В каком случае правильно указаны продукты первого этапа анаэробного гликолиза
Гликолиз – процесс окисления глюкозы, при котором из одной молекулы глюкозы образуются две молекулы пировиноградной кислоты, не является мембранозависимым процессом. Он происходит в цитоплазме. Однако ферменты гликолиза связаны со структурами цитоскелета. Суть гликолиза состоит в том, что молекула глюкозы (C6H12O6) без участия кислорода распадается на две молекулы пировиноградной кислоты (СН3СОСООН). При этом окисление идет за счет отщепления от молекулы глюкозы четырех атомов водорода, связывающихся со сложным органическим веществом НАД с получением двух молекул НАД•Н. Выделяющаяся при этом энергия запасается (40% от общего количества) в виде макроэргических связей двух молекул АТФ. 60% энергии выделяется в виде тепла. При последующем окислении НАД•Н получается еще 6 молекул АТФ. Таким образом, полный энергетический выход гликолиза в анаэробных условиях составляет 8 молекул АТФ.
На схеме в рамках обозначены исходные субстраты и конечные продукты гликолиза, цифрами в скобках – число молекул.
Для распада и частичного окисления молекулы глюкозы требуется протекание 11 сложных последовательных реакций.
Реакции гликолиза
Ход реакций
Ферменты, Активаторы, ингибиторы
Подготовительная стадия гликолиза
Стадия активации глюкозы проходит в 5 реакций, в ходе которых 1 молекула гексозы (глюкозы) расщепляется на 2 молекулы триоз-глицеральдегидфосфата
1. Необратимая реакция фосфорилирования глюкозы
Процесс гликолиза начинается с фосфорилирования глюкозы за счет АТФ – первая реакция. Это первая пусковая реакция гликолиза. Ее результатом является глюкозо-6-фосфат, имеющий отрицательный заряд. В гликолизе может участвовать не только глюкоза, но и другие гексозы (фруктоза), но в результате фосфорилирования и активации все равно образуется глюкозо-6-фосфат.
фермент: гексокиназа
Активаторы: АДФ, Н3РO4.
Ингибиторы: глюкозо-6-Ф, фосфоенолпируват.
2. Обратимая реакция изомеризации глюкозо-6-фосфата
Во второй реакции происходит изомеризация (внутримолекулярные перестройки) глюкозо-6-фосфата во фруктозо-6-фосфат.
фермент: глюкозо-6-фосфатизомераза
3. Необратимая реакция фосфорилирования фруктозо-6-фосфата (ключевая стадия гликолиза)
В третьей реакции происходит фосфорилирование (присоединение остатка ортофосфорной кислоты) фруктозо-6-фосфата с образованием фруктозо-1,6-дифосфата. При этом затрачивается еще одна молекула АТФ (уже вторая) – это вторая пусковая реакция гликолиза. Она идет в присутствии Mg2+ и является необратимой, так как сопровождается масштабным уменьшением свободной энергии.
фермент: фосфофруктокиназа
Активаторы: АДФ, АМФ, Н3РO4, К+.
Ингибиторы: АТФ, цитрат, НАДН.
4. Обратимая реакция дихотомического расщепления фруктозо-1,6-дифосфата
В четвертой реакции гликолиза происходит расщепление фруктозо-1,6-дифосфата на две молекулы глицеральдегид-3-фосфата.
фермент: алъдолаза
5. Обратимая реакция изомеризации дигидроксиацетона-3-фосфат в глицеральдегид-3-фосфат
В пятой реакции происходит изомеризация полученных триозофосфатов. На этом заканчивается первая стадия гликолиза.
фермент: триозофосфатизомераза
Стадия генерации АТФ
Проходит в 6 реакций (или 5), в ходе которых энергия окислительных реакций трансформируется в химическую энергию АТФ (субстратное фосфорилирование).
6. Окисление глицеральдегид-3-фосфата до 1,3-дифосфоглицерата (реакция гликолитической оксиредукции)
В шестой реакции происходит окисление альдегидной группы до карбоксильной. Выделившийся Н+ акцептируется NAD, который восстанавливается до NADH. Освобождающаяся энергия затрачивается для образования высокоэнергетической связи 1,3-бифосфоглицерата (1,3-бифосфоглицериновая кислота).
фермент: глицералъдегид-3-фосфат-дегидрогеназа
7. Субстратное фосфорилирование АДФ (7)
В седьмой реакции фосфорильная группа 1,3-бифосфоглицерата переносится на ADP, в результате чего образуется АТР (напоминаем, что следует иметь в виду две параллельные цепи реакций, с участием двух молекул триоз, образовавшихся из одной молекулы гексозы, следовательно, синтезируется не одна, а две молекулы АТР).
фермент: фосфоглицераткиназа
8. Реакция изомеризации 3-фосфоглицерата в 2-фосфоглицерат
В восьмой реакции гликолиза происходит перенос фосфатной группы с третьего атома углерода на второй. В результате образуется 2-фосфоглицерат (2-фосфоглицериновая кислота).
9. Реакция енолизации
Девятая реакция сопровождается внутримолекулярными окислительно-восстановительными процессами, в результате которых образуется фосфоенолпируват (фосфоенолпировиноградная кислота) с высокоэнергетической связью во втором атоме углерода и отщепляется молекула воды
фермент: енолаза
10. Реакция субстратного фосфорилирования
В ходе десятой реакции фосфорильная группа переносится на ADP. При этом синтезируется АТР и пируват (пировиноградная кислота). Эта реакция также необратима, поскольку высокоэкзергонична.
фермент: пируваткиназа
11. Реакция обратимого восстановления пировиноградной кислоты до молочной кислоты (в анаэробных условиях)
Если после гликолиза следует аэробное расщепление, пируват мигрирует в матрикс митохондрий, где, взаимодействуя с коэнзимом-А, участвует в образовании ацетил-СоА. В анаэробных условиях пируват при участии NADH восстанавливается до лактата (молочной кислоты), который при этом является конечным продуктом гликолиза. Затем в аэробных условиях лактат может обратно превратиться в пируват и окислиться в митохондриях.
фермент: лактатдегидрогеназа
1. Биология для поступающих в вузы / Г.Л. Билич, В.А. Крыжановский. — 2008.
2. Биология в таблицах и схемах / Спб. — 2004.
3. Биохимия в схемах и таблицах / И. В. Семак – Минск — 2011.
Источник
Для успешного прогрессирования в спорте необходимо иметь мощную теоретическую базу, позволяющую правильно строить тренировки и использовать имеющийся потенциал. Анаэробный гликолиз – важный процесс, который протекает в органических тканях и дает возможность успешно заниматься. Какое значение он представляется для нашего организма? Как его применять при построении тренировочной программы? В каких условиях он будет проходить максимально результативно? Можно ли улучшить протекание данного явления? Как это сделать? Ответы на перечисленные вопросы читайте дальше.
Определение
Анаэробный гликолиз – ферментативный процесс, включающий последовательное преобразование виноградного сахара для получения энергии. Реакция строится на обратимом превращении пируватов в лактат посредством катализа лактатдегидрогеназой. С ее помощью органы человека используют аденозинтрифосфат для получения сил во время тренинга. Содержание этого компонента удваивается и удерживается на таком уровне около 20 секунд, что позволяет успешно закончить подход. Основная особенность происходящей реакции заключается в отсутствии участия O₂ и побочном образовании лактата.
Аэробный гликолиз – это схожее явление, в ходе которого также происходит разложение глюкозы с получением АДФ, обеспечивающее обмен энергии в организме. В отличие от предыдущей разновидности получения ресурсов реакция протекает с атомами кислорода и водорода. В результате побочных компонентов образуется углекислый газ и вода.
В обоих случаях энергетический выброс дает силы человеку справиться с физической нагрузкой в течение определенного времени.
Принцип действия
Описанная система обмена веществ основывается на циркуляции декстрозы в крови и гликогена, который хранится в мышцах и печени. За счет изменения конфигурации молекул происходит выделение АТФ. В результате таких преобразований осуществляются разные процессы, многие из которых не только высвобождают энергию, но и потребляют ее.
Аэробный и анаэробный гликолиз связаны с определенными энзимами, чувствительными к кислотно-щелочному балансу. Во время физических действий выделяется молочная кислота, одновременно запускающая образование ресурсов в организме и усталость. То, какое состояние будет преобладать, зависит от характера тренинга:
- аэробика – продолжительность упражнений до 30 секунд;
- анаэробика – длительное силовое напряжение.
Недостаток тренировок второго типа заключается в отсутствии возможности заниматься часто. В противном случае объем лактата в теле превысит допустимую норму, что повлечет упадок сил или судороги.
Нагрузки первого типа лучше подходят для развития выносливости. Они помогают в борьбе с лишним весом, укрепляют легкие, снижают артериальное давление. Такие упражнения относятся к кардиотренировкам, развивающим устойчивость к стрессам. Но для набора мышечной массы больше подходят силовые виды спорта. Их преимущество заключается в том, что даже в состоянии покоя сжигается большое количество калорий.
Программа тренировок
Анаэробный гликолиз и аэробный, отличия которых достаточно существенны, должны присутствовать в жизнедеятельности любого человека. Поэтому в спорте используются как кардио, так и силовые упражнения. Первые необходимы для обеспечения организма O₂, жиросжигания, похудения. Они гарантируют размеренное и продолжительное воздействие и включают:
- езду на велосипеде;
- плавание;
- бег в среднем темпе;
- катание на коньках, роликах, лыжах;
- использование специальных тренажеров (беговая дорожка, велотренажер, степпер).
При регулярном занятии перечисленными видами спорта снижается риск развития сердечно-сосудистых заболеваний. Сердечная мышца укрепляется достаточно, чтобы выдержать силовые действия. Благодаря этому анаэробный гликолиз, реакции которого требуют сильного физического напряжения, не нанесет вреда внутренним органам. Он строится на так называемых «безкислородных» нагрузках (кратковременность, интенсивность, высокие силовые затраты). В данную категорию входят:
- спринт;
- бодибилдинг;
- пауэрлифтинг.
В ходе тренинга потребляется минимум кислорода, поэтому основной запас энергии высвобождается из мышечных волокон. Регулярные занятия развивают мускулатуру, силовые показатели, укрепляют опорно-двигательный аппарат. Преимущество заключается в долговременном эффекте, сохраняющемся в течение 36 часов с момента занятия в спортзале. Ускоренный метаболизм продолжает воздействовать на организм, усиленно сжигая калории и снижая процент жировых отложений.
АнП
АнП – важное понятие в тренировках на выносливость, предполагающее «порог» интенсивности в одном занятии. Он представляет собой норму, при которой лактат в крови превышает показатель его нейтрализации. Анаэробный гликолиз происходит в мышцах и других тканях, затрагивая работу внутренних органов. Поэтому определить АнП можно при помощи ЧСС. Задача осуществляется путем выполнения кардионагрузок на большие дистанции или посредством подсчета в лабораторных условиях.
При высоких нагрузках количество молочной кислоты повышается, и организм прикладывает усилия, чтобы понизить этот показатель. Если АнП превысит допустимый уровень, самочувствие атлета ухудшится, и он не сможет продолжать заниматься. Чтобы предотвратить описанный исход, необходимо тренироваться, отслеживая собственный порог.
Для самостоятельного расчета АнП подходит бег. Задача осуществляется по следующей схеме:
- пробежите дистанцию в среднем темпе в течение 30 минут;
- через 10 минут с начала старта замеряйте пульс;
- повторите процедуру по окончании пробежки;
- суммируйте оба показателя;
- разделите полученное число на 2.
Результат – анаэробный порог. Чтобы его не превысить, необходимо заниматься на 85% от допустимого максимума. Для этого рекомендуется отслеживать пульс в ходе тренировки.
Улучшение гликогенолиза
Чтобы повысить эффективность данной системы, необходимо воспользоваться специальной тренировочной программой. При правильном подходе содержание глюкозы и гликогена увеличится, за счет чего усилится выработка энергии, позволяющая дольше заниматься. Для формирования привычки к более высокому уровню молочной кислоты и наработки выносливости, следует:
- тренироваться со средней и высокой интенсивностью;
- использовать веса, с которым можно сделать 8-15 повторений в одном сете;
- отдыхать между подходами 30-60 секунд.
Большой объем, умеренные веса и короткие перерывы повысят выработку лактата. При регулярных занятиях тело адаптируется к высокому показателю данного вещества, выполнять упражнения станет легче, утомляемость снизится. Активируется работа энергетической системы, усиливающей выработку ресурсов, используемых для выполнения силовых упражнений.
Пищевые добавки
Для улучшения гликогенолиза изобретено спортивное питание, ускоряющее синтез компонентов, принимающих в нем участие. Пищевые добавки позволяют организму вырабатывать больше виноградного сахара и гликогена, за счет чего сроки восстановления сокращаются. Но описанная особенность распространяется не на всех людей. Если человек испытывает нехватку разных компонентов, спортивное питание улучшит гликогенолиз. В противном случае разница в энергетическом балансе незаметна.
Этапы
Переработка глюкозы в энергию в клетках состоит из трех стадий:
- Подготовительный гликолиз аэробный. На этом этапе декстроза расщепляется и преобразуется в пируват.
- катаболизм.
- Тканевое дыхание. Необходимые питательные вещества вырабатываются по митохондриальной цепи переноса электронов.
Всего из одной молекулы глюкозы возникает 38 молекул АТФ. Участие кислорода в реакции тормозит процесс. Но его отсутствие не принесет вреда, поскольку гликогенолиз рассчитан на короткие интенсивные нагрузки. При активном дыхании в клетках происходит переключение на более экономичный вариант получения ресурсов.
Советы
Большинство людей не знает, где протекает анаэробный этап гликолиза. Данное явление происходит в цитоплазме клеток, но для результативного тренинга это не имеет значения точно так же, как и то, какие продукты и ферменты выделяются. Главное для атлета – придерживаться основных рекомендаций, обеспечивающих эффективную тренировку и восстановление.
Для этого:
- чередуйте силовые с кардио;
- не занимайтесь дольше 30-40 минут, чтобы уровень гормона стресса не превысил норму;
- распределите «кислородные» и «безкислородные» занятия по разным дням;
- не перегружайте мышцы;
- делайте разминку, чтобы мышечные ткани лучше воспринимали поступление молочной кислоты;
- давайте время телу восстановиться (1-3 дня в зависимости от интенсивности тренировки).
Не забывайте о режиме сна, здоровом питании, отсутствии вредных привычек. Перечисленные факторы создадут условия для хорошей работы внутренних органов, благодаря чему обменные процессы будут протекать быстрее и эффективнее. Периодизированная программа обеспечит результативную гипертрофию. Также учитывайте состояние здоровья. Нарушение метаболизма негативно сказывается на энергетическом обмене в клетках и гликогенолизе. Поэтому предварительный расчет АнП и медицинский осмотр – обязательны. При обнаружении проблем со здоровьем интенсивность нагрузок необходимо снизить, иначе будет нарушен не только метаболизм, но и работа внутренних органов.
Читайте также:
Источник
Гликолиз (от
греч. glycys – сладкий и lysis –
растворение, распад) – это последовательность ферментативных реакций,
приводящих к превращению глюкозы в пируват с одновременным образованием АТФ.
При аэробных
условиях пируват проникает в митохондрии, где полностью окисляется до СО2
и Н2О. Если содержание кислорода недостаточно, как это может иметь
место в активно сокращающейся мышце, пируват превращается в лактат.
Итак,
гликолиз – не только главный путь утилизации глюкозы в клетках, но и уникальный
путь, поскольку он может использовать кислород, если
последний
доступен (аэробные условия), но может протекать и в отсутствие кислорода
(анаэробные условия).
Анаэробный гликолиз – сложный ферментативный процесс распада глюкозы,
протекающий в тканях человека и животных без потребления кислорода. Конечным
продуктом гликолиза является молочная кислота. В процессе гликолиза образуется
АТФ. Суммарное уравнение гликолиза можно представить следующим образом:
В анаэробных
условиях гликолиз – единственный процесс в животном организме, поставляющий
энергию. Именно благодаря гликолизу организм человека и животных определенный
период может осуществлять ряд физиологических функций в условиях
недостаточности кислорода. В тех случаях, когда гликолиз протекает в
присутствии кислорода, говорят об аэробном гликолизе .
Последовательность
реакций анаэробного гликолиза, так же как и их промежуточные продукты, хорошо
изучена. Процесс гликолиза катализируется одиннадцатью ферментами, большинство
из которых выделено в гомогенном, клисталлическом или высокоочищенном виде и
свойства которых достаточно известны. Заметим, что гликолиз протекает в
гиало-плазме (цитозоле) клетки.
Первой
ферментативной реакцией гликолиза является фосфорилирование, т.е. перенос
остатка ортофосфата на глюкозу за счет АТФ. Реакция катализируется ферментом
гексокиназой:
Образование
глюкозо-6-фосфата в гексокиназной реакции сопровождается освобождением
значительного количества свободной энергии системы и может считаться
практически необратимым процессом.
Наиболее
важным свойством гексокиназы является ее ингибирование глюкозо-6-фосфатом, т.е.
последний служит одновременно и продуктом реакции, и аллостерическим
ингибитором.
Фермент
гексокиназа способен катализировать фосфорилирование не только D-глюкозы, но и
других гексоз, в частности D-фруктозы, D-маннозы и т.д. В печени, кроме
гексокиназы, существует фермент глюкокиназа, который катализирует фосфорилирование
только D-глюкозы. В мышечной ткани этот фермент отсутствует (подробнее см.
главу 16).
Второй
реакцией гликолиза является превращение глюкозо-6-фос-фата под действием
фермента глюкозо-6-фосфатизомеразы во фруктозо-6-фосфат:
Эта реакция
протекает легко в обоих направлениях, и для нее не требуется каких-либо
кофакторов.
Третья
реакция катализируется ферментом фосфофруктокиназой; образовавшийся
фруктозо-6-фосфат вновь фосфорилируется за счет второй молекулы АТФ:
Данная
реакция аналогично гексокиназной практически необратима, протекает в
присутствии ионов магния и является наиболее медленно текущей реакцией
гликолиза. Фактически эта реакция определяет скорость гликолиза в целом.
Фосфофруктокиназа
относится к числу аллостерических ферментов. Она ингибируется АТФ и
стимулируется АМФ . При значительных величинах отношения АТФ/АМФ активность
фосфофруктокиназы угнетается и гликолиз замедляется. Напротив, при снижении
этого коэффициента интенсивность гликолиза повышается. Так, в неработающей
мышце активность фосфофруктокиназы низкая, а концентрация АТФ относительно
высокая. Во время работы мышцы происходит интенсивное потребление АТФ и
активность фосфофруктокиназы повышается, что приводит к усилению процесса
гликолиза.
Четвертую
реакцию гликолиза катализирует фермент альдолаза. Под влиянием этого фермента
фруктозо-1,6-бисфосфат расщепляется на две фосфотриозы:
Эта реакция
обратима. В зависимости от температуры равновесие устанавливается на различном
уровне. При повышении температуры реакция сдвигается в сторону большего
образования триозофосфатов (дигидро-ксиацетонфосфата и
глицеральдегид-3-фосфата).
Пятая реакция – это реакция изомеризации триозофосфатов. Катализируется ферментом
триозофосфатизомеразой:
Равновесие
данной изомеразной реакции сдвинуто в сторону дигид-роксиацетонфосфата: 95%
дигидроксиацетонфосфата и около 5% глице-ральдегид-3-фосфата. В последующие
реакции гликолиза может непосредственно включаться только один из двух
образующихся триозофосфатов, а именно глицеральдегид-3-фосфат. Вследствие этого
по мере потребления в ходе дальнейших превращений альдегидной формы фосфотриозы
ди-гидроксиацетонфосфат превращается в глицеральдегид-3-фосфат.
Образованием
глицеральдегид-3-фосфата как бы завершается первая стадия гликолиза. Вторая
стадия – наиболее сложная и важная. Она включает окислительно-восстановительную
реакцию (реакция гликолитической оксидоредукции), сопряженную с субстратным
фосфорилированием, в процессе которого образуется АТФ.
В результате
шестой реакции глицеральдегид-3-фосфат в присутствии фермента
глицеральдегидфосфатдегидрогеназы, кофермента НАД и неорганического фосфата
подвергается своеобразному окислению с образованием 1,3-бисфосфоглицериновой
кислоты и восстановленной формы НАД (НАДН). Эта реакция блокируется йод- или
бромацетатом, протекает в несколько этапов:
1,3-Бисфосфоглицерат
представляет собой высокоэнергетическое соединение (макроэргическая связь
условно обозначена знаком «тильда» ~). Механизм действия
глицеральдегидфосфатдегидрогеназы сводится к следующему: в присутствии
неорганического фосфата НАД+ выступает как акцептор водорода,
отщепляющегося от глицеральдегид-3-фосфата. В процессе образования НАДН
глицеральдегид-3-фосфат связывается с молекулой фермента за счет SH-групп
последнего. Образовавшаяся связь богата энергией, но она непрочная и
расщепляется под влиянием неорганического фосфата, при этом образуется
1,3-бисфосфоглицериновая кислота.
Седьмая реакция катализируется фосфоглицераткиназой, при этом происходит передача
богатого энергией фосфатного остатка (фосфатной группы в положении 1) на АДФ с
образованием АТФ и 3-фосфогли-цериновой кислоты (3-фосфоглицерат):
Таким
образом, благодаря действию двух ферментов (глицеральде-гидфосфатдегидрогеназы
и фосфоглицераткиназы) энергия, высвобождающаяся при окислении альдегидной
группы глицеральдегид-3-фосфата до карбоксильной группы, запасается в форме
энергии АТФ. В отличие от окислительного фосфорилирования образование АТФ из
высокоэнергетических соединений называется субстратным фосфорилированием.
Восьмая реакция
сопровождается внутримолекулярным переносом оставшейся фосфатной группы, и
3-фосфоглицериновая кислота превращается в 2-фосфоглицериновую кислоту
(2-фосфоглицерат).
Реакция
легкообратима, протекает в присутствии ионов Mg2+. Кофактором
фермента является также 2,3-бисфосфоглицериновая кислота аналогично тому, как в
фосфоглюкомутазной реакции роль кофактора выполняет глюкозо-1,6-бисфосфат:
Девятая
реакция катализируется ферментом енолазой, при этом 2-фосфоглицериновая кислота
в результате отщепления молекулы воды переходит в фосфоенолпировиноградную
кислоту (фосфоенолпируват), а фосфатная связь в положении 2 становится
высокоэргической:
Енолаза
активируется двухвалентными катионами Mg2+или
Мn2+ и ингибируется фторидом.
Десятая
реакция характеризуется разрывом высокоэргической связи и переносом фосфатного
остатка от фосфоенолпирувата на АДФ (субстратное фосфорилирование).
Катализируется ферментом пируваткиназой:
Для действия
пируваткиназы необходимы ионы Mg2+, а также
одновалентные катионы щелочных металлов (К+ или др.). Внутри клетки
реакция является практически необратимой.
В результате
одиннадцатой реакции происходит восстановление пировиноградной кислоты и
образуется молочная кислота. Реакция протекает при участии фермента
лактатдегидрогеназы и кофермента НАДН, образовавшегося в шестой реакции:
Последовательность
протекающих при гликолизе реакций представлена на рис. 10.3.
Рис. 10.3. Последовательность реакций гликолиза.
1 –
гексокиназа; 2 – фосфоглюкоизоме-раза; 3 – фосфофруктокиназа; 4 – альдо-лаза; 5
– триозофосфатизомераза; 6 – гли-церальдегидфосфатдегидрогеназа; 7
-фосфоглицераткиназа; 8 – фосфоглицеромутаза; 9 – енолаза; 10 –
пируватки-наза; 11 –
лактатдегидрогеназа.
Реакция
восстановления пирувата завершает внутренний окислительно-восстановительный
цикл гликолиза. НАД+ при этом играет роль промежуточного переносчика
водорода от глицеральдегид-3-фосфата (6-я реакция) на пировиноградную кислоту
(11-я реакция), при этом сам он регенерируется и вновь может участвовать в
циклическом процессе, получившем название гликолитический оксидоредукции.
Биологическое
значение процесса гликолиза заключается прежде всего в образовании богатых
энергией фосфорных соединений. На первых стадиях гликолиза затрачиваются 2
молекулы АТФ (гексокиназная и фосфофрук-токиназная реакции). На последующих
образуются 4 молекулы АТФ (фосфоглицераткиназная и пируваткиназная реакции).
Таким образом, энергетическая эффективность гликолиза в анаэробных условиях
составляет 2 молекулы АТФ на одну молекулу глюкозы.
Как
отмечалось, основной реакцией, лимитирующей скорость гликолиза, является
фосфофруктокиназная. Вторая реакция, лимитирующая скорость и регулирующая
гликолиз – гексокиназная реакция. Кроме того, контроль гликолиза
осуществляется также ЛДГ
и ее изоферментами.
В тканях с
аэробным метаболизмом (ткани сердца, почек и др.) преобладают изоферменты ЛДГ1
и ЛДГ2 (см. главу 4). Эти изоферменты инги-бируются даже небольшими
концентрациями пирувата, что препятствует образованию молочной кислоты и
способствует более полному окислению пирувата (точнее, ацетил-КоА) в цикле
трикарбоновых кислот.
В тканях
человека, в значительной степени использующих энергию гликолиза (например,
скелетные мышцы), главными изоферментами являются ЛДГ5 и ЛДГ4.
Активность ЛДГ5 максимальна при тех концентрациях пирувата, которые
ингибируют ЛДГ1. Преобладание изоферментов ЛДГ4 и ЛДГ5
обусловливает интенсивный анаэробный гликолиз с быстрым превращением пирувата в
молочную кислоту.
Как
отмечалось, процесс анаэробного распада гликогена получил название
гликогенолиза. Вовлечение D-глюкозных единиц гликогена в процесс гликолиза
происходит при участии 2 ферментов – фосфорилазы а и фосфо-глюкомутазы. Образовавшийся в результате
фосфоглюкомутазной реакции глюкозо-6-фосфат может включаться в процесс
гликолиза. После образования глюкозо-6-фосфата дальнейшие пути гликолиза и
гликогенолиза полностью совпадают:
В процессе
гликогенолиза в виде макроэргических соединений накапливаются не две, а три
молекулы АТФ (АТФ не тратится на образование глюкозо-6-фосфата). Кажется, что
энергетическая эффективность глико-генолиза выглядит несколько более высокой по
сравнению с процессом гликолиза, но эта эффективность реализуется только при
наличии активной фосфорилазы а.
Следует иметь в виду, что в процессе активации фосфо-рилазы b расходуется АТФ (см. рис. 10.2).
Еще по теме:
- ГЛИКОЛИЗ – химическая энциклопедия
- Гликолиз – биохимический справочник
- Гликолиз – Наглядная биохимия
Источник