде АТФ – функция митохондрии, и , как видим, сапожник без сапог не остаётся, не забывает и себя обеспечивать той же энергией!

Митохондрии абсолютно независимо от остальной клетки появляются на свет (путём деления материнской митохондрии), строят себя и растут, получают и пользуются энергией. Одним словом – живут и дают жизнь новым митохондриям. Очень похоже на государство в государстве, на организм в организме. И не просто похоже, это именно так и есть. Ведь по мнению учёных митохондрии когда-то действительно были самостоятельными одноклеточными организмами. Судя по форме ДНК (кольцевая) и наличию крист-впячиваний внутренней мембраны, они были прокариотами, то есть доядерными организмами, по сути – бактериями. На схеме ниже – строение бактерии и митохондрии. Сравните сами и, что называется, попробуйте найти отличия:

Чем не обыкновенная бактерия? Да, бактерия, только вот совсем не обыкновенная, а способная благодаря ей одной известному ноу-хау производить энергии в 19 раз больше (!), чем все прочие пионеры жизни, бултыхающиеся рядом в первичном бульоне. Но эта энергичная умница не избежала-таки участи быть поглощённой-съеденной более крупным существом – одноклеточным эукариотом (ядерным организмом). Бактерию-митохондрию ожидала печально-банальная участь быть расщеплённой на отдельные молекулы ферментами лизосомы(пищеварительной вакуоли) эукариота. Но эукариот оказался сообразителен эволюционно продвинут, а может быть не обошлось и без штучек самой митохондрии, которая продолжала что есть мочи синтезировать АТФ, да ещё и поделилась этим источником энергии с эукариотом. Так или иначе, но хозяин оценил преимущества от приобретения в штат своих органоидов высоко энергоэффективной структуры в обмен на однократный пропуск очередного приёма пищи, а митохондрия получила “крышу” и относительную гарантию спокойствия и стабильности. Удалось ей так же, как видим, сохранить и часть своей независимости. В общем, не прогадала!

Если вас заинтересовал этот органоид клетки, то заглядывайте на мой канал. В планах рассказ о том, от кого мы получаем свою митохондриальную ДНК, чем митохондриальная ДНК интересна генетикам, антропологам, эволюционистам, систематикам и кто такая митохондриальная Ева.

Использованные в тексте биологические термины:

Читайте также:  Какие витамины содержатся в молоке и чем они полезны

Мембрана – оболочка на границе органоида или клетки

Кристы – впячивания мембраны

Митохондриальная ДНК – ДНК, содержащаяся в митохондрии, содержащая отличный от ядерной ДНК набор генов

Рибосома – органоид клетки, функция которого – синтез белков

Пластический обмен – одна из сторон обмена веществ, цель которой построение биологических систем

Энергетический обмен одна из сторон обмена веществ, цель которой получение энергии

Прокариоты = доядерные – самые первые на Земле организмы, у которых не было ядра, их ДНК свободно плавала в цитоплазме

Эукариоты = ядерные – организмы, эволюционно образовавшиеся из прокариотов, имеющие оформленное ядро, защищающее ДНК

Лизосома – органоид клетки, функции которого пищеварение или уничтожение клеточного мусора

Источник

Биология 10 класс: Цитоплазма и ее органеллы (Часть 2)

Проверь свои знания о цитоплазме и ее органеллах

  • Вопрос 1

    Основная функция ЭПС:

    • получение органических веществ

    • хранение запасов питательных веществ

    • перемещение органических веществ

    • разрушение вредных для клетки отходов

  • Вопрос 2

    Митохондрии можно разглядеть:

    • с помощью любого микроскопа

    • даже невооруженным глазом

    • только с помощью светового микроскопа

    • только с помощью электронного микроскопа

  • Вопрос 3

    Наибольшее количество митохондрий содержат клетки:

    • печени

    • кожи

    • крови

    • мышц

  • Вопрос 4

    В митохондриях происходит:

    • окисление органических веществ

    • окисление Н₂О и СО₂

    • запасание энергии в виде АТФ

    • синтез органических веществ

  • Вопрос 5

    Складка внутренней мембраны митохондрии называется:

    • плазмалемма

    • грана

    • криста

    • строма

  • Вопрос 6

    Митохондрий нет в клетках:

    • растений

    • бактерий

    • человека

    • животных

  • Вопрос 7

    Число митохондрий в клетке может достигать нескольких:

    • тысяч

    • десятков тысяч

    • сотен тысяч

    • миллионов

  • Вопрос 8

    Средний размер митохондрии:

    • 0,2—10 мкм

    • 0,2—10 нм

    • 0,02—10 мкм

    • 0,02—10 нм

  • Вопрос 9

    Матрикс митохондрий содержит:

    • воду

    • кольцевые ДНК

    • ферменты

    • рибосомы

  • Вопрос 10

    В клетках печени митохондрии живут около:

    • 10 минут

    • 10 дней

    • 10 часов

    • 10 недель

Источник