В каком ряду неметаллические свойства химических элементов ослабевают неметаллические

В каком ряду неметаллические свойства химических элементов ослабевают неметаллические thumbnail

Периодическая таблица Дмитрия Ивановича Менделеева очень удобна и универсальна в своём использовании. По ней можно определить некоторые характеристики элементов, и что самое удивительное, предсказать некоторые свойства ещё неоткрытых, не обнаруженных учёными, химических элементов (например, мы знаем некоторые свойства предполагаемого унбигексия, хотя его ещё не открыли и не синтезировали).

Что такое металлические и неметаллические свойства

Эти свойства зависят от способности элемента отдавать или притягивать к себе электроны. Важно запомнить одно правило, металлы – отдают электроны, а неметаллы – принимают. Соответственно металлические свойства – это способность определённого химического элемента отдавать свои электроны (с внешнего электронного облака) другому химическому элементу. Для неметаллов всё в точности наоборот. Чем легче неметалл принимает электроны, тем выше его неметаллические свойства.

Металлы никогда не примут электроны другого химического элемента. Такое характерно для следующих элементов;

  • натрия;
  • калия;
  • лития;
  • франция и так далее.

С неметаллами дела обстоят похожим образом. Фтор больше всех остальных неметаллов проявляет свои свойства, он может только притянуть к себе частицы другого элемента, но ни при каких условиях не отдаст свои. Он обладает наибольшими неметаллическими свойствами. Кислород (по своим характеристикам) идёт сразу же после фтора. Кислород может образовывать соединение с фтором, отдавая свои электроны, но у других элементов он забирает отрицательные частицы.

Список неметаллов с наиболее выраженными характеристиками:

  1. фтор;
  2. кислород;
  3. азот;
  4. хлор;
  5. бром.

Неметаллические и металлические свойства объясняются тем, что все химические вещества стремятся завершить свой энергетический уровень. Для этого на последнем электронном уровне должно быть 8 электронов. У атома фтора на последней электронной оболочке 7 электронов, стремясь завершить ее, он притягивает ещё один электрон. У атома натрия на внешней оболочке один электрон, чтобы получить 8, ему проще отдать 1, и на последнем уровне окажется 8 отрицательно заряженных частиц.

Благородные газы не взаимодействуют с другими веществами именно из-за того, что у них завершён энергетический уровень, им не нужно ни притягивать, ни отдавать электроны.

Почему металлические свойства

Как изменяются металлические свойства в периодической системе

Периодическая таблица Менделеева состоит из групп и периодов. Периоды располагаются по горизонтали таким образом, что первый период включает в себя: литий, бериллий, бор, углерод, азот, кислород и так далее. Химические элементы располагаются строго по увеличению порядкового номера.

Группы располагаются по вертикали таким образом, что первая группа включает в себя: литий, натрий, калий, медь, рубидий, серебро и так далее. Номер группы указывает на количество отрицательных частиц на внешнем уровне определённого химического элемента. В то время, как номер периода указывает на количество электронных облаков.

Металлические свойства усиливаются в ряду справа налево или, по-другому, ослабевают в периоде. То есть магний обладает большими металлическими свойствами, чем алюминий, но меньшими, нежели натрий. Это происходит потому, что в периоде количество электронов на внешней оболочке увеличивается, следовательно, химическому элементу сложнее отдавать свои электроны.

В группе все наоборот, металлические свойства усиливаются в ряду сверху вниз. Например, калий проявляется сильнее, чем медь, но слабее, нежели натрий. Объяснение этому очень простое, в группе увеличивается количество электронных оболочек, а чем дальше электрон находится от ядра, тем проще элементу его отдать. Сила притяжения между ядром атома и электроном в первой оболочке больше, чем между ядром и электроном в 4 оболочке.

Сравним два элемента – кальций и барий. Барий в периодической системе стоит ниже, чем кальций. А это значит, что электроны с внешней оболочки кальция расположены ближе к ядру, следовательно, они лучше притягиваются, чем у бария.

Сложнее сравнивать элементы, которые находятся в разных группах и периодах. Возьмём, к примеру, кальций и рубидий. Рубидий будет лучше отдавать отрицательные частицы, чем кальций. Так как он стоит ниже и левее. Но пользуясь только таблицей Менделеева нельзя однозначно ответить на этот вопрос сравнивая магний и скандий (так как один элемент ниже и правее, а другой выше и левее). Для сравнения этих элементов понадобятся специальные таблицы (например, электрохимический ряд напряжений металлов).

Почему металлические свойства

Как изменяются неметаллические свойства в периодической системе

Неметаллические свойства в периодической системе Менделеева изменяются с точностью до наоборот, нежели металлические. По сути, эти два признака являются антагонистами.

Неметаллические свойства усиливаются в периоде (в ряду справа налево). Например, сера способна меньше притягивать к себе электроны, чем хлор, но больше, нежели фосфор. Объяснение этому явлению такое же. Количество отрицательно заряженных частиц на внешнем слое увеличивается, и поэтому элементу легче закончить свой энергетический уровень.

Неметаллические свойства уменьшаются в ряду сверху вниз (в группе). Например, фосфор способен отдавать отрицательно заряженные частицы больше, чем азот, но при этом способен лучше притягивать, нежели мышьяк. Частицы фосфора притягиваются к ядру лучше, чем частицы мышьяка, что даёт ему преимущество окислителя в реакциях на понижение и повышение степени окисления (окислительно-восстановительные реакции).

Сравним, к примеру, серу и мышьяк. Сера находится выше и правее, а это значит, что ей легче завершить свой энергетический уровень. Как и металлы, неметаллы сложно сравнивать, если они находятся в разных группах и периодах. Например, хлор и кислород. Один из этих элементов выше и левее, а другой ниже и правее. Для ответа придётся обратиться к таблице электроотрицательности неметаллов, из которой мы видим, что кислород легче притягивает к себе отрицательные частицы, нежели хлор.

Металлические свойства

Периодическая таблица Менделеева помогает узнать не только количество протонов в атоме, атомную массу и порядковый номер, но и помогает определить свойства элементов.

Видео

Видео поможет вам разобраться в закономерности свойств химических элементов и их соединений по периодам и группам.

Источник

Задание №1.

На данном рисунке изображена модель атома

podghotovka-k-oge-po-khimii-stroieniie-atoma_2

1. Фтора

2. Азота

3. Бора

4. Углерода

Объяснение: атом элемента, представленного на картинке имеет два электронных слоя. На первом слое 2 электрона, на втором – 5. Значит этот элемент находится во втором периоде в пятой группе. Это – азот. Правильный ответ – 2.

Задание №2.

В каком ряду химических элементов ослабевают неметаллические свойства соответствующих им простых веществ?

1. Кислород → сера → селен

2. Алюминия → фосфор → хлор

3. Углерод → азот → кислород

4. Кремний → фосфор → сера

Объяснение: неметаллические свойства ослабевают в периоде справа налево и в группе сверху вниз. Находим такую зависимость – это ряд от кислорода до селена. Правильный ответ – 1.

Задание №3.

Ковалентной полярной связью образован:

1. Сульфид кальция

2. Оксид калия

3. Сероводород

4. Водород

Объяснение: ковалентная полярная связь образуется между двумя неметаллами, как в сероводороде. Правильный ответ – 3.

Задание №4.

В порядке уменьшения валентности в водородных соединениях элементы расположены в ряду:

Читайте также:  Какие из указанных свойств принадлежат газам

1. Si → P → S → Cl

2. F → N → C → O

3. Cl → S → P → Si

4. O → S → Se → Te

Объяснение: в первом варианте ответа элементы расположены в порядке уменьшение валентности водорода в их водородных соединениях:

SiH4 (IV) → PH3 (III) → H2S (II) → HCl (I)

Правильный ответ – 1.

Задание №5.

К амфотерным оксидам относится каждое из двух веществ:

1. Оксид железа (II)  и оксид железа (III)

2. Оксид азота (IV) и оксид азота (II)

3. Оксид цинка и оксид хрома (III)

4. Оксид фосфора (V) и оксид бора (III)

Объяснение: амфотерные оксиды – оксиды переходных металлов. Посмотреть свойства амфотерных оксидов можно тут. Из перечисленных оксидов к амфотерным относят оксид цинка и оксид хрома (III). Правильный ответ – 3.

Задание №6.

Уравнение реакции нейтрализации:

1. CaO + 2HCl = CaCl2 + H2O

2. Ba(NO3)2 + K2SO4 = BaSO3 + 2KNO3

3. HNO3 + KOH = KNO3 + H2O

4. ZnSO4 + 2NaOH = Zn(OH)2 + Na2SO4

Объяснение: реакция нейтрализации проходит между основанием и кислотой, в результате получается соль и вода. Под данное описание подходит вариант ответа 3. Правильный ответ – 3.

Задание №7.

В перечне ионов

А. Нитрат-ион

Б. Ион аммония

В. Гидроксид-ион

Г. Ион водорода

Д. Фосфат-ион

Е. Ион магния

катионами являются:

1. БГД      2. БГЕ      3. АГЕ      4. ВГЕ

Объяснение: катионы – ионы металлов, водорода или аммония (и многие другие). В данном случае выберем: ион аммония, ион водорода и ион магния, то есть БГД. Правильный ответ – 1.

Задание №8.

Осадок образуется при взаимодействии:

1. CaCO3 и H2SO4

2. Ca(OH)2 и CO2(изб)

3. Na2CO3 и HNO3

4. Ca(OH)2 и CO2(недост)

Объяснение:

1. В первой реакции образуется углекислый газ и малорастворимый сульфат кальция. 

2. Ca(OH)2 + CO2(изб) = СаСО3↓ + Н2О

3. Na2CO3 и 2HNO3 = 2NaNO3 + H2O + CO2↑

4. Ca(OH)2 и CO2(недост) = Са (НСО3)2

Осадок образуется во второй реакции. Правильный ответ – 2.

Задание №9.

Сера является окислителем в реакции, уравнение которой:

1. Zn + S = ZnS

2. 2SO2 + O2 = 2SO3

3. H2O + SO3 = H2SO4

4. S + O2 = SO2

Объяснение: определим изменения степеней окисления серы в каждой реакции.

1. (0) +2е → (-2) – окислитель

2. (+4) -2е → (+6) – восстановитель

3. (+6) → (+6) – нет изменения степени окисления

4. (0) -4е → (+4) – восстановитель

Правильный ответ – 1.

Задание №10.  

Среди веществ, формулы которых C, FeO, NaOH – в реакции с оксидом углерода (II) вступает(-ют):

1. Только NaOH

2. Только FeO

3. C и FeO

4. NaOH и FeO

Объяснение: углерод не реагирует с монооксидом углерода, как и гидроксид натрия. А оксид железа (II) реагирует:

FeO + CO = Fe + CO2

Правильный ответ – 2.

Задание №11.

С гидроксидом железа (III) будет взаимодействовать вещество, формула которого:

1. CuSO4

2. BaCl2

3. CaO

4. HNO3

Объяснение: гидроксид железа является амфотерным гидроксидом и из представленных веществ с ним реагирует только азотная кислота, происходит реакция нейтрализации, в ходе которой образуется нитрат железа (III) и вода. Правильный ответ – 4.

Задание №12. 

С каждым из веществ: сероводородная кислота, гидроксид калия, цинк – взаимодействует вещество, формула которого:

1. Pb(NO3)2

2. Na2SO3

3. KBr

4. MgCl2

Объяснение: среди перечисленных веществ цинк может прореагировать только с нитратом свинца, так как цинк, как металл, сильнее свинца. Запишем все реакции.

H2S + Pb(NO3)2 = PbS↓ + 2HNO3 

2KOH + Pb(NO3)2 = 2KNO3 + Pb(OH)2↓

Zn + Pb(NO3)2 = Zn(NO3)2 + Pb

Правильный ответ – 1.

Задание №13.

Верны ли следующие суждения об оксидах углерода?

А. Оксид углерода (IV) ядовит.

Б. Оксид углерода (II) вызывает отравление организма.

1. Верно только А

2. Верно только Б

3. Верны оба суждения

4. Оба суждения неверны

Объяснение: СО2 не ядовит, в отличие от монооксида углерода – угарного газа. Правильный ответ – 2.

Задание №14. 

В уравнении окислительно-восстановительной реакции

NO2 + Mg → MgO + N2

коэффициент перед формулой окислителя равен

1. 4

2. 3

3. 2

4. 1

Объяснение: запишем баланс.

2N(+4) +8e → N2(0)  | 1 – окислитель

Mg(0) -2e → Mg(+2)  | 4 – восстановитель

Расставляем коэффициенты.

2NO2 + 4Mg → 4MgO + N2

Перед окислителем стоит коэффициент 2.

Правильный ответ – 3.

Задание №15.

Какое распределение массовых долей элементов соответствует количественному составу сульфата аммония:

1. 49, 21, 6, 24%

2. 41, 24, 7, 28%

3. 49, 14, 4, 33%

4. 56, 12, 4, 28%

Объяснение: найдем массовые доли азота, водорода, серы и кислорода в сульфате аммония.

М((NH4)2SO4) = 18 х 2 + 32 + 64 = 132 г/моль

Ar(N) = 14 г/моль 

Ar(H) = 1 г/моль

Ar(S) = 32 г/моль

Ar(O) = 16 г/моль

ω(N) = (14×2)/132 x 100% = 21%

ω(H) = 8/132 x 100% = 6%

ω(S) = 32/132 x 100% = 24%

ω(O) = (16×4)/132 x 100% = 49%

Правильный ответ – 1.

Задание №16.

Общим для фосфора и серы является

1. Наличие одинакового числа электронов на внешнем электронном слое их атомов

2. Существование соответствующих им простых веществ в виде двухатомных молекул

3. Образование ими в высшей степени окисления кислотных оксидов

4. То, что в реакциях они проявляют свойства, как окислителя, так и восстановителя

5. Что значение их электроотрицательности меньше, чем у кремния 

Объяснение: фосфор и сера являются неметаллами, оба находятся в третьем периоде и имеют три электронных слоя. Но у фосфора на внешнем электронном слое 5 электронов, а у серы – 6. Они образуют кислотные оксиды, при этом находятся в высшей степени окисления – Р2О5 и SO3. А еще они проявляют свойства как восстановителя, так и окислителя, то есть как отдают, так и принимают электроны. Их электроотрицательность выше, чем у кремния. Правильный ответ – 34.

Задание №17.

Для ацетилена характерны следующие утверждения

1. Имеет атомы углерода, связанные тремя парами электронов

2. Не обесцвечивает бромную воду

3. Легко вступает в реакции присоединения

4. Не реагирует со сложными веществами

5. Является жидким при комнатной температуре веществом

Объяснение: формула ацетилена Н-С≡С-Н, то есть атомы углерода связаны тремя связями (тремя парами электронов). Среди этих связей 2π-связи и одна – σ, π-связи менее прочные и легко разрываются в реакциях присоединения воды, водорода, галогенов, галогенводородов. Правильный ответ – 13.

Задание №18.

Установите соответствие между двумя веществами и реактивом, с помощью которого можно различить эти вещества.

Вещества

А) HCl(р-р) и Ba(OH)2(р-р)

Б) K2SO4(р-р) и KBr

В) Al(OH)3 и NH3(р-р)

Реактив

1. Ba(NO3)2(р-р)

2. H2SiO3

3. NaOH(р-р)

4. Фенолфталеин

Объяснение: соляную кислоту и гидроксид бария различим фенолфталеином, так как кислота имеет кислотную среду (фенолфталеин бесцветный), а гидроксид бария – щелочную (фенолфталеин оранжевый). Сульфат и бром калия различим при помощи раствора нитрата бария, так как в реакции между сульфатом бария и нитратом бария образуется нерастворимый сульфат бария. Гидроксид алюминия и раствор аммиака различим при помощи раствора гидроксида натрия, в реакции между гидроксидами алюминия и натрия получается комплексная соль – тетрагидроксоалюминат натрия, а с аммиаком реакция не идет. Правильный ответ – 413.

Читайте также:  При каком градусе мед теряет свойства

Задание №19. 

Установите соответствие между названием вещества и реагентами, с которыми это вещество может взаимодействоват.

Название вещества

А) Железо

Б) Оксид железа (III)

В) Сульфат железа (II)

Реагенты

1. BaCl2(р-р), NaOH(р-р)

2. HCl(р-р), O2

3. Al, H2SO4(разб)

4. H2SO4(конц), O2

Объяснение: железо реагирует с раствором соляной кислоты и с кислородом.

Fe + 2HCl = FeCl2 + H2

3Fe + 2O2 = Fe3O4

Оксид железа (III) реагирует с алюминием и разбавленной серной кислотой.

Fe2O3 + 2Al = Al2O3 + 2Fe

Fe2O3 + 3H2SO4 = Fe2(SO4)3 + 3H2O

Сульфат железа (II) реагирует с хлоридом бария и гидроксидом натрия.

FeSO4 + BaCl2 = BaSO4↓ + FeCl2

FeSO4 + 2NaOH = Fe(OH)2↓ + Na2SO4

Правильный ответ – 231.

Задание №20.

Используя метод электронного баланса, расставьте коэффициенты в уравнении реакции, схема которой

Zn + H2SO4(конц) → ZnSO4 + H2S + H2O

Определите окислитель и восстановитель.

Объяснение: в данном окислительно-восстановительной реакции меняют степень окисления цинк и сера. Запишем баланс.

Zn(0) -2e → Zn(+2) | 4 – восстановитель

S(+6) +8e→ Zn(-2)  | 1 – окислитель

Расставляем коэффициенты.

4Zn + 5H2SO4(конц) → 4ZnSO4 + H2S + 4H2O

Задание №21.

К 63 г 20%-ного раствора азотной кислоты прилили избыток раствора гидроксида натрия. Какова масса образовавшейся соли?

Объяснение: запишем уравнение реакции.

HNO3 + NaOH → NaNO3 + H2O

Найдем массу вещества азотной кислоты.

m(HNO3) = 63 x 0,2 = 12,6 г 

Находим количество вещества азотной кислоты.

n(HNO3) = 12,6/63 = 0,2 моль

Количество вещества азотной кислоты равно количеству вещества нитрата натрия.

n(NaNO3) = n(HNO3) = 0,2 моль

Теперь можем посчитать массу нитрата натрия.

m(NaNO3) = 0,2 x (23 + 14 + 48) = 17 г

Ответ: масса образовавшейся соли 17 г.

Задание №22.

Даны вещества: PbO, O2, Fe, HNO3(), KOH, SO3. Используя воду и необходимые вещества только из этого списка, получите в две стадии гидроксид свинца (II). Опишите признаки проведения реакций. Для реакции ионного обмена напишите сокращенное ионное уравнение реакции.

Объяснение: сначала получим сульфат свинца. 

PbO + SO3 → PbSO4 

Теперь получим гидроксид свинца (II).

PbSO4 + 2KOH → Pb(OH)2↓ + K2SO4

Запишем сокращенное ионное уравнение.

Pb²+ + 2OH‾ → Pb(OH)2↓

Источник

Периодический закон был открыт Д.И. Менделеевым в 1868 году. Его современная формулировка: свойства химических элементов и образуемых ими
соединений (простых и сложных) находятся в периодической зависимости от величины заряда атомного ядра.

Периодический закон лежит в основе современного учения о строении вещества. Периодическая система Д.И. Менделеева является наглядным отражением
периодического закона.

Периодическая таблица Д.И. Менделеева

В периодической таблице элементы расположены в порядке увеличения атомного заряда, группируются в “строки и столбцы” – периоды и группы.

Период – ряд горизонтально расположенных химических элементов. 1, 2 и 3 периоды называются малыми, они состоят из одного ряда элементов.
4, 5, 6 – называются большими периодами, они состоят из двух рядов химических элементов.

Группой называют вертикальный ряд химических элементов в периодической таблице. Элементы собраны в группы на основе степени окисления в
высшем оксиде. Каждая из восьми групп состоит из главной подгруппы (а) и побочной подгруппы (б).

Периодическая таблица Д.И. Менделеева содержит колоссальное число ответов на самые разные вопросы. При умелом ее использовании вы сможете
предполагать строение и свойства веществ, успешно писать химические реакции и решать задачи.

Менделеев Дмитрий Иванович

Радиус атома

Радиусом атома называют расстояние между атомным ядром и самой дальней электронной орбиталью. Это не четкая, а условная граница, которая
говорит о наиболее вероятном месте нахождения электрона.

В периоде радиус атома уменьшается с увеличением порядкового номера элементов (“→” слева направо). Это связано с тем, что с увеличением номера группы
увеличивается число электронов на внешнем уровне. Запомните, что для элементов главных подгрупп номер группы равен числу электронов на внешнем уровне.

С увеличением числа электронов они становятся более скученными, так как притягиваются друг к другу сильнее: это и есть причина маленького радиуса атома.

Чем меньше электронов, тем больше у них свободы и больше радиус атома, поэтому радиус увеличивается в периоде “←” справа налево.

Радиус атома в периоде

В группе радиус атома увеличивается с увеличением заряда атомных ядер – сверху вниз “↓”. Чем больше период, тем больше электронных орбиталей вокруг атома,
соответственно, и больше его радиус.

С уменьшением заряда атома в группе радиус атома уменьшается – снизу вверх “↑”. Это связано с уменьшением количества электронных орбиталей вокруг
атома. Для примера возьмем атомы бора и алюминия, элементов, расположенных в одной группе.

Радиус атома в группе

Период, группа и электронная конфигурация

Обратите внимание еще раз на важную деталь: элементы, находящиеся в одной группе (главной подгруппе!), имеют сходную конфигурацию внешнего уровня.
Так у бора на внешнем уровне расположены 3 электрона, у алюминия – тоже 3. Оба они в III группе.

Такая закономерность иногда может сильно облегчить жизнь, однако у элементов побочных подгрупп она отсутствует – там нужно считать электроны
“вручную”, располагая их на электронных орбиталях.

Раз уж мы повели речь об электронных конфигурациях, давайте запишем их для бора и алюминия, чтобы лучше представлять их внешний уровень и увидеть
то самое “сходство”:

  • B5 – 1s22s22p1
  • Al13 – 1s22s22p63s23p1

Общую электронную конфигурацию для элементов III группы главной подгруппы можно записать ns2np1. Это будет работать для
бора, внешний уровень которого 2s22p1, алюминия – 3s23p1, галия – 4s24p1,
индия – 5s25p1 и таллия – 6s26p1. За “n” мы принимаем номер периода.

Правило составления электронной конфигурации, которое вы только что увидели, универсально. Если вы имеете дело с элементом главной подгруппы,
то увидев номер группы вы знаете, сколько электронов у него на внешнем уровне. Посмотрев на период, знаете номер его внешнего уровня.

Вам остается только распределить известное число электронов по s и p ячейкам, а затем подставить номер периода – и вот быстро получена
конфигурация внешнего уровня. Предлагаю посмотреть на примере ниже 🙂

Электронная конфигурация по номеру группы и периоду

Очень надеюсь, что теперь вы знаете: только глядя на положение элемента в периодической таблице, на группу и период, в которых он расположен,
вы уже можете составить конфигурацию его внешнего уровня. Безусловно, это для элементов главных подгрупп. Повторюсь: у побочных – только “вручную”.

Длина связи

Длина связи – расстояние между атомами химически связанных элементов. Очевидно, что понятия длины связи и атомного радиуса взаимосвязаны напрямую.
Чем больше радиус атома, тем больше длина связи.

Читайте также:  Какие свойства имеет мокрота при бронхиальной астме

Убедимся в этом на наглядном примере, сравнив длину связей в четырех веществах: HF, HCl, HBr, HI.

Длина связи в химии

Чем больше радиусы атомов, которые образуют химическую связь, тем больше между ними и длина связи. Радиус атома водорода неизменен во всех трех
веществах, а в ряду F → Cl → Br → I происходит увеличение радиуса атома. Наибольшим радиусом обладает йод, поэтому самая длинная связь в молекуле HI.

Металлические и неметаллические свойства

В периоде с увеличением заряда атома металлические свойства ослабевают, неметаллические – усиливаются (слева направо “→”). В группе с увеличением
заряда атома металлические свойства усиливаются, а неметаллические – ослабевают (сверху вниз “↓”).

Металлические и неметаллические свойства

Сравним металлические и неметаллические свойства Rb, Na, Al, S. Натрий, алюминий и сера находятся в одном периоде. Металлические свойства возрастают
S → Al → Na. Натрий и рубидий находятся в одной группе, металлические свойства возрастают Na → Rb.

Таким образом, самые сильные металлические свойства проявляет рубидий, но с другой стороны – у него самые слабые неметаллические свойства. Сера
обладает самыми слабыми металлическими свойствами, но, если посмотреть по-другому, сера – самый сильный неметалл.

Распределение металлов и неметаллов в периодической таблице также является наглядным отображением этого правила. Если провести условную
линию, проходящую от бора до астата, то справа окажутся неметаллы, а слева – металлы.

Металлы и неметаллы в таблице Менделеева

Основные и кислотные свойства

Основные свойства в периоде с увеличением заряда атома уменьшаются, кислотные – возрастают. В группе с увеличением заряда атома основные
свойства усиливаются, а кислотные – ослабевают.

Кислотные и основные свойства противопоставлены друг другу, как противопоставлены металлические и неметаллические. Где первые усиливаются,
вторые – убывают. Все аналогично, поэтому смело ассоциируйте одни с другими, так будет гораздо легче запомнить.

Основные и кислотные свойства

Замечу, что здесь есть одно важное исключение. Как и в общем случае: исключения только подтверждают правила. В ряду галогенводородных
кислот HF → HCl → HBr → HI происходит усиление кислотных свойств (а не ослабление, как должно быть по логике нашего правила).

Это можно объяснить в темах диссоциации и химических связей. Когда мы дойдем до соответствующей темы, я напомню про HF и водородные связи между
молекулами, которые делают эту кислоту самой слабой. Сейчас воспринимайте это как исключение: HF – самая слабая из этих кислот, а
HI – самая сильная.

Галогеноводородные кислоты

Восстановительные и окислительные свойства

Восстановительные свойства в периоде с увеличением заряда атома ослабевают, окислительные – усиливаются. В группе с увеличением заряда
атома восстановительные свойства усиливаются, а окислительные – ослабевают.

Ассоциируйте восстановительные свойства с металлическими и основными, а окислительные – с неметаллическими и кислотными. Так гораздо проще
запомнить 😉

Восстановительные и окислительные свойства

Электроотрицательность (ЭО), энергия связи, ионизации и сродства к электрону

Электроотрицательность – способность атома, связанного с другими, приобретать отрицательный заряд (притягивать к себе электроны).
Мы уже касались ее в статье, посвященной степени окисления. Это важное свойство, ведь более ЭО-ый атом притягивает
к себе электроны и уходит в отрицательную степень окисления со знаком минус “-“.

Все перечисленные в подзаголовке свойства вместе с ЭО усиливаются в периоде с увеличением заряда атома, в группе с увеличением заряда атома
они ослабевают. Таким образом, самый электроотрицательный элемент расположен справа вверху таблицы Д.И. Менделеева – это фтор.

Электроотрициательность в таблице Менделеева

Для примера сравним ЭО-ость атомов Te, In, Al, P. Индий расположен в одной группе с алюминием, ЭО-ость In → Al возрастает (снизу вверх). Алюминий
расположен в одном периоде с серой, ЭО-ость возрастает Al → S (слева направо). Сравнивая серу и теллур, мы видим, что сера расположена в группе
выше теллура, значит и ее электроотрицательность тоже выше.

Энергия связи (а также ее прочность) возрастают с увеличением электроотрицательности атомов, образующих данную связь. Чем сильнее атом тянет на
себя электроны (чем больше он ЭО-ый), тем прочнее получается связь, которую он образует.

Понятию ЭО-ости “синонимичны” также понятия сродства к электрону – энергии, выделяющейся при присоединении электрона к атому, и энергии ионизации –
количеству энергии, которое необходимо для отщепления электрона от атома. И то, и другое возрастают с увеличением электроотрицательности.

Продемонстрирую на примере. Сравним энергию связи в трех молекулах: H2O, H2S, H2Se.

Энергия связи

Высшие оксиды и летучие водородные соединения (ЛВС)

В периодической таблице Д.И. Менделеева ниже 7 периода находится строка, в которой для каждой группы указаны соответствующие высшие оксиды,
ниже строка с летучими водородными соединениями.

Периодическая таблица Д.И. Менделеева

Для элементов главных подгрупп начиная с IV группы (в большинстве случае) максимальная степень окисления (СО) определяется по номеру группы. К примеру,
для серы (в VI группе) максимальная СО = +6, которую она проявляет в соединениях: H2SO4, SO3.

В таблице видно, что для VIa группы формула высшего оксида RO3, а, к примеру, для IIIa группы – R2O3. Напишем
высшие оксиды для веществ из VIa : SO3, SeO3, TeO3 и IIIa группы: B2O3, Al2O3,
Ga2O3.

На экзамене строка с готовыми “высшими” оксидами, как в таблице наверху, может отсутствовать. Считаю важным подготовить вас к этому. Предположим,
что эта строчка внезапно исчезла из таблицы, и вам нужно записать высшие оксиды для фосфора и углерода.

Высшие оксиды

С летучими водородными соединениями (ЛВС) ситуация аналогичная: их может не быть в периодической таблице Д.И. Менделеева, которая попадется на экзамене.
Я расскажу вам, как легко их запомнить.

ЛВС характерны для IV, V, VI и VII группы. Элементы этих групп более электроотрицательны, чем водород, поэтому ходят в “-” отрицательную СО.
Минимальная степень окисления для элементов главных подгрупп, начиная с IV группы, может быть рассчитана так: номер группы – 8.

Например, для углерода минимальная СО = 4-8 = -4; для азота 5-8 = -3; для кислорода 6-8 = -2; для фтора 7-8 = -1. Для того, чтобы запомнить
ЛВС, вы должны ассоциировать IV, V, VI и VII группы с хорошо известными вам веществами: метаном, аммиаком, водой и фтороводородом.

Летучие водородные соединения

Так как общее строение ЛВС в пределах одной группы сходно, то, вспомнив например H2O для кислорода в VI группе, вы легко
найдете формулы других ЛВС VI группы: серы – H2S, H2Se, H2Te, H2Po.

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Источник