В какой стали содержится медь

В какой стали содержится медь thumbnail

Медистая стальЧто такое медистая сталь это сталь, легированная, наряду с др. хим. элементами, медью. Используется с конца 19 в. Различают медистую сталь конструкционную и с особыми физ. и хим. св-вами (нержавеющую сталь, коррозионно-стойкую сталь).

Медь расширяет гамма-область, смещает эвтектоид-ную точку на диаграмме состояния железо — углерод к более низким содержаниям углерода, повышает прочность и текучесть феррита, способствует   графитизации,   снижает критическую скорость закалки. С понижением т-ры растворимость меди в альфа-железе уменьшается.

Если меди содержится более 0,3%, после закалки и отпуска при т-ре 400— 600° С в стали происходит дисперсионное твердение. Предельное упрочнение наблюдается, если в стали содержится более 1,0—1,5% Сu.

При выплавке стали медь не окисляется, что неизбежно приводит к увеличению ее содержания. Влияние меди (более 0,2%) на сопротивление  атмосферной коррозии возрастает при совместном легировании сталей марганцем, хромом, кремнием, а также фосфором. Горячее деформирование углеродистых  медистая сталь часто   приводит к образованию поверхностных трещин.

Никель в таком же количестве, как и медь, устраняет образование трещин. Низколегированные низкоуглеродистые (строительные) Медистая сталь отличаются высоким пределом текучести, стойкостью к атмосферной коррозии, хорошими   свариваемостью, полируемостью и сцеплением с лакокрасочными покрытиями, высокой ударной вязкостью при низкой т-ре и теплостойкостью.

При толщине проката до 32 мм у стали марки 15ХСНД, содержащей  0,12—0,18% С   и   0,2— 0,4% Си, в состоянии поставки (без термообработки)   предел   текучести > 35 кгс/мм2, предел прочности на растяжение > 50 кгс/мм2, удлинение >21%, ее ударная вязкость при т-ре — 70° С равна > 3 кгс-м/см2. После закалки и отпуска предел текучести М. с. > 50 кгс/мм2, предел  прочности  на растяжение > 60 кгс/мм2, удлинение > 17%, ударная вязкость при т-ре — 70° С 3 кгс-м/см2. В среднеуглеродистых низколегирован.

Медистая сталь (0,3—0,5% С) медь (0,4 — 1,5%) увеличивает сквозную прокаливаемость крупных поковок, а также повышает предел текучести после отпуска. Легирование высокоуглеродистых сталей (1,0-1,2% С) медью (0,8-1,0%) после длительного нагрева при т-ре 800—850° С способствует появлению (Цудерода отжига, что повышает антифрикционные св-ва.

В высоколегированных нержавеющих и коррозионностойких медистых сплавов (аустенитного, ферритоаустенитного,  мартенситного и мартенситоферритного классов) медь (0,8—3,5%) повышает сопротивление коррозии в определенных средах, понижает склонность к коррозионному растрескиванию под напряжением, приводит к дисперсионному твердению.

Легирование медью аустенитных хромоникелевых сталей увеличивает коррозионную стойкость в растворах серной к-ты. Особенно эффективно   одновременное   легирование медью и молибденом (сталь марок 06ХН28МДТ и 03ХН28МДТ). Сталь марки 03ХН28МДТ обладает повышенной   стойкостью к   ножевой и межкристаллитной  коррозии.

Коррозионностойкая      сталь   марки Х15Н5Д2Т   (1,75—2,5% Си) упрочняется   вследствие   дисперсионного твердения при выделении меди. У такой стали после закалки от т-ры 940—980° С (охлаждение на воздухе) и отпуска при  т-ре   600 — 625° С предел   прочности   на   растяжение > 90  кгс/мм2,    предел    текучести > 70 кгс/мм2 и удлинение  > 10%.

При выплавке медистая сталь используют природнолегированные чугуны, медистый скрап и металлическую медь. Медистe. сталь получают в мартеновских печах, конверторах и электр. печах, электрошлаковым и вакуумно-дуговым переплавом.   Поставляют  ее  в  виде листов, полос, сортового проката и швеллеров.

Низколегированные М. с. применяют в мосто-, судо- и турбостроении, из них изготовляют металлоконструкции для кранов тяжелого и особо тяжелого режимов эксплуатации. Нержавеющие и коррозионностойкие медистая сталь используют для изготовления сварных конструкций, эксплуатируемых при т-ре до 80° С в серной к-те различной концентрации, арматуры повышенного качества,   сварнолитых  деталей   и гидротурбин.

Статья на тему медистая сталь

Источник

По объему мирового потребления и производства медь стоит на третьем месте после алюминия и железа. Этот металл обладает высокой тепло- и электропроводностью, легко поддается обработке и не теряет своих свойств после повторной переработки. Такие характеристики обусловили широкое применение меди в различных отраслях – от быта до тяжелой промышленности.

Главная сфера использования меди – электротехническая область. Из металла изготавливают кабели и провода, а отслужившие отвозят на лом медного кабеля в пункт ЛОМЦВЕТМЕТ. Для производства берут чистую медь с минимальным содержанием примесей. Любые второстепенные включения снижают электропроводность конечного изделия. Провод, содержащий 0,02% алюминия, теряет способность проводить ток на 10%.

медь в кабелях

Процесс получения электротехнической меди называется электролиз: создаются условия, при которых посторонние включения на молекулярном уровне отделяются от меди и оседают на одном из электродов. На выходе получается металл с чистотой 99,99%. Изделие, произведенное из электротехнической меди, отличается высокой ценой по сравнению с другими марками.

медь в электроприборах

Найти медь в больших количествах можно в старых электроприборах:

  • Ламповый телевизор. Необходимый металл содержится в трансформаторе, дросселе и монтажных проводах. В общем – 1-1,5 кг меди.
  • Кинескопный телевизор. Этот прибор содержит около 400 – 500 гр. металла (резисторы, конденсаторы и кинескопы).
  • Советский холодильник. Трубки охлаждения, детали морозильной камеры и двигателя раньше изготавливались из меди. Общий вес ценного металла в одном холодильнике достигает 2-3 кг.
  • Трансформатор. Списанный прибор содержит в себе сотни килограмм металла. Чем мощнее трансформатор, тем больше в нем меди.
  • Другие электроприборы. Сюда относятся электродвигатели, реле, ламповая арматура, стартеры, магнитные пускатели, узлы стиральных машин, фенов и микроволновых печей.
Читайте также:  В каком корме содержится селен

Стойкость к ультрафиолету, температурным перепадам и образованию коррозии позволили использовать медь для производства элементов водо- и теплоснабжения:

  • теплообменники;
  • кулера для системных блоков;
  • детали кондиционеров;
  • отопительные радиаторы;
  • сантехника;
  • бесшовные трубы.

Где еще можно найти медный лом? Этот металл является строительным материалом. Медная кровля способна прослужить до 200 лет в любых атмосферных условиях без особого ухода.

Медь отличается высокой экологичностью, эффективна в борьбе с патогенными микроорганизмами. Из-за этого данный металл применяется в производстве бактерицидных столешниц, дверных ручек, оконной фурнитуры, перил и инструментов для лечебных заведений.

Элегантный внешний вид и износостойкость повлияли на массовое изготовление из меди предметов домашнего декора: медный декор

  • раковины и ванные;
  • кухонные столешницы;
  • жалюзи;
  • посуда для хранения продуктов и столовые приборы;
  • дверные полотна;
  • вытяжки для плит;
  • вентиляторы;
  • фасады посудомоечных машин и холодильников.

Источниками меди также могут послужить: монеты, статуэтки, декоративные элементы, женские украшения. Если взять битый автомобиль, то можно найти до 5 кг меди. Металл содержится в двигателе, бортовом компьютере, радиаторе и проводке.

Бронза, латунь, мельхиор, нейзильбер и манганин – медные сплавы, которые используются в других производственных направлениях. Из латуни изготавливают медали и гильзы, из мельхиора – украшения, из нейзильбера – медицинские инструменты.

Стоимость изделия напрямую зависит от того, какой в нем % содержания чистой меди. По ценности на первое место можно поставить электротехническую медь, а на последнее – отходы в виде стружки с большим засором.

ОСТАЛИСЬ ВОПРОСЫ???

ОСТАВЬТЕ ЗАЯВКУ И МЫ ПРОКОНСУЛЬТИРУЕМ ВАС БЕСПЛАТНО!

Похожие статьи:

  • Как отличить медь от латуни?
  • Как отличить бронзу от латуни?
  • Как определить медь?
  • В каких изделиях содержится медь
  • Применение цветных металлов

Источник

Вредные примеси в стали

Вопросы, рассмотренные в материале:

  • Полезные и специальные примеси в стали
  • Вредные примеси в стали, которые ухудшают ее свойства

Вредные примеси в стали не только ухудшают ее состав, но и могут привести к последующей деформации изготовленного из нее изделия. Однако нельзя все их рассматривать как нежелательные. Некоторые из них относят к полезным, а от других вообще невозможно избавиться, так как они постоянные. Да и нет необходимости их устранять, поскольку постоянные примеси могут влиять на качественные характеристики стали.

В этой статье мы поговорим о том, какими являются вредные примеси стали и как они влияют на ее состав и характеристики стальных изделий.

Полезные и специальные примеси в стали

Полезные и специальные примеси в стали

В стали встречаются вредные и полезные примеси. Сначала остановимся на полезных, к которым относят марганец и кремний:

  • Марганец – это химический элемент, благодаря которому возрастает прокаливаемость стали и снижается влияние серы, оказывающей вредное воздействие на металл.
  • Кремний – примесь данного элемента помогает раскислить сталь и, как следствие, повысить ее прочность. Его специально добавляют в металл в ходе его выплавки.

Углеродистая сталь содержит примесь кремния не более 0,35–0,4 % и марганец в количестве 0,5–0,8 %. Переход марганца и кремния в сталь происходит во время раскисления в ходе выплавки. Эти химические элементы соединяются с кислородом закиси железа FеO, а затем, превращаясь в окислы, переходят в шлак, то есть, иначе говоря, раскисляют сталь.

Данный процесс оказывает благоприятное воздействие на свойства стали. За счет дегазации металла кремнием увеличивается ее плотность. Часть химического элемента остается в феррите (твердом растворе) уже после раскисления, что приводит к значительному возрастанию предела текучести. При этом способность к холодной высадке и вытяжке у стали снижается.

По этой причине производители снижают количество кремния в сталях, изготавливаемых для холодной штамповки и высадки. Прочность металла значительно повышается благодаря примеси марганца. Последний сильно уменьшает красноломкость стали, оставляя пластичность практически неизменной. Таким образом, резко падает хрупкость стали при воздействии высокой температуры, которая возникала из-за присутствия серы.

Для получения сталей, имеющих определенные свойства, в металл добавляют специальные примеси. Они носят название легирующих элементов. Стали же именуют легированными.

Остановимся подробно на назначении некоторых элементов:

  • Алюминий – его примесь помогает повысить окалино- и жаростойкость стали.
  • Медь – увеличивает стойкость стали к коррозии.
  • Хром – повышает прочность, твердость сталей, увеличивает стойкость к коррозии, при этом пластичность падает незначительно. Нержавеющей сталь делает большое содержание хрома.
  • Никель – повышает пластичность, прочность, делает сталь стойкой к коррозии.
  • Вольфрам – при добавлении в сталь создает корбиды (химические соединения повышенной твердости). Они значительно повышают красностойкость и твердость. Под воздействием вольфрама сталь перестает расширяться в процессе нагревания, а хрупкость при отпуске уходит.
  • Ванадий – способствует возрастанию плотности, прочности и твердости стали. Он признается прекрасным раскислителем.
  • Кобальт – под его воздействием увеличивается жаропрочность, стойкость к ударным нагрузкам, возрастают магнитные свойства.
  • Молибден – улучшается сопротивляемость стали к окислению в ходе воздействия на нее высоких температур, возрастает упругость, красностойкость, увеличивается стойкость к коррозии, повышается предел прочности к растяжению.
  • Титан – являясь прекрасным раскислителем, он повышает стойкость к коррозии, увеличивает плотность и прочность металла, делает лучше его обрабатываемость.
  • Церий – способствует возрастанию пластичности и прочности стали.
  • Цирконий (Ц) – воздействует на зернистость стали, давая возможность изготовить металл с установленным размером зерна, делает его мельче.
  • Лантан, неодим и цезий – уменьшают пористость стали, сокращают количество серы, делают качество поверхности лучше, а зерно мельче.
Читайте также:  В каких речных камнях содержится золото

Вредные примеси в стали, которые ухудшают ее свойства

Давайте разберемся, какие вредные примеси содержатся в стали. Основными являются фосфор и сера.

Вредные примеси в стали, которые ухудшают ее свойства

  • Сера.

Сера (S) содержится в сталях высокого качества в количестве не более 0,02–0,03 %. Для металла общего назначения этот показатель повышается до 0,03–0,04 %. С помощью спецобработки количество серы уменьшается до 0,005 %.

Растворения серы в железе не происходит, а образуется FeS (сульфид железа). Он входит в эвтектику, образующуюся при температуре +988 °С.

При высоком содержании серы сталь становится красноломкой. Это происходит из-за появления на границах зерен сульфидных эвтектик, имеющих низкую способность к плавке. Красноломкость появляется при температуре красного каления стали – +800 °С.

Плохое влияние сера оказывает на свариваемость, пластичность, ударную вязкость, а также поверхность металла. Это особенно заметно, если марганец и углерод содержатся лишь в небольших количествах.

Склонность к сегрегации на границах зерен у серы значительна. По этой причине в ходе нагрева пластичность стали падает. Если металл предназначен для дальнейшей обработки автоматическим механическим способом, то в состав обязательно добавляют серу в количестве от 0,08 % до 0,33 %, так как она способствует возрастанию у подшипниковых сталей усталостной прочности.

Марганец же снижает вредное воздействие серы на сталь. При жидком состоянии сплава он вступает в реакцию с образованием сульфида марганца, температура плавления которого составляет +1620 °С. Она значительно превышает температуру горячей обработки металла (от +800 °С до +1200 °С). При таком нагреве сульфиды марганца достаточно пластичны и просто деформируются.

Сера

  • Фосфор.

Сегрегация фосфора (Р) в значительно меньшей, чем серы и углерода, степени происходит в ходе затвердевания сталей. Идет его растворение в феррите, из-за чего прочность металла увеличивается. Чем больший процент фосфора содержит сталь, тем выше ее хладноломкость и ниже ударная вязкость, пластичность.

Высокая температура среды позволяет достичь растворимости фосфора в пределах 1,2 %. Чем ниже становится температура, тем меньше растворимость фосфора. Она постепенно опускается до 0,02–0,03 %. Именно такое содержание данного химического элемента наблюдается в сталях. Это может говорить о том, что он, как правило, полностью растворяется в альфа-железе.

Отпускная хрупкость хромистых, хромоникелевых и хромомарганцевых, марганцевых и магниево-кремниевых легированных сталей во многом зависит от сегрегации фосфора по границам зерен. Элемент способствует замедлению распада мартенсита и повышает упрочняемость.

С целью улучшения механической (автоматической) обработки в низколегированные стали добавляют большое содержание фосфора.

При наличии углерода в количестве 0,1 % в конструкционной низколегированной стали фосфор должен увеличивать антикоррозийные свойства, а также прочность металла.

Наличие фосфора в хромоникелевых аустеничных сталях приводит к увеличению предела текучести. При попадании аустеничной нержавеющей стали в среду сильного окислителя присутствие в ее составе фосфора вызывает коррозию на границах зерен. Такое поведение предопределено сегрегацией фосфора на этих границах.

  • Углерод.

Углерод

Вредные примеси в стали – это не только сера и фосфор, но и углерод.

Медленно остывая, сталь приобретает структуру, состоящую их двух фаз – цементита и феррита. Цементит связан в стали с углеродом. Его содержание прямо пропорционально количеству последнего. При этом цементит имеет твердость, значительно превышающую жесткость феррита. Цементит, вернее, входящие в его состав частицы (хрупкие, твердые), увеличивают сопротивляемость деформации, повышая противодействие движению дислокации. Помимо того, снижается вязкость и пластичность металла.

Как следствие, при возрастании процента углерода происходит увеличение твердости стали, пределов ее текучести и прочности, снижение относительных сужения и удлинения, а также ударной вязкости. То есть чем больше углерода, тем легче сталь переходит в хладноломкое состояние. Если содержание углерода в стали колеблется в диапазоне 1,0–1,1 %, то растет твердость металла в отожженном состоянии. При этом предел прочности снижается.

Читайте также:  Какая кислота содержится в желудочном соке какова ее роль

Такое явление, как снижение прочности, наблюдается по причине выделения аустенита вторичного цементита на границах бывшего зерна. Этот цементит делает сплошную сетку в сталях с вышеуказанным составом. В ходе растяжения сетка напрягается и цемент, хрупкий по своей природе, начинает разрушаться. Все это является причиной распада и последующего уменьшения предела прочности. Увеличивая количество углерода, можно добиться уменьшения плотности стали, увеличения электросопротивляемости, коэрцитивной силы, снижения остаточной индукции, теплопроводности и магнитной проницаемости.

  • Азот.

Рассматривая вопрос о том, какие вредные примеси присутствуют в стали, нельзя забывать о влиянии азота (N). Под его воздействием в металле образуются нитриды, представляющие собой неметаллические хрупкие инородные тела, которые делают свойства стали значительно хуже.

Однако вредные примеси в стали являются в какой-то мере полезными, а иногда и неустранимыми. К положительным сторонам примеси азота стоит отнести его способность увеличить аустеничную область диаграммы состояния металла. Он делает аустеничную структуру стабильнее. Кроме того, он способен заменить собой никель (но только частично) в рассматриваемых сталях.

Для увеличения прочности низколегированной стали прибегают к добавлению титана, ванадия и ниобия (нитридообразующих элементов). В процессе горячей обработки и последующего охлаждения, взаимодействуя, они создают небольшие карбонитриды и нитриды, придающие стали прочность.

  • Олово.

Олово

Даже небольшое количество олова (Sn) вредно для стали. В легированных сталях этот элемент способен вызвать отпускную хрупкость. Кроме того, олово сегрегируется на границах зерен стали, уменьшает ее горячую пластичность в аустенитно-ферритной области диаграммы состояния. Непрерывнолитые слитки под воздействием олова имеют низкое качество поверхности.

  • Водород.

Обсуждая вредные примеси в стали и их влияние на материал, нельзя забывать, пожалуй, о самом опасном из них – водороде. В процессе сварки этот химический элемент во всех случаях является вредной примесью. Причина заключается в излишнем охрупчивании стали. При проведении сварочных работ водород может попасть в расплав из:

  • атмосферы дугового разряда;
  • может уже содержаться в металле.

Поглощенный из атмосферы водород, пребывающий в ионизированном и атомарном виде, в ходе кристаллизации значительно уменьшает собственную растворимость. В результате его последующего выделения из материала в нем образуются трещины и поры.

Водород, уже находящийся в металле, может быть в виде гидрида (связанном) или в диффузно-подвижном состоянии (в виде твердого раствора). Молекулярный водород содержится в микронесплошностях материала.

Снизить количество водорода в сварочной зоне можно следующими способами:

  • используют окислители атмосферы (применяют специальные руднокислые электроды или работают под защитой CO2);
  • покрытия электродов и флюсы дополняют хлоридами и фторидами (ими могут быть соли и плавиковый шпат);
  • проводят просушку материалов, предназначенных для сварки (флюса, электродов, газов, проволоки и пр.).
  • Кислород.

Вредные примеси в стали включают в себя и кислород, который понижает пластичность металла. Для защиты материала при сварке используют процесс раскисления шва до определенной нормы. В ходе сварки титана, алюминия и прочих высокоактивных металлов мастера делают атмосферу внутри рабочей зоны без кислорода. Используя для этого гелий, аргон, галидные флюсы, они создают вакуум, поскольку для этих металлов достаточно сложно найти раскислители.

  • Сурьма.

Сурьма

Сурьма (Sb) оказывает вредное влияние на поверхность стали (непрерывнолитых слитков). Причина заключается в ее сегрегации в процессе затвердевания металла. Когда сталь переходит в твердое состояние, сурьма сегрегирует на границах зерен, что приводит у легированных сталей к отпускной хрупкости.

Почему следует обращаться именно к нам

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

Источник