В какой среде наиболее выражены окислительные свойства хрома

В какой среде наиболее выражены окислительные свойства хрома thumbnail

Задача 1085. 
Для каких соединений хрома характерны окислительные свойства? Привести примеры реакций, в которых проявляются эти свойства.
Решение:
а) В соединениях хрома (II) атомы хрома находятся в своей степени окисления +2, поэтому они способны понижать степень окисления с +2 до 0, т.е. проявлять окислительные свойства.
Восстанавливается водородом до металлического хрома при 1000°С:

CrO + H2 ⇒ Cr + H2O

Также можно восстановить коксом:

CrO + C ⇒ Cr + CO

б) Соединения Cr3+ наиболее устойчивая степень окисления хрома. Для соединений хрома(III) характерны окислительные и восстановительные свойства, потому что он находится в своей промежуточной степени окисления +3. хром(III) способен уменьшать свою степень окисления с +3 до +2, например:
Реакция алюмотермии:

 2Al + Сг2О3 ⇒ 2Cr + Al2O3

Силикотермическое восстановление основано на реакции:

2Cr2O3 + 3Si + 3CaO = 4Cr + 3CaSiO3

Восстановлением безводного хлорида хрома(III) водородом при 450° С:

2CrCl3 + H2 = 2CrCl2 + 2HCl

Восстановление хлорида хрома(III) цинком в присутствии соляной кислоты:

2CrCl3 + 3Zn + 4HCl = 2CrCl2 + 3ZnCl2 + 2H2↑

в) Соединения хрома(VI) — сильные окислители, например:

K2Cr2O7 + 14HCl = 3Cl2↑ + 2CrCl3 + 2KCl + 7H2O.

В кислой среде хром восстанавливается сульфитом натрия от хрома (VI) до хрома (III):

K2Cr2O7 + 3Na2SO3 + 4H2SO4 = K2SO4 + Cr2(SO4)3 + 3Na2SO4 + 4H2O.

Разложение дихромата аммония:

(NH4)2Cr2O7  ⇒ Cr2O3 + N2↑ + 4H2O

В кислотной среде соединения Сr+6 переходят в соединения Сr+3 под действием восстановителей: H2S, SO2, FeSO4

K2Cr2O7 + 3Н2S +4Н2SО4 = 3S + Сr2(SО4)3 + K2SO4  + 7Н2О

Оксид хрома (VI) – очень сильный окислитель, поэтому энергично взаимодействует с органическими веществами:

С2Н5ОН + 4СrО3 = 2СО2↑ + 2Сr2О3 + 3Н2О

Окисляет также иод, серу, фосфор, уголь:

3S + 4CrO3 = 3SO2↑ + 2Cr2O3
 

Задача 1086. 
В какой среде — кислой или щелочной наиболее выражены окислительные свойства хрома (VI)? восстановительные свойства хрома (III)? Чем это объясняется?
Решение:
а) Соединения хрома (VI) в кислых растворах проявляют свойства сильных окислителей:

Сг2О72- + 14Н+ + 6  = 2Сг3+ + 7Н2О;      Е° = -1,33 В

Хроматы в щелочной среде являются менее энергичными окислителями, чем бихроматы в кислой среде:

СгО42- +  4Н2О + 3   = Сг(ОН)3↓ + 5ОН− ;   Е° = – 0,13 В

В щелочной среде образуются соединения хроматы (монохроматы), соли хромовой кислоты H2CrO4 в кислой среде – бихроматы (дихроматы) – соли H2Cr2O7. 

С уменьшением рН (с изменением щелочной среды на кислую) хромат ион СгО42-переходит в бихромат-ион Сг2О72-, который обладает большей окислительной способностью.

б) Степень окисления хрома +3 является самой устойчивой, поэтому соединения хрома (III) являются слабыми окислителями и восстановителями, в щелочной среде — восстановительные свойства выражены сильнее:

Cr3+ + 4H2O -3  = СгО42- + 8H+

При взаимодействии с сильными окислителями соединения Сг3+ окисляются с образованием веществ, содержащих хром в степени окисления +6. Например, при сплавлении Сг2О3 с нитратом калия и карбонатом натрия образуется хромат натрия:

 +3                  +5                                               +6                 +3
Сг2О3 + 3KNO3 + Na2CO3 ⇒ 2Na2СгО4 + 3KNO2 + 2СО2↑

При взаимодействии с сильными восстановителями соединения Сг3+ восстанавливаются в соединения Сг2+.

Таким образом, хром в своей промежуточной степени окисления +3 проявляет как окислительные, так и восстановительные свойства. Восстановительные свойства Сг2+ выражены сильнее в щелочной среде, потому что гидролиз его солей протекает с образованием кислой среды.

Источник

В какой среде наиболее выражены окислительные свойства хрома

Элемент хром расположен в четвертом периоде и побочной подгруппе VI группы Периодической системы. Атом хрома имеет электронную конфигурацию $1s^22s^22p^63s^23p^63d^54s^1$. Обратите внимание на провал электрона: подобно другим элементам шестой группы в соединениях хром проявляет максимальную степень окисления +6, однако наиболее устойчив в более низкой степени окисления +3.

Элемент хром был обнаружен в природном минерале в конце XVIII века. Тогда же были получены его соли, яркая и разнообразная окраска которых и объясняет данное элементу название – оно происходит от греческого слова “chroma” – цвет, краска.

Нахождение в природе и получение

В природе встречается преимущественно в виде двойного оксида – хромистого железняка $FeCr_2O_4$, переработкой которого и получают металл. Восстановление хромистого железняка углем в электрических дуговых печах приводит к феррохрому – сплаву железа и хрома:

$FeCr_2O_4 + 4C xrightarrow[]{t, ^circ C} Fe + 2Cr + 4CO$

Содержание хрома в нем может достигать 70%. Феррохром используют для производства хромированной стали. Металл не содержащий железа получают восстановлением оксида алюминием:

$Cr_2O_3 + 2Al xrightarrow[]{t, ^circ C} Al_2O_3 + 2Cr$

Метод алюмотермии был разработан в конце XIX века как раз для производства хрома. Наиболее чистый хром получают электролизом растворов.

Физические свойства

В свободном виде хром – довольно тяжелый серебристо-белый  тугоплавкий (т. пл. $1875^0C$, т. кип. $2680^0C$) металл, обладающий высокой твердостью – он царапает стекло. Чистый хром пластичен, однако даже незначительные примеси кислорода, азота и углерода делают его хрупким. Такой металл при ударе молотком легко раскалывается. Значительное влияние даже ничтожного количества примесей на физические свойства характерно и для большинства других переходных металлов.

Химические свойства хрома

При комнатной температуре хром малоактивен. В отличие от железа он не окисляется и не тускнеет даже при хранении на влажном воздухе и в воде.  С этим качеством хрома связано его использование в борьбе с коррозией железа. Металлический хром используют в виде хромированного покрытия или добавляют при производстве нержавеющей стали. Лишь раскаленный до высокой температуры хром сгорает в кислороде с образованием темно-зеленого порошка оксида хрома(III): 

Читайте также:  Какие свойства механических волн

$4Cr + 3O_2 = 2Cr_2O_3$

. Выше 600°C хром реагирует с хлором и бромом, также давая соединения хрома(III).

Хотя в ряду напряжений хром расположен левее водорода, он не окисляется даже на влажном воздухе благодаря образованию на поверхности тонкой прозрачной пленки оксида. В разбавленных кислотах хром растворяется, образуя красивые ярко-синие растворы солей хрома(II), устойчивые лишь в отсутствие кислорода воздуха:

$Cr + 2HCl = CrCl_2 + H_2$

В присутствии кислорода воздуха образуются соли хрома (III):

$4Cr + 12HCl + 3O_2 = 4CrCl_3 + 6H_2O$

При комнатной температуре хром не реагирует с концентрированными растворами кислот-окислителей – серной и азотной. При нагревании с этими кислотами образуются соли хрома(III):

$2Cr + 6H2SO_{4textrm{(конц.)}} xrightarrow[]{t, ^circ C} Cr_2(SO_4)_3 + underline{3SO_2uparrow} + 6H_2O$

$Cr + 6HNO_{3textrm{(конц.)}} xrightarrow[]{t, ^circ C} Cr(NO_3)_3 + underline{3NO_2uparrow} + 3H_2O$

Подобно многим другим переходным металлам хром образует несколько рядов соединений, отвечающих различным степеням окисления.

СОЕДИНЕНИЯ ХРОМА(II)

Ярко-синие растворы солей хрома(II), образующиеся при растворении металла с разбавленных кислотах в атмосфере азота, на воздухе мгновенно окисляются до хрома(III), что сопровождается изменением окраски на серо-фиолетовую или зеленую:

$4CrCl_2 + O_2 + 4HCl = 4CrCl_3 + 2H_2O$

Cr2+ – e–  -> Cr3+           |1              4|                   окисление,  $CrCl_2$– восстановитель за счет Cr2+

O20 + 4e– -> 2O2–         |4               1|                 восстановление, O20 – окислитель

$4Cr^{2+} + O_2^0 = 4Cr^{3+} + 2O^{2–}$

Это свидетельствует о том, что хром в степени окисления +2 является сильным восстановителем.

При действии на соли хрома(II) растворами щелочей выпадает желтый осадок гидроксида, не реагирующий с избытком щелочи, то есть проявляющий основные свойства:

$CrCl_2 + 2NaOH = Cr(OH)_2downarrow+ 2NaCl$

 Соответствующий ему оксид CrO также является основным.

Соединения хрома(III)

Одно из важнейших соединений хрома(III) – оксид $Cr_2O_3$ – представляет собой темно-зеленый порошок, нерастворимый в воде. В природе он встречается в виде минерала хромовой охры. На основе этого вещества изготавливают полировальные пасты.

Оксид и гидроксид хрома(III) реагируют как с кислотами, так и с щелочами, что доказывает их амфотерность. При растворении гидроксида хрома в кислотах образуются соли хрома(III) окрашенные в темно-зеленый или в фиолетовый цвет:

$2Cr(OH)_3 + 3H_2SO_4 = Cr_2(SO_4)_3 + 6H_2O$

Из фиолетового раствора, полученного добавлением к раствору сульфата хрома(III) сульфата калия на холоду кристаллизуются темно-фиолетовые октаэдрические кристаллы хромокалиевых квасцов $KCr(SO_4)_2cdot12H_2O$ – двойного сульфата хрома-калия. Раньше их использовали для выделки кож. При действии на раствор хромокалиевых квасцов ортофосфата аммония выпадает зеленый осадок фосфата хрома(III) $CrPO_4$. Соли хрома(III) и слабых кислот – сероводородной, угольной, сернистой, кремниевой – не удается осадить из водных растворов вследствие полного необратимого гидролиза. Если к зеленому раствору хлорида хрома(III) прибавить раствор сульфида натрия наблюдается выделение сероводорода и выпадение серо-зеленого осадка гидроксида:

$2CrCl_3 + 3Na_2S + 6H_2O = 2Cr(OH)_3downarrow + 6NaCl + 3H_2S­uparrow$

При растворении гидроксида хрома(III) в щелочах образуются изумрудно-зеленые растворы хромитов:

$Cr(OH)_3 + 3KOH _{textrm{(водн.)}} = K_3[Cr(OH)_6]$

Сплавлением оксида хрома(III) с щелочами или карбонатами щелочных металлов получают хромиты другого состава, например, $NaCrO_2$:

$Cr_2O_3 + 2NaOH xrightarrow[]{t, ^circ C} 2NaCrO_2 + H_2O$

$Cr_2O_3 + Na_2CO_3 xrightarrow[]{t, ^circ C} 2NaCrO_2 + CO_2$

При действии кислот хромиты разрушаются:

  • при недостатке кислоты превращаясь в гидроксид хрома(III) $NaCrO_2 + HCl + H_2O = Cr(OH)_3downarrow + NaCl$

  • в избытке кислоты образуя соли $NaCrO_2 + 4HCl = CrCl_3 + NaCl + 2H_2O$

Степень окисления +3 для хрома наиболее устойчива, поэтому соединения хрома(III) могут быть восстановлены до хрома(II) лишь под действием сильных восстановителей: 

$2CrCl_3 + Zn = 2CrCl_2 + ZnCl2$

Сильные окислители, например, пероксид водорода или бром в щелочной среде переводят соединения хрома(III) в соединения хрома(VI):

$2Cr(OH)_3 + 3Br_2 + 10NaOH = 2Na_2CrO_4 + 6NaBr + 8H_2O$

 О протекании реакции свидетельствует появление желтого окрашивания раствора. Хроматы – это соли хромовой кислоты $H_2CrO_4$, известной лишь в разбавленных водных растворах.

СОЕДИНЕНИЯ ХРОМА(VI)

Хромат-ионы $CrO_4^{2-}$ устойчивы лишь в щелочной среде, а при подкислении переходят в оранжевые бихроматы, соли двухромовой кислоты $H_2Cr_2O_7$:

$2CrO_4^{2-}+  2H^+ leftrightarrow Cr_2O_7^{2–} + H_2O$

Реакция обратима, поэтому при добавлении щелочи желтая окраска хромата восстанавливается:

$Cr_2O_7^{2–} + 2OH^- leftrightarrow 2CrO_4^{2-}+  H_2O$

$textrm{оранжевый} Leftrightarrow textrm{желтый}$

$Cr_2O_7^{2–}  xrightarrow [OH^-]{H^+}CrO_4^{2-}$

$textrm{дихромат} Leftrightarrow textrm{хромат}$

Добавление к раствору бихромата калия $K_2Cr_2O_7$ концентрированной серной кислоты приводит к выделению ярко-красного осадка хромового ангидрида $CrO_3$:

$Na_2Cr_2O_7 + 2H_2SO_{4textrm{(конц.)}}= 2NaHSO_4 + 2CrO_3 + H_2O$

Оксид хрома(VI) является кислотным оксидом: с водой образует соответствующие кислоты:

$CrO_3 + H_2O = H_2CrO_4$

$2CrO_3 + H_2O = H_2Cr_2O_7$

Как типичный кислотный оксид $CrO_3$ реагирует с  щелочами и основными оксидами  с образованием хроматов:

$CrO_3 + BaO = BaCrO_4$

$CrO_3 + 2NaOH = Na_2CrO_4 + H_2O$

Соединения хрома(VI) – сильные окислители. Хромовый ангидрид воспламеняет этиловый спирт, легко окисляет многие органические вещества. Раствор бихромата калия в крепкой серной кислоте называют хромовой смесью. Ее часто применяют в химических лабораториях для мытья посуды. Благодаря входящему в ее состав бихромату хромовая смесь проявляет сильные окислительные свойства. Убедимся в этом на опыте. Пропустим через хромовую смесь сероводород. Оранжевая окраска раствора быстро сменяется на темно-зеленую, наблюдается выпадение осадка серы:

Читайте также:  Что такое информация какими свойствами она обладает

$3H_2S + K_2Cr_2O_7 + 4H2SO4 = 3S + Cr_2(SO_4)_3 + K_2SO_4 + 7H_2O$

Бихроматы проявляют окислительные свойства не только в растворах, но и в твердом виде. Так, при спекании с серой или углем они восстанавливаются:

$Na_2Cr_2O_7 + S xrightarrow[]{t, ^circ C}Na_2SO_4 + Cr_2O_3$

Эти реакции используют для получения оксида хрома(III).

Хроматы и бихроматы некоторых металлов используют в качестве желтых, красных и оранжевых пигментов.

Генетический ряд хрома

Изучение химии соединений хрома в различных степенях окисления позволяет проследить закономерности изменения кислотно-основных и окислительно-восстановительных свойств в ряду Cr(II) – Cr(III) – Cr(VI).

Запомнить! Оксид и гидроксид хрома(II) обладают основными свойствами, соединения хрома (III) амфотерны, а хрома(VI) – кислотные.

Соединения хрома(II) – типичные восстановители, а соединения хрома в высшей степени окисления – типичные окислители. Для соединений хрома(III) характерны и окислительные, и восстановительные свойства.

 Cr(II)   Cr(III)  Cr(VI)
 CrO    $Cr_2O_3$    $CrO_3$
$ Cr(OH)_2$ $Cr(OH)_3$ $ H_2CrO_4, H_2Cr_2O_7$

Соли – с кислотами

$Cr^{2+}$

Соли – с кислотами

$Cr^{3+}$

Гидроксокомплексы: 

$[Cr(OH)_6]^{3-}$

Хроматы

$Na_2CrO_4$

Дихроматы

$K_2Cr_2O_7$

основный характерамфотерный характеркислотный характер
типичные восстановителимогут проявлять и окислительные и восстановительные свойстватипичные окислители

$xrightarrow[]{textrm{кислотные свойства возрастают}}$

$xleftarrow[]{textrm{ восстановительные свойства возрастают}}$

Восстановительные свойства хрома(II) ярче всего проявляются в кислой среде, а окислительные свойства хрома(VI) – в щелочной.

Все соединения хрома, особенно в высшей степени окисления, ядовиты!

Источник

Задача 1085. 
Для каких соединений хрома характерны окислительные свойства? Привести примеры реакций, в которых проявляются эти свойства.
Решение:
а) В соединениях хрома (II) атомы хрома находятся в своей степени окисления +2, поэтому они способны понижать степень окисления с +2 до 0, т.е. проявлять окислительные свойства.
Восстанавливается водородом до металлического хрома при 1000°С:

CrO + H2 ⇒ Cr + H2O

Также можно восстановить коксом:

CrO + C ⇒ Cr + CO

б) Соединения Cr3+ наиболее устойчивая степень окисления хрома. Для соединений хрома(III) характерны окислительные и восстановительные свойства, потому что он находится в своей промежуточной степени окисления +3. хром(III) способен уменьшать свою степень окисления с +3 до +2, например:
Реакция алюмотермии:

 2Al + Сг2О3 ⇒ 2Cr + Al2O3

Силикотермическое восстановление основано на реакции:

2Cr2O3 + 3Si + 3CaO = 4Cr + 3CaSiO3

Восстановлением безводного хлорида хрома(III) водородом при 450° С:

2CrCl3 + H2 = 2CrCl2 + 2HCl

Восстановление хлорида хрома(III) цинком в присутствии соляной кислоты:

2CrCl3 + 3Zn + 4HCl = 2CrCl2 + 3ZnCl2 + 2H2↑

в) Соединения хрома(VI) — сильные окислители, например:

K2Cr2O7 + 14HCl = 3Cl2↑ + 2CrCl3 + 2KCl + 7H2O.

В кислой среде хром восстанавливается сульфитом натрия от хрома (VI) до хрома (III):

K2Cr2O7 + 3Na2SO3 + 4H2SO4 = K2SO4 + Cr2(SO4)3 + 3Na2SO4 + 4H2O.

Разложение дихромата аммония:

(NH4)2Cr2O7  ⇒ Cr2O3 + N2↑ + 4H2O

В кислотной среде соединения Сr+6 переходят в соединения Сr+3 под действием восстановителей: H2S, SO2, FeSO4

K2Cr2O7 + 3Н2S +4Н2SО4 = 3S + Сr2(SО4)3 + K2SO4  + 7Н2О

Оксид хрома (VI) – очень сильный окислитель, поэтому энергично взаимодействует с органическими веществами:

С2Н5ОН + 4СrО3 = 2СО2↑ + 2Сr2О3 + 3Н2О

Окисляет также иод, серу, фосфор, уголь:

3S + 4CrO3 = 3SO2↑ + 2Cr2O3
 

Задача 1086. 
В какой среде — кислой или щелочной наиболее выражены окислительные свойства хрома (VI)? восстановительные свойства хрома (III)? Чем это объясняется?
Решение:
а) Соединения хрома (VI) в кислых растворах проявляют свойства сильных окислителей:

Сг2О72- + 14Н+ + 6  = 2Сг3+ + 7Н2О;      Е° = -1,33 В

Хроматы в щелочной среде являются менее энергичными окислителями, чем бихроматы в кислой среде:

СгО42- +  4Н2О + 3   = Сг(ОН)3↓ + 5ОН− ;   Е° = – 0,13 В

В щелочной среде образуются соединения хроматы (монохроматы), соли хромовой кислоты H2CrO4 в кислой среде – бихроматы (дихроматы) – соли H2Cr2O7. 

С уменьшением рН (с изменением щелочной среды на кислую) хромат ион СгО42-переходит в бихромат-ион Сг2О72-, который обладает большей окислительной способностью.

б) Степень окисления хрома +3 является самой устойчивой, поэтому соединения хрома (III) являются слабыми окислителями и восстановителями, в щелочной среде — восстановительные свойства выражены сильнее:

Cr3+ + 4H2O -3  = СгО42- + 8H+

При взаимодействии с сильными окислителями соединения Сг3+ окисляются с образованием веществ, содержащих хром в степени окисления +6. Например, при сплавлении Сг2О3 с нитратом калия и карбонатом натрия образуется хромат натрия:

 +3                  +5                                               +6                 +3
Сг2О3 + 3KNO3 + Na2CO3 ⇒ 2Na2СгО4 + 3KNO2 + 2СО2↑

При взаимодействии с сильными восстановителями соединения Сг3+ восстанавливаются в соединения Сг2+.

Таким образом, хром в своей промежуточной степени окисления +3 проявляет как окислительные, так и восстановительные свойства. Восстановительные свойства Сг2+ выражены сильнее в щелочной среде, потому что гидролиз его солей протекает с образованием кислой среды.

Источник

Общая химия

Автор Н.Л.Глинка

ся равновесие

Сг20|” + 14Н+ + 6е~ +=± 2Сг3+ + 7Н20

а в щелочной

[Сг(ОН)6]3′ 4- 20Н” CrOj” + 4Н20 4-3Однако и в кислой, и в щелочной среде окисление хрома(III) приводит к уменьшению рН раствора; обратный же процесс — восПриведем несколько примеров окислительно-восстановительных реакций, протекающих при участии дихроматов.

Читайте также:  Какие свойства имеют элементарные частицы

1. При пропускании сероводорода через подкисленный серной

кислотой раствор дихромата оранжевая окраска раствора пере-

ходит в зеленую и одновременно жидкость становится мутной

вследствие выделения серы:

K2Cr207 -f 3H2S + 4H2S04 = Cr2(S04)3 + 3S| + K2S04 + 7H2G

2. При действии концентрированной соляной кислоты на ди-

хромат калия выделяется хлор и получается зеленый раствор, со-

держащий хлорид хрома(III):

К2Сг207 + I4HC1 = 2СгС13 + ЗС12| + 2КХ1 + 7Н20

3. Если пропускать диоксид серы через концентрированный

раствор дихромата калия, содержащий достаточное количество

серной кислоты, то образуются эквимолекулярные количества суль-

фатов калия и хрома (III):

K2Cr207 -f 3SOa + H2S04 = Cr2(S04)3 + K2so4 + н2о

При выпаривании раствора из него выделяются хромокалиевые квасцы KCr(S04h* 12Н20. Этой реакцией пользуются для получения хромокалиевых квасцов в промышленности.

Наиболее важными из дихроматов являются дихромат калия К2О2О7 и дихромат натрия Na2Cr207*2H20, образующие оранжево-красные кристаллы. Обе соли, известные также под названием хромпиков, широко применяются в качестве окислителей при производстве многих органических соединений, в кожевенной промышленности при дублении кож, в спичечной и текстильной промышленности. Смесь концентрированной серной кислоты с водным раствором дихромата калия или натрия под названием «хромовой смеси» часто применяется для энергичного окисления и для очистки химической посуды.

Все соли хромовых кислот ядовиты.

Триоксид хрома, или хромовый ангидрид, Сг03 выпадает в виде темно-красных игольчатых кристаллов при действии концентрированной серной кислоты на насыщенный раствор дихромата калия или натрия:

К2Сг207 -f H2S04 = 2Сг03| 4- K2S04 4- Н20

Хромовый ангидрид принадлежит к числу наиболее сильных окислителей. Например, этиловый спирт при соприкосновении с ним воспламеняется. Производя окисление, хромовый ангидрид превращается в оксид хрома (III) .Сг203.

Хромовый ангидрид легко растворяется в воде с образованием хромовой и двухромовой кислот.

229. Молибден (Moiibdenium). Главным природным соединением молибдена является молибденит, или молибденовый блеск, M0S2 — минерал, очень похожий по внешнему виду на графит и долгое время считавшийся таковым. В 1778 г. Шееле, показал, что при обработке молибденового блеска азотной кислотой получается белый остаток, обладающий свойствами кислоты. Шееле назвал его молибденовой кислотой и сделал заключение, что сам минерал представляет собой сульфид нового элемента. Пять лет спустя этот элемент был получен в свободном состоянии путем прокаливания молибденовой кислоты с древесным углем.

Общее содержание молибдена в земной коре составляет 0,001 % (масс.). Залежи молибденовых руд имеются в СССР, Чили, Мексике, Норвегии и Марокко. Большие запасы молибдена содержатся в сульфидных медных рудах.

Для получения металлического молибдена из молибденового блеска последний переводят обжигом в Мо03, из которого металл восстанавливают водородом. При этом молибден получается в виде порошка.

Компактный молибден получают главным образом методом порошковой металлургии. Этот способ состоит из прессования порошка в заготовку и спекания заготовки.

При прессовании порошка из него получают заготовки — тела определенной формы, обычно — бруски (штабики). Штабики молибдена получают в стальных пресс-формах при давлении до 300 МПа. Спекание штабиков в атмосфере водорода проводят в две стадии. Первая из них — предварительное спекание — проводится при 1100—1200 °С и имеет целью повысить прочность и электрическую проводимость штабиков. Вторая стадия — высокотемпературное спекание — осуществляется пропусканием электрического тока, постепенно нагревающего штабики до 2200—2400 °С. При этом получается компактный металл. Спеченные штабики поступают на механическую обработку — ковку, протяжку.

Для получения крупных заготовок молибдена применяют дуговую плавку, позволяющую получать слитки массой до 2000 кг. Плавку в дуговых печах ведут в вакууме. Между катодом (пакет спеченных штабиков молибдена) и анодом (

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В

третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.

Источник