В какой среде кислой или щелочной наиболее выражены окислительные свойства хрома

Задача 1085. 
Для каких соединений хрома характерны окислительные свойства? Привести примеры реакций, в которых проявляются эти свойства.
Решение:
а) В соединениях хрома (II) атомы хрома находятся в своей степени окисления +2, поэтому они способны понижать степень окисления с +2 до 0, т.е. проявлять окислительные свойства.
Восстанавливается водородом до металлического хрома при 1000°С:

CrO + H2 ⇒ Cr + H2O

Также можно восстановить коксом:

CrO + C ⇒ Cr + CO

б) Соединения Cr3+ наиболее устойчивая степень окисления хрома. Для соединений хрома(III) характерны окислительные и восстановительные свойства, потому что он находится в своей промежуточной степени окисления +3. хром(III) способен уменьшать свою степень окисления с +3 до +2, например:
Реакция алюмотермии:

 2Al + Сг2О3 ⇒ 2Cr + Al2O3

Силикотермическое восстановление основано на реакции:

2Cr2O3 + 3Si + 3CaO = 4Cr + 3CaSiO3

Восстановлением безводного хлорида хрома(III) водородом при 450° С:

2CrCl3 + H2 = 2CrCl2 + 2HCl

Восстановление хлорида хрома(III) цинком в присутствии соляной кислоты:

2CrCl3 + 3Zn + 4HCl = 2CrCl2 + 3ZnCl2 + 2H2↑

в) Соединения хрома(VI) — сильные окислители, например:

K2Cr2O7 + 14HCl = 3Cl2↑ + 2CrCl3 + 2KCl + 7H2O.

В кислой среде хром восстанавливается сульфитом натрия от хрома (VI) до хрома (III):

K2Cr2O7 + 3Na2SO3 + 4H2SO4 = K2SO4 + Cr2(SO4)3 + 3Na2SO4 + 4H2O.

Разложение дихромата аммония:

(NH4)2Cr2O7  ⇒ Cr2O3 + N2↑ + 4H2O

В кислотной среде соединения Сr+6 переходят в соединения Сr+3 под действием восстановителей: H2S, SO2, FeSO4

K2Cr2O7 + 3Н2S +4Н2SО4 = 3S + Сr2(SО4)3 + K2SO4  + 7Н2О

Оксид хрома (VI) – очень сильный окислитель, поэтому энергично взаимодействует с органическими веществами:

С2Н5ОН + 4СrО3 = 2СО2↑ + 2Сr2О3 + 3Н2О

Окисляет также иод, серу, фосфор, уголь:

3S + 4CrO3 = 3SO2↑ + 2Cr2O3
 

Задача 1086. 
В какой среде — кислой или щелочной наиболее выражены окислительные свойства хрома (VI)? восстановительные свойства хрома (III)? Чем это объясняется?
Решение:
а) Соединения хрома (VI) в кислых растворах проявляют свойства сильных окислителей:

Сг2О72- + 14Н+ + 6  = 2Сг3+ + 7Н2О;      Е° = -1,33 В

Хроматы в щелочной среде являются менее энергичными окислителями, чем бихроматы в кислой среде:

СгО42- +  4Н2О + 3   = Сг(ОН)3↓ + 5ОН− ;   Е° = – 0,13 В

В щелочной среде образуются соединения хроматы (монохроматы), соли хромовой кислоты H2CrO4 в кислой среде – бихроматы (дихроматы) – соли H2Cr2O7. 

С уменьшением рН (с изменением щелочной среды на кислую) хромат ион СгО42-переходит в бихромат-ион Сг2О72-, который обладает большей окислительной способностью.

б) Степень окисления хрома +3 является самой устойчивой, поэтому соединения хрома (III) являются слабыми окислителями и восстановителями, в щелочной среде — восстановительные свойства выражены сильнее:

Cr3+ + 4H2O -3  = СгО42- + 8H+

При взаимодействии с сильными окислителями соединения Сг3+ окисляются с образованием веществ, содержащих хром в степени окисления +6. Например, при сплавлении Сг2О3 с нитратом калия и карбонатом натрия образуется хромат натрия:

 +3                  +5                                               +6                 +3
Сг2О3 + 3KNO3 + Na2CO3 ⇒ 2Na2СгО4 + 3KNO2 + 2СО2↑

При взаимодействии с сильными восстановителями соединения Сг3+ восстанавливаются в соединения Сг2+.

Таким образом, хром в своей промежуточной степени окисления +3 проявляет как окислительные, так и восстановительные свойства. Восстановительные свойства Сг2+ выражены сильнее в щелочной среде, потому что гидролиз его солей протекает с образованием кислой среды.

Источник

7. Химические свойства соединений хрома с точки зрения изменения степеней окисления

Правило7.1. В зависимости от среды хроматы и дихроматы переходят друг в друга:

1. В кислой среде хроматы (желтого цвета) превращаются в дихроматы (оранжевого цвета):

2K2CrO4 + H2SO4 → K2Cr2O7 + K2SO4 + H2O

2. В щелочной среде дихроматы превращаются в хроматы:

K2Cr2O7 + 2KOH → 2K2CrO4 + H2O

В кислой среде без восстановителя выпадает осадок CrO3 (темно-красные кристаллы, растворимые в воде):

K2Cr2O7 + 2H2SO4(к) → 2CrO3 + 2KHSO4 + H2O

3. Термическое разложение дихромата калия также приводит к образованию хромата:

K2Cr2O7 → K2CrO4 + Cr2O3 + O2­

Правило 7.2. В реакциях соединний Cr+3 с избытком щелочи образуются гексагидроксохроматы(III):

Cr2(SO4)3 + 6KOH → 2Cr(OH)3 + 3K2SO4 или в избытке щелочи:

Cr2(SO4)3 + 12KOH → 2Na3[Cr(OH)6] + 3K2SO4

Правило7.3. Хроматы металлов являются  сильными окислителями, восстанавливаясь в реакциях до ст. ок. +3:

2K2CrO4 + 3H2S + 2H2O → 2Cr(OH)3 + 3S + 4KOH

2K2CrO4 + 3NaNO2 + 5H2O → 2Cr(OH)3 + 3NaNO3 + 4KOH

Правило 7.4. Дихроматы металлов также являются сильными окислителями, восстанавливаясь в реакциях также до ст. ок. +3:

Восстановление дихроматов до Cr+3 в кислой среде:

K2Cr2O7 + 14HCl(конц.) → 3Cl2­ + 2CrCl3 +2KCl + 7H2O

K2Cr2O7 + 14HI → 3I2 + 2CrI3 + 2KI + 7H2O

Na2Cr2O7 + 6NaI + 7H2SO4 → Cr2(SO4)3 + 3I2 + 4Na2SO4 + 7H2O

K2Cr2O7 + 3KNO2 + 8HNO3 → 2Cr(NO3)3 + 5KNO3 + 4H2O

K2Cr2O7 + 3K2SO3 + 4H2SO4 → Cr2(SO4)3 + 4K2SO4 + 4H2O

K2Cr2O7 + 6FeSO4 + 7H2SO4 → Cr2(SO4)3 + 3Fe2(SO4)3 + K2SO4 + 7H2O

Na2Cr2O7 + 6CrCl2 + 14HCl → 8CrCl3 + 2NaCl + 7H2O

Na2Cr2O7 + 3H2S + 4H2SO4 → Cr2(SO4)3 + 3S + Na2SO4 + 7H2O

K2Cr2O7 + 3Na2S + 7H2SO4 → Cr2(SO4)3 + 3S + K2SO4 + 3Na2SO4 + 7H2O

K2Cr2O7 + 3(NH4)2S + 7H2SO4 → Cr2(SO4)3 + 3S + K2SO4 + 3(NH4)2SO4 + 7H2O или

4K2Cr2O7 + 3(NH4)2S + 16H2SO4 → 4Cr2(SO4)3+ 4K2SO4 + 3(NH4)2SO4 + 16H2O

K2Cr2O7 + 3SO2 + H2SO4 → Cr2(SO4)3 + K2SO4 + H2O

K2Cr2O7 + 3H2O2 + 4H2SO4 → Cr2(SO4)3 + 3O2­ + K2SO4 + 7H2O

4K2Cr2O7 + 3PH3 + 16H2SO4 → 4Cr2(SO4)3 + 4K2SO4 + 3H3PO4 + 16H2O

K2Cr2O7 + NH3 + H2SO4 → K2SO4 + Cr2(SO4)3 + N2­ + H2O

Если окислять нечего, то изменения степени окисления не происходит:

K2Cr2O7 + H2SO4(конц.) → 2CrO3 + K2SO4 + H2O

Восстановление дихроматов до Cr+3 в нейтральной среде:

K2Cr2O7 + 3Na2SO3 + 4H2O → 2Cr(OH)3 + 3Na2SO4 + 2KOH

K2Cr2O7 + 3H2S + H2O → 2Cr(OH)3 + 3S + 2KOH

K2Cr2O7 + 3(NH4)2S + H2O → 2Cr(OH)3 + 3S + 6NH3 + 2KOH

Восстановление дихроматов углеродом:

2K2Cr2O7 + 3С → 2Cr2O3 + 2K2CO3 + CO2­

Оксид хрома (VI) также является сильным окислителем:

2CrO3 + 3KNO2 + 3H2SO4 → Cr2(SO4)3 + 3KNO3 + 3H2O

Правило 7.5. Соединения Cr+3 (зеленого цвета) окисляются сильными окислителями в щелочной среде до хроматов с Cr+6 (желтого цвета):

2K3[Cr(OH)6] + 3Cl2 + 4KOH → 2K2CrO4 + 6KCl + 8H2O

2Cr(NO3)3 + O3 + 10KOH → 2K2CrO4 + 6KNO3 + 5H2O

Cr2(SO4)3 + 6KMnO4 + 16KOH → 2K2CrO4 + 6K2MnO4 + 3K2SO4 + 8H2O

Cr2(SO4)3 + 3H2O2 + 10NaOH → 2Na2CrO4 + 3Na2SO4 + 8H2O

Cr2(SO4)3 + 3Cl2 + 16KOH → 2K2CrO4 + 6KCl + 3K2SO4 + 8H2O

2CrCl3 + KClO3 + 10KOH → 2K2CrO4 + 7KCl + 5H2O

2NaCrO2 + 3H2O2 + 2NaOH → 2Na2CrO4 + 4H2O

2NaCrO2 + 3Br2 + 8NaOH → 2Na2CrO4 + 6NaBr + 4H2O

Cr2O3 + 3KNO3 + 4KOH → 2K2CrO4 + KNO2 + H2O

Cr2O3 + NaClO3 + 2K2CO3 → 2K2CrO4 + NaCl + 2CO2­

Cr2O3 + 4Na2CO3 + 3O2 → 4Na2CrO4 + 4CO2­

2Cr(OH)3 + 3Cl2 + 10KOH → 2K2CrO4 + 6KCl + 8H2O

2Cr(OH)3 + KClO3 + 4NaOH → 2Na2CrO4 + KCl + 5H2O

2Cr(OH)3 + 3H2O2 + 4NaOH → 2Na2CrO4 + 8H2O

Перекись водорода является достаточно сильным окислителем, чтобы окислить Cr+3 до Cr+6:

2K3[Cr(OH)6] + 3H2O2 → 2K2CrO4 + 2KOH + 8H2O

Правило 7.6. Соединения Cr+2 окисляются до соединений Cr+3 такими окислителями, как H2SO4(конц), дихроматы или нитриты в кислой среде:

2CrCl2 + 4H2SO4(конц.) → Cr2(SO4)3 + SO2 + 4HCl + 2H2O

6CrCl2 + K2Cr2O7 + 14HCl → 8CrCl3 + 2KCl + 7H2O.

Источник

Задача 1085. 
Для каких соединений хрома характерны окислительные свойства? Привести примеры реакций, в которых проявляются эти свойства.
Решение:
а) В соединениях хрома (II) атомы хрома находятся в своей степени окисления +2, поэтому они способны понижать степень окисления с +2 до 0, т.е. проявлять окислительные свойства.
Восстанавливается водородом до металлического хрома при 1000°С:

CrO + H2 ⇒ Cr + H2O

Также можно восстановить коксом:

CrO + C ⇒ Cr + CO

б) Соединения Cr3+ наиболее устойчивая степень окисления хрома. Для соединений хрома(III) характерны окислительные и восстановительные свойства, потому что он находится в своей промежуточной степени окисления +3. хром(III) способен уменьшать свою степень окисления с +3 до +2, например:
Реакция алюмотермии:

 2Al + Сг2О3 ⇒ 2Cr + Al2O3

Силикотермическое восстановление основано на реакции:

2Cr2O3 + 3Si + 3CaO = 4Cr + 3CaSiO3

Восстановлением безводного хлорида хрома(III) водородом при 450° С:

2CrCl3 + H2 = 2CrCl2 + 2HCl

Восстановление хлорида хрома(III) цинком в присутствии соляной кислоты:

2CrCl3 + 3Zn + 4HCl = 2CrCl2 + 3ZnCl2 + 2H2↑

в) Соединения хрома(VI) — сильные окислители, например:

K2Cr2O7 + 14HCl = 3Cl2↑ + 2CrCl3 + 2KCl + 7H2O.

В кислой среде хром восстанавливается сульфитом натрия от хрома (VI) до хрома (III):

K2Cr2O7 + 3Na2SO3 + 4H2SO4 = K2SO4 + Cr2(SO4)3 + 3Na2SO4 + 4H2O.

Разложение дихромата аммония:

(NH4)2Cr2O7  ⇒ Cr2O3 + N2↑ + 4H2O

В кислотной среде соединения Сr+6 переходят в соединения Сr+3 под действием восстановителей: H2S, SO2, FeSO4

K2Cr2O7 + 3Н2S +4Н2SО4 = 3S + Сr2(SО4)3 + K2SO4  + 7Н2О

Оксид хрома (VI) – очень сильный окислитель, поэтому энергично взаимодействует с органическими веществами:

С2Н5ОН + 4СrО3 = 2СО2↑ + 2Сr2О3 + 3Н2О

Окисляет также иод, серу, фосфор, уголь:

3S + 4CrO3 = 3SO2↑ + 2Cr2O3
 

Задача 1086. 
В какой среде — кислой или щелочной наиболее выражены окислительные свойства хрома (VI)? восстановительные свойства хрома (III)? Чем это объясняется?
Решение:
а) Соединения хрома (VI) в кислых растворах проявляют свойства сильных окислителей:

Сг2О72- + 14Н+ + 6  = 2Сг3+ + 7Н2О;      Е° = -1,33 В

Хроматы в щелочной среде являются менее энергичными окислителями, чем бихроматы в кислой среде:

СгО42- +  4Н2О + 3   = Сг(ОН)3↓ + 5ОН− ;   Е° = – 0,13 В

В щелочной среде образуются соединения хроматы (монохроматы), соли хромовой кислоты H2CrO4 в кислой среде – бихроматы (дихроматы) – соли H2Cr2O7. 

С уменьшением рН (с изменением щелочной среды на кислую) хромат ион СгО42-переходит в бихромат-ион Сг2О72-, который обладает большей окислительной способностью.

б) Степень окисления хрома +3 является самой устойчивой, поэтому соединения хрома (III) являются слабыми окислителями и восстановителями, в щелочной среде — восстановительные свойства выражены сильнее:

Cr3+ + 4H2O -3  = СгО42- + 8H+

При взаимодействии с сильными окислителями соединения Сг3+ окисляются с образованием веществ, содержащих хром в степени окисления +6. Например, при сплавлении Сг2О3 с нитратом калия и карбонатом натрия образуется хромат натрия:

 +3                  +5                                               +6                 +3
Сг2О3 + 3KNO3 + Na2CO3 ⇒ 2Na2СгО4 + 3KNO2 + 2СО2↑

При взаимодействии с сильными восстановителями соединения Сг3+ восстанавливаются в соединения Сг2+.

Таким образом, хром в своей промежуточной степени окисления +3 проявляет как окислительные, так и восстановительные свойства. Восстановительные свойства Сг2+ выражены сильнее в щелочной среде, потому что гидролиз его солей протекает с образованием кислой среды.

Источник

Реакции в кислотной среде.

В кислотной среде соединения Сr+6 переходят в соединения Сr+3 под действием восстановителей: H2S, SO2, FeSO4

· К2Сr2О7 +3Н2S +4Н2SО4 = 3S + Сr2(SО4)3 + K2SO4+ 7Н2О

· S-2 – 2e → S0

· 2Cr+6 + 6e → 2Cr+3

Задание:

1. Уравнять уравнение реакции методом электронного баланса, указать окислитель и восстановитель:

· Na2CrO4 + K2S + H2SO4 = S + Cr2(SO4)3 + K2SO4 + Na2SO4 + H2O

2. Дописать продукты реакции, уравнять уравнение методом электронного баланса, указать окислитель и восстановитель:

· K2Cr2O7 + SO2 + H2SO4 = ? +? +Н2О

Реакции в щелочной среде.

В щелочной среде соединения хрома Сr+3 переходят в соединения Сr+6 под действием окислителей: J2, Br2, Cl2, Ag2O, KClO3, H2O2, KMnO4:

· 2KCrO2 +3 Br2 +8NaOH =2Na2CrO4 + 2KBr +4NaBr + 4H2O

· Cr+3 – 3e → Cr+6

· Br20 +2e → 2Br-

Задание:

Уравнять уравнение реакции методом электронного баланса, указать окислитель и восстановитель:

· NaCrO2 + J2 + NaOH = Na2CrO4 + NaJ + H2O

Дописать продукты реакции, уравнять уравнение методом электронного баланса, указать окислитель и восстановитель:

· Cr(OH)3 + Ag2O + NaOH = Ag + ? + ?

Таким образом, окислительные свойства последовательно усиливаются с изменением степеней окисления в ряду: Cr+2→ Сr+3 → Сr+6. Соединения хрома (2) – сильные восстановители, легко окисляются, превращаясь в соединения хрома (3). Соединения хрома (6) – сильные окислители, легко восстанавливаются в соединения хрома (3). Соединения хрома (3) при взаимодействии с сильными восстановителями проявляют окислительные свойства, переходя в соединения хрома (2), а при взаимодействии с сильными окислителями проявляют восстановительные свойства, превращаясь в соединеня хрома (6)

2. напишите уравнения химических реакций с помощью которых можно осуществить следующие превращения:

· Cr→ CrCl2→ Cr(OH)2→ Cr(OH)3→ Cr(NO3)3→ Cr2O3→ Cr

· Cr →Cr(NO3)3→ Cr(OH)3→ K3[Cr(OH)6]→ Cr(OH)3→ CrCl3

· Cr2(SO4)3→ Cr(OH)3→ CrCl3

·

Марганец

Соединения двухвалентного марганца.

Соли двухвалентного марганца можно получить при растворении в разбавленных кислотах:

Mn+2HCl = MnCl2+H2

При растворении в воде образуется гидроксид Mn(II): Mn+2HOH = Mn(OH)2+H2

Гидроксид марганца можно получить в виде белого осадка при действии на растворы солей двухвалентного марганца щелочью:

MnSO4+2NaOH = Mn(OH)2 +NaSO4

Соединения Mn(II) на воздухе неустойчивы, и Mn(OH)2 на воздухе быстро буреет, превращаясь в оксид-гидроксид четырёхвалентного марганца.

2Mn(OH)2+O2 = MnO(OH)2

Гидроксид марганца проявляет только основные свойства и не реагирует со щелочами, а при взаимодействии с кислотами даёт соответствующие соли.

Mn(OH)2+2HCl = MnCl2+2H2O

Оксид марганца может быть получен при разложении карбоната марганца:

MnCO3 = MnO+CO2

Либо при восстановлении диоксида марганца водородом:

MnO2+H2 = MnO+H2O

Соединения четырёхвалентного марганца.

Из соединений четырёхвалентного марганца наиболее известен диоксид марганца MnO2 – пиролюзит. Поскольку валентность IV является промежуточной, соединения Mn (VI) образуются как при окислении двухвалентного марганца.

Mn(NO3)2 = MnO2+2NO2

Так и при восстановлении соединений марганца в щелочной среде:

3K2MnO4+2H2O = 2KMnO4+MnO2+4KOH

Последняя реакция является примером реакции самоокисления – самовосстановления, для которых характерно то, что часть атомов одного и того же элемента окисляется, восстанавливая одновременно оставшиеся атомы того же элемента:

Mn6++2e=Mn4+ 1

Mn6+-e=Mn7+ 2

В свою очередь MnО2 может окислять галогениды и галоген водороды, например HCl:

MnO2+4HCl = MnCl2+Cl2+2H2O

Диоксид марганца – твёрдое порошкообразное вещество. Он проявляет как основные, так и кислотные свойства.

Соединения шестивалентного марганца.

При сплавлении MnO2 со щелочами в присутствии кислорода, воздуха или окислителей получают соли шестивалентного Марганца, называемые манганатами.

MnO2+2KOH+KNO3 = K2MnO2+KNO2+H2O

Сама марганцевая кислота, как и соответствующей ей триоксид марганца MnO3, в свободном виде не существует вследствии неустойчивости к процессам окисления – восстановления. Замена протона в кислоте на катион металла приводит к устойчивости манганатов, но их способность к процессам окисления – восствновления сохраняется. Растворы манганатов окрашены в зелёный цвет. При их подкислении образуется марганцеватая кислота,разлагается до соединений марганца четырёхвалентного и семивалентного.

Сильные окислители переводят марганец шестивалентный в семивалентный.

2K2MnO4+Cl22 = 2KMnO4+2KCl

Соединения семивалентного марганца.

В семивалентном состоянии марганец проявляет только окислительные свойства. Среди применяемых в лабораторной практике и в промышленности окислителей широко применяется перманганат калия KMnO2, в быту называемый марганцовкой. Перманганат калия представляет собой кристаллы чёрно-фиолетового цвета. Водные растворы окрашены в фиолетовый цвет, характерный для иона MnO4-.

Перманганаты являются солями марганцевой кислоты, которая устойчива только в разбавленных растворах (до 20%). Эти растворы могут быть получены действием сильных окислителей на соединения марганца двухвалентного:

2Mn(NO3) 2+PbO2+6HNO3 = 2HMnO4+5Pb(NO3) 2+2H2O

При концентрации HMnO4 выше 20% происходит разложение её по уравнению:

4HMnO4 = 4MnO+3O2 +2H2O

Соответствующий марганцевой кислоте марганцевый ангидрид, или оксид марганца (VII), Mn2O7 может быть получен путем воздействия концентрированной серной кислоты на перманганат калия. Этот оксид является ещё более сильным окислителем, чем HMnO4 и KMnO4. Органические соединения при с Mn2O2 самовоспламеняются. При растворении Mn2O2 в воде образуется марганцевая кислота. Из-за неустойчивости и крайне высокой реакционной способности Mn2O2 не применяют, а вместо него используют твердые перманганаты.

В зависимости от среды перманганат калия может восстанавливаться до различных соединений.

При нагревании сухого перманганата калия до температуры выше 200 ОС он разлагается.

2KMnO4 = K2MnO4 + MnO2 + O2

Этой реакцией в лаборатории иногда пользуются для получения кислорода.

Характерные степени окисления марганца: 0, +2, +3, +4, +6, +7 (степени окисления +1, +5 малохарактерны).

При окислении на воздухе пассивируется. Порошкообразный марганец сгорает в кислороде:

{displaystyle {mathsf {Mn+O_{2}rightarrow MnO_{2}}}}

Марганец при нагревании разлагает воду, вытесняя водород:

{displaystyle {mathsf {Mn+2H_{2}O{xrightarrow[{}]{^{o}t}}Mn(OH)_{2}+H_{2}uparrow }}}При этом слой образующегося гидроксида марганца замедляет реакцию.

Марганец поглощает водород, с повышением температуры его растворимость в марганце увеличивается. При температуре выше 1200 °C взаимодействует с азотом, образуя различные по составу нитриды.

Углерод реагирует с расплавленным марганцем, образуя карбиды Mn3C и другие. Образует также силициды, бориды, фосфиды.{displaystyle {mathsf {3Mn+8HNO_{3}rightarrow 3Mn(NO_{3})_{2}+2NOuparrow +4H_{2}O}}}

В щелочном растворе марганец устойчив.

Марганец образует следующие оксиды: MnO, Mn2O3, MnO2, MnO3 (не выделен в свободном состоянии) и марганцевый ангидрид Mn2O7.

Mn2O7 в обычных условиях жидкое маслянистое вещество тёмно-зелёного цвета, очень неустойчивое; в смеси с концентрированной серной кислотой воспламеняет органические вещества. При 90 °C Mn2O7 разлагается со взрывом. Наиболее устойчивы оксиды Mn2O3 и MnO2, а также комбинированный оксид Mn3O4 (2MnO·MnO2, или соль Mn2MnO4).

При сплавлении оксида марганца (IV) (пиролюзит) со щелочами в присутствии кислорода образуются манганаты:

{displaystyle {mathsf {2MnO_{2}+4KOH+O_{2}rightarrow 2K_{2}MnO_{4}+2H_{2}O}}}Раствор манганата имеет тёмно-зелёный цвет. При подкислении протекает реакция:

{displaystyle {mathsf {3K_{2}MnO_{4}+3H_{2}SO_{4}rightarrow 3K_{2}SO_{4}+2HMnO_{4}+MnO(OH)_{2}downarrow +H_{2}O}}}Раствор окрашивается в малиновый цвет из-за появления аниона MnO4−, и из него выпадает коричневый осадок оксида-гидроксида марганца (IV).

Марганцевая кислота очень сильная, но неустойчивая, её невозможно сконцентрировать более, чем до 20 %. Сама кислота и её соли (перманганаты) — сильные окислители. Например, перманганат калия в зависимости от pH раствора окисляет различные вещества, восстанавливаясь до соединений марганца разной степени окисления. В кислой среде — до соединений марганца (II), в нейтральной — до соединений марганца (IV), в сильно щелочной — до соединений марганца (VI).

При прокаливании перманганаты разлагаются с выделением кислорода (один из лабораторных способов получения чистого кислорода). Реакция идёт по уравнению (на примере перманганата калия):

{displaystyle {mathsf {2KMnO_{4}{xrightarrow[{}]{^{0}t}}K_{2}MnO_{4}+MnO_{2}+O_{2}}}}Под действием сильных окислителей ион Mn2+ переходит в ион MnO4−:

{displaystyle {mathsf {2MnSO_{4}+5PbO_{2}+6HNO_{3}rightarrow 2HMnO_{4}+2PbSO_{4}+3Pb(NO_{3})_{2}+2H_{2}O}}}Эта реакция используется для качественного определения Mn2+ (см. в разделе «Определение методами химического анализа»).

При подщелачивании растворов солей Mn (II) из них выпадает осадок гидроксида марганца (II), быстро буреющий на воздухе в результате окисления. Подробное описание реакции см. в разделе «Определение методами химического анализа».

Соли MnCl3, Mn2(SO4)3 неустойчивы. Гидроксиды Mn(OH)2 и Mn(OH)3 имеют основный характер, MnO(OH)2 — амфотерный. Хлорид марганца (IV) MnCl4 очень неустойчив, разлагается при нагревании, чем пользуются для получения хлора:

{displaystyle {mathsf {MnO_{2}+4HClrightarrow MnCl_{2}+Cl_{2}uparrow +2H_{2}O}}}Нулевая степень окисления у марганца проявляется в соединениях с σ-донорными и π-акцепторными лигандами. Так, для марганца и известен карбонил состава Mn2(CO)10.

Известны и другие соединения марганца с σ-донорными и π-акцепторными лигандами (PF3, NO, N2, P(C5H5)3).

Определение методами химического анализа

Марганец принадлежит к пятой аналитической группе катионов.

Специфические реакции, используемые в аналитической химии для обнаружения катионов Mn2+, следующие:

1. Едкие щёлочи с солями марганца (II) дают белый осадок гидроксида марганца (II):

{displaystyle {mathsf {MnSO_{4}+2KOHrightarrow Mn(OH)_{2}downarrow +K_{2}SO_{4}}}}{displaystyle {mathsf {Mn^{2+}+2OH^{-}rightarrow Mn(OH)_{2}downarrow }}}Осадок на воздухе меняет цвет на бурый из-за окисления кислородом воздуха.

Выполнение реакции. К двум каплям раствора соли марганца добавляют две капли раствора щёлочи. Наблюдают изменение цвета осадка.

2. Пероксид водорода в присутствии щёлочи окисляет соли марганца (II) до тёмно-бурого соединения марганца (IV):

{displaystyle {mathsf {MnSO_{4}+H_{2}O_{2}+2NaOHrightarrow MnO(OH)_{2}downarrow +Na_{2}SO_{4}+H_{2}O}}}{displaystyle {mathsf {Mn^{2+}+H_{2}O_{2}+2OH^{-}rightarrow MnO(OH)_{2}downarrow +H_{2}O}}}Выполнение реакции. К двум каплям раствора соли марганца добавляют четыре капли раствора щёлочи и две капли раствора H2O2.

3. Диоксид свинца PbO2 в присутствии концентрированной азотной кислоты при нагревании окисляет Mn2+ до MnO4− с образованием марганцевой кислоты малинового цвета:

{displaystyle {mathsf {2MnSO_{4}+5PbO_{2}+6HNO_{3}rightarrow 2HMnO_{4}+2PbSO_{4}downarrow +3Pb(NO_{3})_{2}+2H_{2}O}}}{displaystyle {mathsf {2Mn^{2+}+5PbO_{2}+4H^{+}rightarrow 2MnO_{4}^{-}+5Pb^{2+}+2H_{2}O}}}Эта реакция даёт отрицательный результат в присутствии восстановителей, например хлороводородной кислоты и её солей, так как они взаимодействуют с диоксидом свинца, а также с образовавшейся марганцевой кислотой. При больших количествах марганца провести эту реакцию не удаётся, так как избыток ионов Mn2+восстанавливает образующуюся марганцевую кислоту HMnO4 до MnO(OH)2, и вместо малиновой окраски появляется бурый осадок. Вместо диоксида свинца для окисления Mn2+ в MnO4− могут быть использованы другие окислители, например, персульфат аммония (NH4)2S2O8 в присутствии катализатора — ионов Ag+ или висмутата натрия NaBiO3:

{displaystyle {mathsf {2MnSO_{4}+5NaBiO_{3}+16HNO_{3}rightarrow 2HMnO_{4}+5Bi(NO_{3})_{3}+NaNO_{3}+2Na_{2}SO_{4}+7H_{2}O}}}Выполнение реакции. В пробирку вносят стеклянным шпателем немного PbO2, а затем 5 капель концентрированной азотной кислоты HNO3 и нагревают смесь на кипящей водяной бане. В нагретую смесь добавляют 1 каплю раствора сульфата марганца (II) MnSO4 и снова нагревают 10—15 мин, встряхивая время от времени содержимое пробирки. Дают избытку диоксида свинца осесть и наблюдают малиновую окраску образовавшейся марганцевой кислоты.

При окислении висмутатом натрия реакцию проводят следующим образом. В пробирку помещают 1—2 капли раствора сульфата марганца (II) и 4 капли 6 н. HNO3, добавляют несколько крупинок висмутата натрия и встряхивают. Наблюдают появление малиновой окраски раствора.

4. Сульфид аммония (NH4)2S осаждает из раствора солей марганца сульфид марганца (II), окрашенный в телесный цвет:

{displaystyle {mathsf {MnSO_{4}+(NH_{4})_{2}Srightarrow MnSdownarrow +(NH_{4})_{2}SO_{4}}}}{displaystyle {mathsf {Mn^{2+}+S^{2-}rightarrow MnSdownarrow }}}Осадок легко растворяется в разбавленных минеральных кислотах и даже в уксусной кислоте.

Выполнение реакции. В пробирку помещают 2 капли раствора соли марганца (II) и добавляют 2 капли раствора сульфида аммония

Читайте также:

Рекомендуемые страницы:

©2015-2020 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-04-30
Нарушение авторских прав и Нарушение персональных данных

Источник