В каком порядке выполняются действия в выражениях где содержится

В каком порядке выполняются действия в выражениях где содержится thumbnail

Когда мы работаем с различными выражениями, включающими в себя цифры, буквы и переменные, нам приходится выполнять большое количество арифметических действий. Когда мы делаем преобразование или вычисляем значение, очень важно соблюдать правильную очередность этих действий. Иначе говоря, арифметические действия имеют свой особый порядок выполнения.

В этой статье мы расскажем, какие действия надо делать в первую очередь, а какие после. Для начала разберем несколько простых выражений, в которых есть только переменные или числовые значения, а также знаки деления, умножения, вычитания и сложения. Потом возьмем примеры со скобками и рассмотрим, в каком порядке следует вычислять их. В третьей части мы приведем нужный порядок преобразований и вычислений в тех примерах, которые включают в себя знаки корней, степеней и других функций.

Порядок вычисления простых выражений

Определение 1

В случае выражений без скобок порядок действий определяется однозначно:

  1. Все действия выполняются слева направо.
  2. В первую очередь мы выполняем деление и умножение, во вторую – вычитание и сложение.

Смысл этих правил легко уяснить. Традиционный порядок записи слева направо определяет основную последовательность вычислений, а необходимость сначала умножить или разделить объясняется самой сутью этих операций.

Возьмем для наглядности несколько задач. Мы использовали только самые простые числовые выражения, чтобы все вычисления можно было провести в уме. Так можно быстрее запомнить нужный порядок и быстро проверить результаты.

Пример 1

Условие: вычислите, сколько будет 7−3+6.

Решение

В нашем выражении скобок нет, умножение и деление также отсутствуют, поэтому выполняем все действия в указанном порядке. Сначала вычитаем три из семи, затем прибавляем к остатку шесть и в итоге получаем десять. Вот запись всего решения:

7−3+6=4+6=10

Ответ: 7−3+6=10.

Пример 2

Условие: в каком порядке нужно выполнять вычисления в выражении 6:2·8:3?

Решение

Чтобы дать ответ на этот вопрос, перечитаем правило для выражений без скобок, сформулированное нами до этого. У нас здесь есть только умножение и деление, значит, мы сохраняем записанный порядок вычислений и считаем последовательно слева направо.

Ответ: сначала выполняем деление шести на два, результат умножаем на восемь и получившееся в итоге число делим на три.

Пример 3

Условие: подсчитайте, сколько будет 17−5·6:3−2+4:2.

Решение

Сначала определим верный порядок действий, поскольку у нас здесь есть все основные виды арифметических операций – сложение, вычитание, умножение, деление. Первым делом нам надо разделить и умножить. Эти действия не имеют приоритета друг перед другом, поэтому выполняем их в написанном порядке справа налево. То есть 5 надо умножить на 6 и получить 30, потом 30 разделить на 3 и получить 10. После этого делим 4 на 2, это 2. Подставим найденные значения в исходное выражение:

17−5·6:3−2+4:2=17−10−2+2

Здесь уже нет ни деления, ни умножения, поэтому делаем оставшиеся вычисления по порядку и получаем ответ:

17−10−2+2=7−2+2=5+2=7

Ответ: 17−5·6:3−2+4:2=7.

Пока порядок выполнения действий не заучен твердо, можно ставить над знаками арифметических действий цифры, означающие порядок вычисления. Например, для задачи выше мы могли бы записать так:

.

Если у нас есть буквенные выражения, то с ними мы поступаем точно так же: сначала умножаем и делим, затем складываем и вычитаем.

Что такое действия первой и второй ступени

Иногда в справочниках все арифметические действия делят на действия первой и второй ступени. Сформулируем нужное определение.

К действиям первой ступени относятся вычитание и сложение, второй – умножение и деление.

Зная эти названия, мы можем записать данное ранее правило относительно порядка действий так:

Определение 2

В выражении, в котором нет скобок, сначала надо выполнить действия второй ступени в направлении слева направо, затем действия первой ступени (в том же направлении).

Порядок вычислений в выражениях со скобками

Скобки сами по себе являются знаком, который сообщает нам нужный порядок выполнения действий. В таком случае нужное правило можно записать так:

Определение 3

Если в выражении есть скобки, то первым делом выполняется действие в них, после чего мы умножаем и делим, а затем складываем и вычитаем по направлению слева направо.

Что касается самого выражения в скобках, его можно рассматривать в качестве составной части основного выражения. При подсчете значения выражения в скобках мы сохраняем все тот же известный нам порядок действий. Проиллюстрируем нашу мысль примером.

Пример 4

Условие: вычислите, сколько будет 5+(7−2·3)·(6−4):2.

Решение

В данном выражении есть скобки, поэтому начнем с них. Первым делом вычислим, сколько будет 7−2·3. Здесь нам надо умножить 2 на 3 и вычесть результат из 7:

7−2·3=7−6=1

Считаем результат во вторых скобках. Там у нас всего одно действие: 6−4=2.

Теперь нам нужно подставить получившиеся значения в первоначальное выражение:

5+(7−2·3)·(6−4):2=5+1·2:2

Начнем с умножения и деления, потом выполним вычитание и получим:

5+1·2:2=5+2:2=5+1=6

На этом вычисления можно закончить.

Ответ: 5+(7−2·3)·(6−4):2=6.

Не пугайтесь, если в условии у нас содержится выражение, в котором одни скобки заключают в себе другие. Нам надо только применять правило выше последовательно по отношению ко всем выражениям в скобках. Возьмем такую задачу.

Читайте также:  Где содержится глютен в каких продуктах

Пример 5

Условие: вычислите, сколько будет 4+(3+1+4·(2+3)).

Решение

У нас есть скобки в скобках. Начинаем с 3+1+4·(2+3), а именно с 2+3. Это будет 5. Значение надо будет подставить в выражение и подсчитать, что 3+1+4·5. Мы помним, что сначала надо умножить, а потом сложить: 3+1+4·5=3+1+20=24. Подставив найденные значения в исходное выражение, вычислим ответ: 4+24=28.

Ответ: 4+(3+1+4·(2+3))=28.

Иначе говоря, при вычислении значения выражения, включающего скобки в скобках, мы начинаем с внутренних скобок и продвигаемся к внешним.

Допустим, нам надо найти, сколько будет (4+(4+(4−6:2))−1)−1. Начинаем с выражения во внутренних скобках. Поскольку 4−6:2=4−3=1, исходное выражение можно записать как (4+(4+1)−1)−1. Снова обращаемся к внутренним скобкам:  4+1=5. Мы пришли к выражению (4+5−1)−1. Считаем 4+5−1=8 и в итоге получаем разность 8-1, результатом которой будет 7.

Порядок вычисления в выражениях со степенями, корнями, логарифмами и иными функциями

Если у нас в условии стоит выражение со степенью, корнем, логарифмом  или тригонометрической функцией (синусом, косинусом, тангенсом и котангенсом) или иными функциями, то первым делом мы вычисляем значение функции. После этого мы действуем по правилам, указанным в предыдущих пунктах. Иначе говоря, функции по степени важности приравниваются к выражению, заключенному в скобки.

Разберем пример такого вычисления.

Пример 6

Условие: найдите, сколько будет (3+1)·2+62:3−7.

Решение

У нас есть выражение со степенью, значение которого надо найти в первую очередь. Считаем: 62=36. Теперь подставим результат в выражение, после чего оно примет вид (3+1)·2+36:3−7.

Дальше действуем по знакомому алгоритму: считаем, сколько у нас получится в скобках, потом в оставшемся выражении выполняем умножение и деление, а следом – сложение и вычитание.

(3+1)·2+36:3−7=4·2+36:3−7=8+12−7=13

Ответ: (3+1)·2+62:3−7=13.

В отдельной статье, посвященной вычислению значений выражений, мы приводим и другие, более сложные примеры подсчетов в случае выражений с корнями, степенью и др. Рекомендуем вам с ней ознакомиться.

Источник

  1. Главная
  2. Справочники
  3. Справочник по математике для начальной школы
  4. Порядок выполнения действий

В данном разделе мы познакомимся с порядком действий, с выражениями со скобками и без них.

1) Если тебе нужно выполнить только сложение и вычитание или только умножение и деление, то все действия выполняют по порядку слева направо. 

Например, В каком порядке выполняются действия в выражениях где содержится

В числовом выражении 3 арифметических действия: сложение, вычитание и вычитание.

Определим порядок действий и запишем их над арифметическими знаками: так как нет ни умножения ни деления, действия выполняют по порядку слева направо:

В каком порядке выполняются действия в выражениях где содержится

Вычисляем:

1) 10 + 15 = 25

2) 25 – 6 = 19

3) 19 – 8 = 11

Полностью пример записываем так:

10 + 15 – 6 – 8 = 25 – 6 – 8 = 19 – 8 = 11

Например, В каком порядке выполняются действия в выражениях где содержится

В числовом выражении 3 арифметических действия: деление, умножение и деление.

Определим порядок действий и запишем их над арифметическими знаками: так как нет ни сложения ни вычитания, действия выполняют по порядку слева направо:

В каком порядке выполняются действия в выражениях где содержится

Вычисляем:

1) 15 : 5 = 3

2) 3 • 4 = 12

3) 12 : 6 = 2

Полностью пример записываем так:

15 : 5 • 4 : 6 = 3 • 4 : 6 = 12 : 6 = 2

2) Если тебе нужно выполнить несколько арифметических действий (сложение, вычитание, умножение и деление), то сначала выполняют умножение и деление по порядку слева направо, а затем сложение и вычитание по порядку слева направо. 

Например, В каком порядке выполняются действия в выражениях где содержится

В числовом выражении 4 арифметических действия: вычитание, деление, сложение и умножение.

Определим порядок действий и запишем их над арифметическими знаками: сначала производим деление, потом умножение, затем вычитание и сложение.

В каком порядке выполняются действия в выражениях где содержится

1)15 : 3 = 5

2) 6 • 8 = 48

3) 10 – 5 = 5

4) 5 + 48 = 53

Полностью пример записываем так:

10 – 15 : 3 + 6 • 8 = 10 – 5 + 6 • 8 = 10 – 5 + 48 = 5 + 48 = 53

3) Если в выражении есть скобки, то сначала выполняют действия в скобках, но обязательно учитывать первое и второе правила.

Например, В каком порядке выполняются действия в выражениях где содержится

В числовом выражении 4 арифметических действия: вычитание, деление, сложение и умножение.

Определим порядок действий и запишем их над арифметическими знаками: сначала производим вычитание в скобках, затем деление, потом умножение и сложение.

В каком порядке выполняются действия в выражениях где содержится

1) 25 – 10 = 15

2) 15 : 3 = 5

3) 6 • 8 = 48

4) 5 + 48 = 53

Полностью пример записываем так:

(25 – 10) : 3 + 6 • 8 = 15 : 3 + 6 • 8 = 5 + 6 • 8 = 5 + 48 = 53

НапримерВ каком порядке выполняются действия в выражениях где содержится

В числовом выражении 4 арифметических действия: сложение, деление, сложение и деление.

Определим порядок действий и запишем их над арифметическими знаками: сначала производим действия в скобках (деление, затем сложение), затем деление, потом сложение.

В каком порядке выполняются действия в выражениях где содержится

1) 12 : 4 = 3

2) 6 + 3 = 9

3) 18 : 9 = 2

4) 42 + 2 = 44

Полностью пример записываем так:

42 + 18 : (6 + 12 : 4) = 42 + 18 : (6 + 3) = 42 + 18 : 9 = 42 + 2 = 44

Вывод: 

В каком порядке выполняются действия в выражениях где содержится

Поделись с друзьями в социальных сетях:

Советуем посмотреть:

Скобки

Правило встречается в следующих упражнениях:

2 класс

Страница 9,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 18,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Читайте также:  Какие питательные вещества содержаться в картофеле

Страница 19,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 35,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 57,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 58,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 62,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 69,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 80,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 110,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

3 класс

Страница 36,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 46,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 69,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 36,
Моро, Волкова, Рабочая тетрадь, часть 1

Страница 60,
Моро, Волкова, Рабочая тетрадь, часть 1

Страница 35. Вариант 2. № 3,
Моро, Волкова, Проверочные работы

Страница 74,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 107,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 16,
Моро, Волкова, Рабочая тетрадь, часть 2

Страница 41,
Моро, Волкова, Рабочая тетрадь, часть 2

4 класс

Страница 47,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 84,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 13,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 22,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 28,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 81,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 114,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 24,
Моро, Волкова, Рабочая тетрадь, часть 2

Страница 63,
Моро, Волкова, Рабочая тетрадь, часть 2

Страница 70,
Моро, Волкова, Рабочая тетрадь, часть 2

5 класс

Задание 86,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 180,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 513,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Упражнение 37,
Мерзляк, Полонский, Якир, Учебник

Упражнение 136,
Мерзляк, Полонский, Якир, Учебник

Упражнение 244,
Мерзляк, Полонский, Якир, Учебник

Упражнение 291,
Мерзляк, Полонский, Якир, Учебник

Упражнение 2,
Мерзляк, Полонский, Якир, Учебник

Упражнение 4,
Мерзляк, Полонский, Якир, Учебник

Упражнение 919,
Мерзляк, Полонский, Якир, Учебник

6 класс

Задание 85,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 92,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 373,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 378,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 400,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 411,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 413,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 417,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 422,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 425,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Источник

В уроке выражения мы узнали, что они бывают числовые и буквенные. Мы рассмотрели несколько числовых и буквенных выражений. Это были самые простейшие выражения.

Настало время сдвинуться с мёртвой точки и рассмотреть более сложные выражения. В данном уроке мы познакомимся с порядком выполнения действий.

Выражения могут состоять из нескольких чисел. Таковыми к примеру являются следующие выражения:

10 − 1 + 2 + 3
(3 + 5) + 2 × 3
5 × 2 + (5 − 3) : 2 + 1

Такие выражения нельзя вычислить сразу, то есть поставить знак равенства и записать значение выражения. Да и выглядят они не так просто, как 2 + 2 или 9 − 3.

Для подобных выражений принято соблюдать так называемый порядок действий. Суть в том, что выражение вычисляется кусочками по определённому порядку.

Когда нам требуется решить подобные примеры, мы сразу должны мысленно прочитать следующее правило:

Сначала вычислить то, что находится в скобках!

Посмотрим на выражение 10 − 1 + 2 + 3. Видим, что в нём нет никаких скобок. Тогда переходим к следующему правилу, которое выглядит так:

Читаем выражение слева направо. Если встретится умножение или деление, то сразу же выполняем эту операцию!

Читаем наше выражение 10 − 1 + 2 + 3 слева направо. Видим, что в нём нет никакого умножения или деления. Тогда переходим к следующему правилу:

Читаем выражение слева направо. Если встретится сложение или вычитание, то сразу же выполняем эту операцию!

Читаем наше выражение 10 − 1 + 2 + 3 слева направо. Встречаем вычитание 10 − 1. Сразу выполняем эту операцию: 10 − 1 = 9. Полученную девятку запишем в главном выражении вместо 10 − 1

51111

Затем снова читаем те, правила, которые мы прочитали выше. Читать их нужно в следующем порядке:

1. Сначала вычислить то, что находится в скобках!

2. Читаем выражение слева направо. Если встретится умножение или деление, то сразу же применяем эту операцию!

3. Читаем выражение слева направо. Если встретится сложение или вычитание, то сразу же применяем эту операцию!

Сейчас у нас имеется выражение 9 + 2 + 3 Читаем его слева направо и встречаем сложение 9 + 2. Выполняем эту операцию: 9 + 2 = 11. Запишем число 11 в главном выражении вместо 9 + 2:

51112

Осталось простейшее выражение 11 + 3, которое вычисляется легко:

11 + 3 = 14

Таким образом, значение выражения 10 − 1 + 2 + 3 равно 14

10 − 1 + 2 + 3 = 14

Иногда удобно расставить порядок действий над самим выражением. Для этого над операцией, которую необходимо выполнить, указывают её очередь. К примеру, в выражении 10 − 1 + 2 + 3 все действия выполняются последовательно слева направо, поэтому для него можно определить следующий порядок:

Читайте также:  Какая система содержится в бухгалтерском балансе

Порядок для выражени 10-1+2+3

И далее можно выполнить действия по отдельности, что очень удобно:

1)  10 1 = 9

2)   9 + 2 = 11

3)  11 + 3 = 14

Также, можно поставить знак равенства и сразу начать вычислять выражение в порядке приоритета действий. Например, решение для выражения 10 − 1 + 2 + 3 можно записать следующим образом:

Вычисление 10-1-2-3 слева направо в порядке следования

Но если человек не научился быстро считать в уме, то не рекомендуется использовать такой способ.

Пример 2. Найти значение выражения (3 + 5) + 2 × 3

Применим правила порядка действий. Прочитаем правила в порядке их приоритета.

Сначала вычислить то, что находится в скобках!

Посмотрим на выражение (3 + 5) + 2 × 3. Видим, что в нём есть выражение в скобках (3 + 5). Вычислим то, что в этих скобках: 3 + 5 = 8. Запишем полученную восьмёрку в главном выражении вместо выражения в скобках:

8 + 2 × 3

Снова читаем первое правило:

Сначала вычислить то, что находится в скобках!

Видим, что в выражении 8 + 2 × 3 нет никаких скобок. Тогда читаем следующее правило:

Читаем выражение слева направо. Если встретится умножение или деление, то сразу же выполняем эту операцию!

Посмотрим на наше выражение 8 + 2 × 3. Видим, что в нём есть умножение 2 × 3. Выполним эту операцию: 2 × 3 = 6. Запишем полученную шестёрку в главном выражении вместо 2 × 3

8 + 6

Осталось простейшее выражение 8 + 6, которое вычисляется легко:

8 + 6 = 14

Таким образом, значение выражения (3 + 5) + 2 × 3 равно 14

(3 + 5) + 2 × 3 = 14

Также, этот пример можно решить, расставив порядок действий над самим выражением. Действие в скобках будет первым действием, умножение — вторым действием, а сумма — третьим:

Порядок для выражени (3 + 5) + 2 × 3

И далее можно выполнить действия по отдельности, что очень удобно:

1)  3 + 5 = 8

2)   2 × 3 = 6

3)  8 + 6 = 14

Также, можно поставить знак равенства и сразу начать вычислять выражение в порядке приоритета действий:

Вычисление 3+5+2 умножить на три

Но опять же, используя такой способ, нужно быть очень внимательным.

Пример 3. Найти значение выражения 5 × 2 + (5 − 3) : 2 + 1

Расставим порядок действий над выражением. Действие в скобках будет первым действием, умножение — вторым действием, деление — третьим действием,  четвёртое и пятое действие являются суммами и они будут выполнены в порядке их следования:

Выражение 5 × 2 + 5 − 3 2 + 1

1)  5 − 3 = 2

2)  5 × 2 = 10

3)  2 : 2 = 1

4)  10 + 1 = 11

5)  11 + 1 = 12

Также, можно поставить знак равенства и сразу начать вычислять выражение в порядке приоритета действий:

5 × 2 + 5 − 3 разделить на 2 + 1

Четвёртое и пятое действие заключалось в том, чтобы вычислить оставшееся простейшее выражение 10 + 1 + 1. Мы не стали тратить время на выполнение каждого из этих действий, а поставили знак равенства и записали ответ 12.

Пример 4. Найти значение выражения (3250 − 2905) : 5

Расставим порядок действий над выражением. Действие в скобках будет первым действием, а деление — вторым

3250 минус 2905 на 5

1)  3250 − 2905 = 345

3250 минус 2905 на 5 step 1

2)  345 : 5 = 69

3250 минус 2905 на 5 step 2

В скобках могут выполняться два и более действия. Бывает даже так, что в скобках встречаются другие скобки. В таких случаях нужно применять те же правила, которые мы изучили ранее.

Пример 5. Найти значение выражения (6 411 × 8 − 40799) × 6

Расставим порядок действий над выражением. Действие в скобках будет первым действием. При этом в скобках выполняется умножение и вычитание. Согласно порядку действий, умножение выполняется раньше вычитания.

В данном случае сначала нужно 6 411 умножить на 8, и из полученного результата вычесть 40 799. Полученный результат будет значением выражения, содержащегося в скобках. Этот результат будет умножен на 6.

В результате будем иметь следующий порядок:

6411 умн на 8 минус 40799 умн 6

1)  6 411 × 8 = 51 288

6411 умн на 8 минус 40799 умн 6 step 1

2)  51 288 − 40 799 = 10 489

6411 умн на 8 минус 40799 умн 6 step 2

3)  10 489 × 6 = 62 934

6411 умн на 8 минус 40799 умн 6 step 3

Пример 6. Найти значение выражения: 1 657 974 : 822 × 106 − (50 377 + 20 338)

Расставим порядок действий над выражением. Действие в скобках будет первым действием, деление будет вторым действием, умножение — третьим, вычитание — четвёртым.

1657974 na 82 na 106 шаг 1

1) 50 377 + 20 338 = 70 715

1657974 na 82 na 106 шаг 2

2) 1 657 974 : 822 = 2 017

1657974 na 82 na 106 шаг 3

3) 2 017 × 106 = 213 802

1657974 na 82 na 106 шаг 4

4) 213 802−70 715 = 143 087

1657974 na 82 na 106 шаг 5

Пример 7. Найти значение выражения: 14 026 − (96 : 4 + 3680)

Расставим порядок действий над выражением. Действие в скобках будет первым действием. При этом в скобках выполняется деление и сложение. Согласно порядку действий деление выполняется раньше сложения.

В данном случае сначала нужно 96 разделить на 4, и полученный результат сложить с 3 680. Полученный результат будет значением выражения, содержащегося в скобках. Этот результат нужно вычесть из 14 026. В результате будем иметь следующий порядок:

14026 - на 960 на 4 на 3680 шаг 1

1) 96 : 4 = 24

14026 - на 960 на 4 на 3680 шаг 2

2) 24 + 3 680 = 3 704

14026 - на 960 на 4 на 3680 шаг 3

3) 14026 − 3 704 = 10 322

14026 - на 960 на 4 на 3680 шаг 4

Задания для самостоятельного решения

Задание 1. Найдите значение выражения:

5 + 2 − 2 − 1

Решение

В каком порядке выполняются действия в выражениях где содержится

Задание 2. Найдите значение выражения:

14 + (6 + 2 × 3) − 6

Решение

В каком порядке выполняются действия в выражениях где содержится

Задание 3. Найдите значение выражения:

486 : 9 − 288 : 9

Решение

В каком порядке выполняются действия в выражениях где содержится

Задание 4. Найдите значение выражения:

756 : 3 : 4 × 28

Решение

В каком порядке выполняются действия в выражениях где содержится

Задание 5. Найдите значение выражения:

807 : 3 − (500 − 58 × 4)

Решение

В каком порядке выполняются действия в выражениях где содержится

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже

В каком порядке выполняются действия в выражениях где содержитсяВ каком порядке выполняются действия в выражениях где содержится

Навигация по записям

Источник