В каком порядке выполняются действия в выражениях где содержатся
Когда мы работаем с различными выражениями, включающими в себя цифры, буквы и переменные, нам приходится выполнять большое количество арифметических действий. Когда мы делаем преобразование или вычисляем значение, очень важно соблюдать правильную очередность этих действий. Иначе говоря, арифметические действия имеют свой особый порядок выполнения.
В этой статье мы расскажем, какие действия надо делать в первую очередь, а какие после. Для начала разберем несколько простых выражений, в которых есть только переменные или числовые значения, а также знаки деления, умножения, вычитания и сложения. Потом возьмем примеры со скобками и рассмотрим, в каком порядке следует вычислять их. В третьей части мы приведем нужный порядок преобразований и вычислений в тех примерах, которые включают в себя знаки корней, степеней и других функций.
Порядок вычисления простых выражений
Определение 1
В случае выражений без скобок порядок действий определяется однозначно:
- Все действия выполняются слева направо.
- В первую очередь мы выполняем деление и умножение, во вторую – вычитание и сложение.
Смысл этих правил легко уяснить. Традиционный порядок записи слева направо определяет основную последовательность вычислений, а необходимость сначала умножить или разделить объясняется самой сутью этих операций.
Возьмем для наглядности несколько задач. Мы использовали только самые простые числовые выражения, чтобы все вычисления можно было провести в уме. Так можно быстрее запомнить нужный порядок и быстро проверить результаты.
Пример 1
Условие: вычислите, сколько будет 7−3+6.
Решение
В нашем выражении скобок нет, умножение и деление также отсутствуют, поэтому выполняем все действия в указанном порядке. Сначала вычитаем три из семи, затем прибавляем к остатку шесть и в итоге получаем десять. Вот запись всего решения:
7−3+6=4+6=10
Ответ: 7−3+6=10.
Пример 2
Условие: в каком порядке нужно выполнять вычисления в выражении 6:2·8:3?
Решение
Чтобы дать ответ на этот вопрос, перечитаем правило для выражений без скобок, сформулированное нами до этого. У нас здесь есть только умножение и деление, значит, мы сохраняем записанный порядок вычислений и считаем последовательно слева направо.
Ответ: сначала выполняем деление шести на два, результат умножаем на восемь и получившееся в итоге число делим на три.
Пример 3
Условие: подсчитайте, сколько будет 17−5·6:3−2+4:2.
Решение
Сначала определим верный порядок действий, поскольку у нас здесь есть все основные виды арифметических операций – сложение, вычитание, умножение, деление. Первым делом нам надо разделить и умножить. Эти действия не имеют приоритета друг перед другом, поэтому выполняем их в написанном порядке справа налево. То есть 5 надо умножить на 6 и получить 30, потом 30 разделить на 3 и получить 10. После этого делим 4 на 2, это 2. Подставим найденные значения в исходное выражение:
17−5·6:3−2+4:2=17−10−2+2
Здесь уже нет ни деления, ни умножения, поэтому делаем оставшиеся вычисления по порядку и получаем ответ:
17−10−2+2=7−2+2=5+2=7
Ответ: 17−5·6:3−2+4:2=7.
Пока порядок выполнения действий не заучен твердо, можно ставить над знаками арифметических действий цифры, означающие порядок вычисления. Например, для задачи выше мы могли бы записать так:
.
Если у нас есть буквенные выражения, то с ними мы поступаем точно так же: сначала умножаем и делим, затем складываем и вычитаем.
Что такое действия первой и второй ступени
Иногда в справочниках все арифметические действия делят на действия первой и второй ступени. Сформулируем нужное определение.
К действиям первой ступени относятся вычитание и сложение, второй – умножение и деление.
Зная эти названия, мы можем записать данное ранее правило относительно порядка действий так:
Определение 2
В выражении, в котором нет скобок, сначала надо выполнить действия второй ступени в направлении слева направо, затем действия первой ступени (в том же направлении).
Порядок вычислений в выражениях со скобками
Скобки сами по себе являются знаком, который сообщает нам нужный порядок выполнения действий. В таком случае нужное правило можно записать так:
Определение 3
Если в выражении есть скобки, то первым делом выполняется действие в них, после чего мы умножаем и делим, а затем складываем и вычитаем по направлению слева направо.
Что касается самого выражения в скобках, его можно рассматривать в качестве составной части основного выражения. При подсчете значения выражения в скобках мы сохраняем все тот же известный нам порядок действий. Проиллюстрируем нашу мысль примером.
Пример 4
Условие: вычислите, сколько будет 5+(7−2·3)·(6−4):2.
Решение
В данном выражении есть скобки, поэтому начнем с них. Первым делом вычислим, сколько будет 7−2·3. Здесь нам надо умножить 2 на 3 и вычесть результат из 7:
7−2·3=7−6=1
Считаем результат во вторых скобках. Там у нас всего одно действие: 6−4=2.
Теперь нам нужно подставить получившиеся значения в первоначальное выражение:
5+(7−2·3)·(6−4):2=5+1·2:2
Начнем с умножения и деления, потом выполним вычитание и получим:
5+1·2:2=5+2:2=5+1=6
На этом вычисления можно закончить.
Ответ: 5+(7−2·3)·(6−4):2=6.
Не пугайтесь, если в условии у нас содержится выражение, в котором одни скобки заключают в себе другие. Нам надо только применять правило выше последовательно по отношению ко всем выражениям в скобках. Возьмем такую задачу.
Пример 5
Условие: вычислите, сколько будет 4+(3+1+4·(2+3)).
Решение
У нас есть скобки в скобках. Начинаем с 3+1+4·(2+3), а именно с 2+3. Это будет 5. Значение надо будет подставить в выражение и подсчитать, что 3+1+4·5. Мы помним, что сначала надо умножить, а потом сложить: 3+1+4·5=3+1+20=24. Подставив найденные значения в исходное выражение, вычислим ответ: 4+24=28.
Ответ: 4+(3+1+4·(2+3))=28.
Иначе говоря, при вычислении значения выражения, включающего скобки в скобках, мы начинаем с внутренних скобок и продвигаемся к внешним.
Допустим, нам надо найти, сколько будет (4+(4+(4−6:2))−1)−1. Начинаем с выражения во внутренних скобках. Поскольку 4−6:2=4−3=1, исходное выражение можно записать как (4+(4+1)−1)−1. Снова обращаемся к внутренним скобкам: 4+1=5. Мы пришли к выражению (4+5−1)−1. Считаем 4+5−1=8 и в итоге получаем разность 8-1, результатом которой будет 7.
Порядок вычисления в выражениях со степенями, корнями, логарифмами и иными функциями
Если у нас в условии стоит выражение со степенью, корнем, логарифмом или тригонометрической функцией (синусом, косинусом, тангенсом и котангенсом) или иными функциями, то первым делом мы вычисляем значение функции. После этого мы действуем по правилам, указанным в предыдущих пунктах. Иначе говоря, функции по степени важности приравниваются к выражению, заключенному в скобки.
Разберем пример такого вычисления.
Пример 6
Условие: найдите, сколько будет (3+1)·2+62:3−7.
Решение
У нас есть выражение со степенью, значение которого надо найти в первую очередь. Считаем: 62=36. Теперь подставим результат в выражение, после чего оно примет вид (3+1)·2+36:3−7.
Дальше действуем по знакомому алгоритму: считаем, сколько у нас получится в скобках, потом в оставшемся выражении выполняем умножение и деление, а следом – сложение и вычитание.
(3+1)·2+36:3−7=4·2+36:3−7=8+12−7=13
Ответ: (3+1)·2+62:3−7=13.
В отдельной статье, посвященной вычислению значений выражений, мы приводим и другие, более сложные примеры подсчетов в случае выражений с корнями, степенью и др. Рекомендуем вам с ней ознакомиться.
Источник
В уроке выражения мы узнали, что они бывают числовые и буквенные. Мы рассмотрели несколько числовых и буквенных выражений. Это были самые простейшие выражения.
Настало время сдвинуться с мёртвой точки и рассмотреть более сложные выражения. В данном уроке мы познакомимся с порядком выполнения действий.
Выражения могут состоять из нескольких чисел. Таковыми к примеру являются следующие выражения:
10 − 1 + 2 + 3
(3 + 5) + 2 × 3
5 × 2 + (5 − 3) : 2 + 1
Такие выражения нельзя вычислить сразу, то есть поставить знак равенства и записать значение выражения. Да и выглядят они не так просто, как 2 + 2 или 9 − 3.
Для подобных выражений принято соблюдать так называемый порядок действий. Суть в том, что выражение вычисляется кусочками по определённому порядку.
Когда нам требуется решить подобные примеры, мы сразу должны мысленно прочитать следующее правило:
Сначала вычислить то, что находится в скобках!
Посмотрим на выражение 10 − 1 + 2 + 3. Видим, что в нём нет никаких скобок. Тогда переходим к следующему правилу, которое выглядит так:
Читаем выражение слева направо. Если встретится умножение или деление, то сразу же выполняем эту операцию!
Читаем наше выражение 10 − 1 + 2 + 3 слева направо. Видим, что в нём нет никакого умножения или деления. Тогда переходим к следующему правилу:
Читаем выражение слева направо. Если встретится сложение или вычитание, то сразу же выполняем эту операцию!
Читаем наше выражение 10 − 1 + 2 + 3 слева направо. Встречаем вычитание 10 − 1. Сразу выполняем эту операцию: 10 − 1 = 9. Полученную девятку запишем в главном выражении вместо 10 − 1
Затем снова читаем те, правила, которые мы прочитали выше. Читать их нужно в следующем порядке:
1. Сначала вычислить то, что находится в скобках!
2. Читаем выражение слева направо. Если встретится умножение или деление, то сразу же применяем эту операцию!
3. Читаем выражение слева направо. Если встретится сложение или вычитание, то сразу же применяем эту операцию!
Сейчас у нас имеется выражение 9 + 2 + 3 Читаем его слева направо и встречаем сложение 9 + 2. Выполняем эту операцию: 9 + 2 = 11. Запишем число 11 в главном выражении вместо 9 + 2:
Осталось простейшее выражение 11 + 3, которое вычисляется легко:
11 + 3 = 14
Таким образом, значение выражения 10 − 1 + 2 + 3 равно 14
10 − 1 + 2 + 3 = 14
Иногда удобно расставить порядок действий над самим выражением. Для этого над операцией, которую необходимо выполнить, указывают её очередь. К примеру, в выражении 10 − 1 + 2 + 3 все действия выполняются последовательно слева направо, поэтому для него можно определить следующий порядок:
И далее можно выполнить действия по отдельности, что очень удобно:
1) 10 − 1 = 9
2) 9 + 2 = 11
3) 11 + 3 = 14
Также, можно поставить знак равенства и сразу начать вычислять выражение в порядке приоритета действий. Например, решение для выражения 10 − 1 + 2 + 3 можно записать следующим образом:
Но если человек не научился быстро считать в уме, то не рекомендуется использовать такой способ.
Пример 2. Найти значение выражения (3 + 5) + 2 × 3
Применим правила порядка действий. Прочитаем правила в порядке их приоритета.
Сначала вычислить то, что находится в скобках!
Посмотрим на выражение (3 + 5) + 2 × 3. Видим, что в нём есть выражение в скобках (3 + 5). Вычислим то, что в этих скобках: 3 + 5 = 8. Запишем полученную восьмёрку в главном выражении вместо выражения в скобках:
8 + 2 × 3
Снова читаем первое правило:
Сначала вычислить то, что находится в скобках!
Видим, что в выражении 8 + 2 × 3 нет никаких скобок. Тогда читаем следующее правило:
Читаем выражение слева направо. Если встретится умножение или деление, то сразу же выполняем эту операцию!
Посмотрим на наше выражение 8 + 2 × 3. Видим, что в нём есть умножение 2 × 3. Выполним эту операцию: 2 × 3 = 6. Запишем полученную шестёрку в главном выражении вместо 2 × 3
8 + 6
Осталось простейшее выражение 8 + 6, которое вычисляется легко:
8 + 6 = 14
Таким образом, значение выражения (3 + 5) + 2 × 3 равно 14
(3 + 5) + 2 × 3 = 14
Также, этот пример можно решить, расставив порядок действий над самим выражением. Действие в скобках будет первым действием, умножение — вторым действием, а сумма — третьим:
И далее можно выполнить действия по отдельности, что очень удобно:
1) 3 + 5 = 8
2) 2 × 3 = 6
3) 8 + 6 = 14
Также, можно поставить знак равенства и сразу начать вычислять выражение в порядке приоритета действий:
Но опять же, используя такой способ, нужно быть очень внимательным.
Пример 3. Найти значение выражения 5 × 2 + (5 − 3) : 2 + 1
Расставим порядок действий над выражением. Действие в скобках будет первым действием, умножение — вторым действием, деление — третьим действием, четвёртое и пятое действие являются суммами и они будут выполнены в порядке их следования:
1) 5 − 3 = 2
2) 5 × 2 = 10
3) 2 : 2 = 1
4) 10 + 1 = 11
5) 11 + 1 = 12
Также, можно поставить знак равенства и сразу начать вычислять выражение в порядке приоритета действий:
Четвёртое и пятое действие заключалось в том, чтобы вычислить оставшееся простейшее выражение 10 + 1 + 1. Мы не стали тратить время на выполнение каждого из этих действий, а поставили знак равенства и записали ответ 12.
Пример 4. Найти значение выражения (3250 − 2905) : 5
Расставим порядок действий над выражением. Действие в скобках будет первым действием, а деление — вторым
1) 3250 − 2905 = 345
2) 345 : 5 = 69
В скобках могут выполняться два и более действия. Бывает даже так, что в скобках встречаются другие скобки. В таких случаях нужно применять те же правила, которые мы изучили ранее.
Пример 5. Найти значение выражения (6 411 × 8 − 40799) × 6
Расставим порядок действий над выражением. Действие в скобках будет первым действием. При этом в скобках выполняется умножение и вычитание. Согласно порядку действий, умножение выполняется раньше вычитания.
В данном случае сначала нужно 6 411 умножить на 8, и из полученного результата вычесть 40 799. Полученный результат будет значением выражения, содержащегося в скобках. Этот результат будет умножен на 6.
В результате будем иметь следующий порядок:
1) 6 411 × 8 = 51 288
2) 51 288 − 40 799 = 10 489
3) 10 489 × 6 = 62 934
Пример 6. Найти значение выражения: 1 657 974 : 822 × 106 − (50 377 + 20 338)
Расставим порядок действий над выражением. Действие в скобках будет первым действием, деление будет вторым действием, умножение — третьим, вычитание — четвёртым.
1) 50 377 + 20 338 = 70 715
2) 1 657 974 : 822 = 2 017
3) 2 017 × 106 = 213 802
4) 213 802−70 715 = 143 087
Пример 7. Найти значение выражения: 14 026 − (96 : 4 + 3680)
Расставим порядок действий над выражением. Действие в скобках будет первым действием. При этом в скобках выполняется деление и сложение. Согласно порядку действий деление выполняется раньше сложения.
В данном случае сначала нужно 96 разделить на 4, и полученный результат сложить с 3 680. Полученный результат будет значением выражения, содержащегося в скобках. Этот результат нужно вычесть из 14 026. В результате будем иметь следующий порядок:
1) 96 : 4 = 24
2) 24 + 3 680 = 3 704
3) 14026 − 3 704 = 10 322
Задания для самостоятельного решения
Задание 1. Найдите значение выражения:
5 + 2 − 2 − 1
Решение
Задание 2. Найдите значение выражения:
14 + (6 + 2 × 3) − 6
Решение
Задание 3. Найдите значение выражения:
486 : 9 − 288 : 9
Решение
Задание 4. Найдите значение выражения:
756 : 3 : 4 × 28
Решение
Задание 5. Найдите значение выражения:
807 : 3 − (500 − 58 × 4)
Решение
Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках
Возникло желание поддержать проект?
Используй кнопку ниже
Навигация по записям
Источник
Какие действия выполняются первыми в математике: умножение и деление или сложение и вычитание? Что будет первым между умножением и делением, между сложением и вычитанием? Какой порядок действий, если есть скобки? OlyaSh 6 лет назад Тут необходимо помнить несколько основных правил:
Например, 5+8-5=8(выполняем все по порядку – к 5 прибавляем 8, а затем отнимаем 5)
Например, 5+8*3=29 (сначала 8 умножаем на 3, а затем прибавляем 5)
Например, 3*(5+8)=39 (сначала 5+8, а затем умножаем на 3) автор вопроса выбрал этот ответ лучшим Roxrite 6 лет назад Если в примере присутствуют все 4 действия, то сначала идет умножение и деление, а потом сложение и вычитание. Или в примере 3 разных действия, то первым будет либо умножение (либо деление), а потом либо сложение (либо вычитание). Когда НЕТ СКОБОК. Пример: 4-2*5:10+8=11, 1 действие 2*5 (10); 2 действие 10:10 (1); 3 действие 4-1 (3); 4 действие 3+8 (11). Все 4 действия можно разделить на две основные группы, в одной – сложение и вычитание, в другой – умножение и деление. Первыми будет то действие, который первый по счету в примере, то есть самый левый. Пример: 60-7+9=62, сначала нужно 60-7, потом то, что получится (53) +9; Пример: 5*8:2=20, сначала нужно 5*8, потом то, что получится (40) :2. Когда ЕСТЬ СКОБКИ в примере, то сначала выполняются действия которые в скобке (согласно вышеперечисленными правилам), а потом остальные как в обычно. Пример: 2+(9-8)*10:2=7. 1 действие 9-8 (1); 2 действие 1*10 (10); 3 действие 10:2 (5); 4 действие 2+5 (7). Искатель приключений 4 года назад Рассмотрим разные варианты: 1) 1+2*3=7 В данном примере первое действие, которое необходимо произвести это умножение, а затем уже сложение. 2)2+3*5/15=3 В этом случае, вы сначала умножаете значения, затем делите, а только потом складываете. 3) (2+3)*3/15=1 В этом случаи вы должны сначала сделать все действия в скобках, а затем только делать умножение и деление. А так надо запомнить, что в любой формуле сначала выполняются действия как умножение и деление, а затем только вычитание и сложение. Также с числами, которые стоят в скобках нужно посчитать их в скобках, а только потом делать различные манипуляции, помня последовательность описанную выше. Limitless 4 года назад Если между собой сравнить функции сложение и вычитание с умножением и делением, то умножение и деление всегда рассчитываются в первую очередь. В примере такие две функции, как сложение и вычитание, а также умножение и деление равнозначны между собой. Очерёдность выполнения определяется в порядке очереди слева направо. Следует помнить тот факт, что особым приоритетом в примере обладают действия, взятые в круглые скобки. Таким образом, даже если за пределами скобок стоит умножение, а в скобках сложение, следует сначала сложить, а уже потом умножить. Veresk 4 года назад Зависит как записано выражение, рассмотрим на простейшем числовом выражении: 18 – 6:3 + 10х2 = Сначала выполняем действия с делением и умножением, затем по очереди, слева направо, с вычитанием и сложением: 18-2+20 = 36 Если это выражение со скобками, тогда выполняют действия в скобках, затем умножение или деление и в заключение сложение/вычитание, например: (18-6) : 3 + 10 х 2 = 12:3 + 20 = 4+20=24 Всё правильно: сначала выполняют умножение и деление, затем сложение и вычитание. 88SkyWalker88 4 года назад Первыми будут следующие действия: умножение и деление. Только затем выполняются сложение и вычитание. Однако если есть скобка, то в первую очередь будут выполняться действия, которые находятся в них. Даже если это сложение и вычитание. Например: 4+5*4 В этом примере сначала выполним умножение, то 4 на 5, затем к 20 прибавим 4. Получится 24. Но если будет так: (4+5)*4, то сначала выполним сложение, получаем 9. Затем 9 умножаем на 4. Получаем 36. oniks28 4 года назад Если в примере нет скобок, то в первую очередь выполняется умножение и деление по порядку , а потом уже сложение и вычитание, то же по порядку . Примеры ; 8+3-2х1=9 1)2х1=2 2)8+3=11 3)11-2=9 27:9+8х6-2=49 1)27:9=3 2)8х6=48 3)3+48-51 4)51-2=49 Если в примере только умножение и деление, то действия будут выполняться по порядку. Примеры : 12х3:2=18 1)12х3=36 2)36:2=18 90:15Х7=42 1)90:15=6 2)6х7=42 Если в примере только сложение и вычитание, то действия тоже будут выполняться по порядку. 22-8+6=20 1)22-8=14 2)14+6=20 В первую очередь выполняются действия в скобках по тем же правилам, то есть сначала умножение и деление, и только потом сложение и вычитание. 22-(11+3Х2)+14=19 1)3х2=6 2)11+6=17 3)22-17=5 4)5+14=19 yuliyakotya 5 лет назад Чтобы разобраться в этой теме ,можно рассмотреть все случаи поочередно. Сразу учтем,что наши выражения не имеют скобок. Итак,если в примере первое действие умножение,а второе-деление,то первым выполняем умножение. 1×1:1 Если в примере первое действие деление,а второе умножение,то первым делаем деление. 1:1×1 В таких примерах действия выполняются в порядке слева направо,независимо от того,какие используются числа. Если же в примерах помимо умножения и деления имеются сложение и вычитание,то умножение и деление делаются в первую очередь,а потом сложение и вычитание. В случае со сложением и вычитанием также нет разницы,какое из этих действий делается первым.Соблюдается порядок слева направо. lady v 4 года назад Порядок выполнения арифметических действий прописан строго, чтобы не было никаких разночтений при выполнении однотипных вычислений разными людьми. Прежде всего выполняются умножение и деление, потом сложение и вычитание, если действия одного порядка идут одно за другим, то они выполняются в порядке очереди слева направо. Если при записи математического выражения используются скобки, то в первую очередь следует выполнить действия указанные в скобках. Скобки помогают изменить очередность при необходимости сперва выполнить сложение или вычитание, а уже после умножение и деление. Любые скобки можно раскрыть и тогда порядок выполнения вновь будет правильным: 6*(45+15) = 6*45 +6*15 Колючка 555 4 года назад Лучше сразу в примерах:
В этом случае выполняем сначала умножение, так как оно стоит левее чем деление. Потом деление. Затем сложение, так по причине более левого расположения и в конце вычитание.
сначала делаем вычисление в скобках, затем умножение и деление.
Сначала делаем действия в скобках: умножение, затем вычитание. После этого идет умножение вне скобок и сложение кв конце. sashka82 6 лет назад Первоочередно идет умножение и деление. Если есть в примере скобки, то в начале считают действие в скобках. Какой бы знак там ни был! lerik37 7 месяцев назад Сначала умножение и деления, если конечно нет скобок, а потом все остальное. Но скобки всегда имеют приоретет. Знаете ответ? |
Источник