В какой горной породе содержится алюминия максимально

В какой горной породе содержится алюминия максимально thumbnail
Алюминиевая руда – полезное ископаемое

В сравнении с традиционными металлами (сталью, медью, бронзой), алюминий — молодой металл.

Современный способ его получения был разработан только в 1886 году, а до этого он был очень редким. Промышленные масштабы «крылатого» металла начались лишь в 20 веке. Сегодня, это один из востребованных материалов в различных отраслях от электроники до космической и авиационной промышленности.

Впервые алюминиевая руда в виде серебристого металла  была получена в 1825 году в объеме всего лишь нескольких миллиграмм, и до появления массового производства этот металл был дороже золота. Например, одна из королевских корон Швеции имела в своем составе алюминий, а Д. И. Менделеев в 1889 году получил от британцев дорогой подарок – весы из золота и алюминия.

Какое сырье необходимо для получения алюминиевой руды? Как производят один из самых необходимых в современности материалов?

Бокситовая руда – основа мирового производства алюминия

Непосредственно сам серебристый металл получают из глинозема. Это сырье представляет собой оксид алюминия (Аl2О3), получаемый с руд:

  • Бокситов;
  • Алунитов;
  • Нефелиновых сиенитов.

Самый распространенный источник получения исходного материала это бокситы, их и считают основной алюминиевой рудой.

Несмотря на уже более чем 130 летнюю историю открытия, понять происхождение алюминиевой руды до сих пор не удалось. Возможно, что попросту в каждом регионе сырье образовалось под воздействием определенных условий. И это создает затруднения, чтобы вывести одну универсальную теорию об образовании бокситов. Основных гипотез происхождения алюминиевого сырья три:

  1. Они образовались вследствие растворения некоторых типов известняков, как остаточный продукт.
  2. Боксит получился в результате выветривания древних пород с дальнейшим их переносом и отложением.
  3. Руда является результатом химических процессов разложения железных, алюминиевых и титановых солей, и выпала как осадок.

Однако, алунитовые и нефелиновые руды образовывались в отличных условиях от бокситов. Первые формировались в условиях активной гидротермальной и вулканической деятельности. Вторые — при высоких температурах магмы.

Алюминиевая руда

Как результат, алуниты, в основном, имеют рассыпчатую пористую структуру. В их составе имеется до 40% различных оксидных соединений алюминия. Но, кроме собственно самой алюмниеносной руды в залежах, как правило, имеются добавки, что влияет на рентабельность их добычи. Считается выгодным разрабатывать месторождение при 50-ти процентном соотношении алунитов к добавкам.

Нефелины обычно представлены кристаллическими образцами, которые кроме алюминиевого оксида содержат добавки в виде различных примесей. Зависимо от состава, такой тип руды классифицируют по типам. Самые богатые имеют в своем составе до 90% нефелинов, второсортные 40-50%, если минералы беднее этих показателей, то не считается нужным вести их разработку.

Имея представления, о происхождении полезных ископаемых, геологическая разведка может довольно точно определить места нахождения залежей алюминиевых руд. Также условия формирования, влияющие на состав и структуру минералов, определяют способы добычи. Если месторождение считается рентабельным, налаживают его разработку.

Свойства алюминиевой руды

Боксит представляет собой сложное соединение оксидов алюминия, железа и кремния (в виде различных кварцев), титана, а также с небольшой примесью натрия, циркония, хрома, фосфора и прочих.

Медная руда: свойства, применение, добыча

Самым важным свойством в производстве алюминия является «вскрываемость» бокситов. То есть насколько просто будет отделить от него ненужные кремниевые добавки, чтобы получить исходное сырье для выплавки металла.

Основа получения алюминия – глинозем. Чтобы он образовался, руду перемалывают в мелкий порошок, и прогревают паром, отделяя большую часть кремния. И уже эта масса будет сырьем для выплавки.

Чтобы получить 1 тонну алюминия, потребуется около 4-5 тонн бокситов, с которых после обработки образуется около 2 тонн глинозема, а уже потом можно получить металл.

Технология разработки алюминиевых залежей. Способы добычи алюминиевой руды

Способы добычи алюминиевой руды

При незначительной глубине залегания алюминиеносных пород их добыча ведется открытым способом. Но, сам процесс срезания пластов руды будет зависеть от ее вида, и структуры.

  • Кристаллические минералы (чаще бокситы, или нефелины), снимают фрезерным способом. Для этого используются карьерные комбайны. Зависимо от модели такая машина может вести срез пласта толщиной до 600 мм. Толща породы разрабатывается постепенно, образуя после прохода одного слоя полки.

Это делается для безопасного положения кабины оператора и ходовых механизмов, которые в случае непредвиденного обвала будут находиться на безопасном расстоянии.

  • Рыхлые алюминиевоносные породы исключают использование фрезерной разработки. Так как их вязкость забивает режущую часть машины. Чаще всего такие типы пород могут срезать при помощи карьерных экскаваторов, которые тут же грузят руду на самосвалы, для дальнейшей транспортировки.

Транспортирование сырья — это отдельная часть всего процесса. Обычно обогатительные комбинаты по возможности стараются возводить неподалеку от разработок. Это позволяет использовать ленточные транспортеры для подачи руды на обогащение. Но, чаще изъятое сырье перевозят самосвалами.
Следующий этап, обогащение и подготовка породы для получения глинозема.

  1. Руду при помощи ленточного транспортера перемещают в цех подготовки сырья, где может использоваться насколько дробильных аппаратов, измельчающих минералы поочередно до фракции приблизительно в 110 мм.
  2. Второй участок подготовительного цеха осуществляет подачу подготовленной руды, и дополнительных добавок на дальнейшую переработку.
  1. Следующий этап подготовки, это спекание породы в печах.

Также на этом этапе, возможна обработка сырья выщелачиванием   крепкими щелочами. Результатом становится жидкий алюминатный раствор (гидрометаллургическая обработка).

  1. Алюминатный раствор проходит стадию декомпозиции. На данном этапе получают алюминатную пульпу, которую в свою очередь отправляют на сепарацию, и выпаривание жидкой составляющей.
  2. После чего данную массу очищают от ненужных щелочей, и направляют на прокалку в печах. В результате такой цепочки образуется сухой глинозем необходимый для получения алюминия путем гидролизной обработки.

Сложный технологический процесс требует большого количества топлива, и известняка, а также электроэнергии. Это является основным фактором расположения алюминиевых комбинатов – возле хорошей транспортной развязки, и нахождения рядом залежей необходимых ресурсов.

Все о железной руде

Однако существует и шахтный способ извлечения, когда порода из пластов вырубается по принципу добычи каменного угля. После чего руду отправляют на подобные производства по обогащению, и извлечению алюминия.

Читайте также:  В каких таблетках содержится парацетамол

Одна из самых глубоких «алюминиевых» штолен находится на Урале в России, ее глубина достигает 1550 метров!

Страны лидеры по добыче алюминиевых руд

Основные месторождения алюминия сосредоточены в регионах с тропическим климатом, а большая часть 73% залежей приходятся на всего 5 стран: Гвинею, Бразилию, Ямайку, Австралию и Индию. Из них самые богатые запасы имеет Гвинея более 5 млрд. тонн (28%от мировой доли).

Если разделить запасы и объемы по добыче, то можно получить следующую картину:

  • 1-е место – Африка (Гвинея).
  • 2-е место – Америка.
  • 3-е место – Азия.
  • 4-е место – Австралия.
  • 5-е – Европа.

Пятерка лидеров стран по добыче алюминиевой руды представлена в таблице

СтранаОбъемы добычи млн. тонн
Китай86,5
Австралия81,7
Бразилия30,7
Гвинея19,7
Индия14,9

Также к основным добытчикам алюминиевых руд относятся: Ямайка (9,7 млн. т.), Россия (6,6), Казахстан (4,2), Гайана (1,6).

Разработка месторождений алюминиевых руд в России

В нашей стране есть несколько богатых залежей алюминиевых руд, сосредоточенных на Урале, и в Ленинградской области. Но, основным способом добычи бокситов у нас, является более трудоемкий закрытый шахтный метод, которым извлекают около 80% от общей массы руд в России.

Иностранные инвестиции в промышленности России

Лидеры по разработке месторождений – акционерное общество «Севуралбокситруда», АО Бакситогорский глинозем, Южно-Уральские бокситовые рудники. Однако их запасы исчерпываются. Вследствие чего России приходится импортировать около 3 млн. тонн глинозема в год.

МесторождениеЗапасы
Красная Шапочка (Урал)На 19 лет добычи
Горностайское и Горностайско-КраснооктябрьскоеНа 18 лет добычи
Блиново-Каменское10 лет
Кургазское10 лет
Радынский карьер7 лет

В общей сложности на территории страны разведано 44 месторождения различных алюминиевых руд (бокситов, нефелинов), которых по оценкам, должно хватить на 240 лет, при такой интенсивности добычи как сегодня.

Импорт глинозема обусловлен низким качеством руды в залежах, например, на месторождении Красная Шапочка добывают боксит с 50% глиноземным составом, тогда как в Италии извлекают породу с 64% оксида алюминия, а в Китае 61%.

Применение алюминиевой руды

В основном до 60% рудного сырья используется для получения алюминия. Однако богатый состав позволяет извлекать из него, и другие химические элементы: титан, хром, ванадий и прочие цветные металлы, необходимые в первую очередь в качестве легирующих добавок для улучшения качеств стали.

Как вспоминалось выше технологическая цепочка получения алюминия обязательно проходит через стадию образования глинозема, который также используют в качестве флюсов в черной металлургии.

Как распределяются расходы на поддержку промышленности?

Богатый состав элементов в алюминиевой руде используется и для производства минеральной краски. Также способом плавки производится глиноземный цемент – быстро застывающая прочная масса.

Еще один материал, получаемый из бокситов – электрокорунд. Его получают путем плавления руды в электропечах. Это очень твердое вещество, уступающее только алмазу, что делает его востребованным в качестве абразива.

Также в процессе получения чистого металла образуются отходы – красный шлам. Из него извлекают элемент – скандий, который применяется в производстве алюминиево-скандиевых сплавов, востребованных в автомобильной промышленности, ракетостроении, выпуске электроприводов, и спортивного оборудования.

Альтернатива алюминиевым рудам

Развитие современного производства требует все больших объемов алюминия. Однако не всегда рентабельно разрабатывать месторождения, или импортировать глинозем из-за границы. Поэтому все чаще используется выплавка металла с использованием вторичного сырья.

Импортозамещение — фактор экономической безопасности страны

Например, такие страны как США, Япония, Германия, Франция, Великобритания в основном производят вторичный алюминий, по объемам составляющий до 80% от общемировой выплавки.

Вторичный металл обходится намного дешевле, в сравнении с первичным, для получения которого тратится 20000 кВт энергии/1 тонну.

На сегодня алюминий, получаемый с различных руд, один из востребованных материалов позволяющих получать прочные и легкие изделия, не поддающиеся коррозии. Альтернатив металлу пока не найдено, и в ближайшие десятилетия объемы добычи руды, и выплавки будут только расти.

Источник

Алюминий

Кусок чистого алюминия

Алюминий — очень редкий минерал семейства меди-купалита подкласса металлов и интерметаллидов класса самородных элементов. Преимущественно в виде микроскопических выделений сплошного мелкозернистого строения. Может образовывать пластинчатые или чешуйчатые кристаллы до 1 мм., отмечены нитевидные кристаллы длиной до 0,5 мм. при толщине нитей несколько мкм. Лёгкий парамагнитный металл серебристо-белого цвета, легко поддающийся формовке, литью, механической обработке.

СТРУКТУРА

Кристаллическая структура алюминия

Кубическая гранецентрированная структура. 4 оранжевых атома

Кристаллическая решетка алюминия — гранецентрированный куб, которая устойчива при температуре от 4°К до точки плавления. В алюминии нет аллотропических превращений, т.е. его строение постоянно. Элементарная ячейка состоит из четырех атомов размером 4,049596×10-10 м; при 25 °С атомный диаметр (кратчайшее расстояние между атомами в решетке) составляет 2,86×10-10 м, а атомный объем 9,999×10-6 м3/г-атом.
Примеси в алюминии незначительно влияют на величину параметра решетки. Алюминий обладает большой химической активностью, энергия образования его соединений с кислородом, серой и углеродом весьма велика. В ряду напряжений он находится среди наиболее электроотрицательных элементов, и его нормальный электродный потенциал равен -1,67 В. В обычных условиях, взаимодействуя с кислородом воздуха, алюминий покрыт тонкой (2-10-5 см), но прочной пленкой оксида алюминия А1203, которая защищает от дальнейшего окисления, что обусловливает его высокую коррозионную стойкость. Однако при наличии в алюминии или окружающей среде Hg, Na, Mg, Ca, Si, Си и некоторых других элементов прочность оксидной пленки и ее защитные свойства резко снижаются.

СВОЙСТВА

Самородный алюминий

Самородный алюминий. Поле зрения 5 x 4 мм. Азербайджан, Гобустанский район, Каспийское море, Хере-Зиря или остров Булла

Алюминий — мягкий, легкий, серебристо-белый металл с высокой тепло- и электропроводностью, парамагнетик. Температура плавления 660°C. К достоинствам алюминия и его сплавов следует отнести его малую плотность (2,7 г/см3), сравнительно высокие прочностные характеристики, хорошую тепло- и электропроводность, технологичность, высокую коррозионную стойкость. Совокупность этих свойств позволяет отнести алюминий к числу важнейших технических материалов. Он легко вытягивается в проволоку и прокатывается в тонкие листы. Алюминий химически активен (на воздухе покрывается защитной оксидной пленкой — оксидом алюминия.) надежно предохраняет металл от дальнейшего окисления. Но если порошок алюминия или алюминиевую фольгу сильно нагреть, то металл сгорает ослепительным пламенем, превращаясь в оксид алюминия. Алюминий растворяется даже в разбавленных соляной и серной кислотах, особенно при нагревании. А вот в сильно разбавленной и концентрированной холодной азотной кислоте алюминий не растворяется. При действии на алюминий водных растворов щелочей слой оксида растворяется, причем образуются алюминаты — соли, содержащие алюминий в составе аниона.

Читайте также:  В каких препаратах содержится гонадотропин

ЗАПАСЫ И ДОБЫЧА

Кусочки алюминия

Кусочки алюминия

По распространённости в земной коре Земли занимает 1-е место среди металлов и 3-е место среди элементов, уступая только кислороду и кремнию. Массовая концентрация алюминия в земной коре, по данным различных исследователей, оценивается от 7,45 до 8,14%.
Современный метод получения, процесс Холла—Эру был разработан независимо американцем Чарльзом Холлом и французом Полем Эру в 1886 году. Он заключается в растворении оксида алюминия Al2O3 в расплаве криолита Na3AlF6 с последующим электролизом с использованием расходуемых коксовых или графитовых анодных электродов. Такой метод получения требует очень больших затрат электроэнергии, и поэтому получил промышленное применение только в XX веке.

ПРОИСХОЖДЕНИЕ

Алюминий с байеритом

Аллюминий, агрегированный с коркой байерита на поверхности. Узбекистан, Навойская область, Учкудук

Вследствие высокой химической активности он не встречается в чистом виде, а лишь в составе различных соединений. Так, например, известно множество руд, минералов, горных пород, в состав которых входит алюминий. Однако добывается он только из бокситов, содержание которых в природе не слишком велико. Самые распространенные вещества, содержащие рассматриваемый металл: полевые шпаты; бокситы; граниты; кремнезем; алюмосиликаты; базальты и прочие. В небольшом количестве алюминий обязательно входит в состав клеток живых организмов. Некоторые виды плаунов и морских обитателей способны накапливать этот элемент внутри своего организма в течение жизни.

ПРИМЕНЕНИЕ

Изделие из алюминия

Украшение из алюминия

Широко применяется как конструкционный материал. Основные достоинства алюминия в этом качестве — лёгкость, податливость штамповке, коррозионная стойкость. Электропроводность алюминия всего в 1,7 раза меньше, чем у меди, при этом алюминий приблизительно в 4 раза дешевле за килограмм, но, за счёт в 3,3 раза меньшей плотности, для получения равного сопротивления его нужно приблизительно в 2 раза меньше по весу. Поэтому он широко применяется в электротехнике для изготовления проводов, их экранирования и даже в микроэлектронике при напылении проводников на поверхности кристаллов микросхем.
Когда алюминий был очень дорог, из него делали разнообразные ювелирные изделия. Так, Наполеон III заказал алюминиевые пуговицы, а Менделееву в 1889 г. были подарены весы с чашами из золота и алюминия. Мода на ювелирные изделия из алюминия сразу прошла, когда появились новые технологии его получения, во много раз снизившие себестоимость. Сейчас алюминий иногда используют в производстве бижутерии.

Алюминий (англ. Aluminium) — Al

Молекулярный вес26.98 г/моль
Происхождение названияот латинского alumen
IMA статусутверждён в 1978

КЛАССИФИКАЦИЯ

Hey’s CIM Ref1.21

Strunz (8-ое издание)1/A.03-05
Nickel-Strunz (10-ое издание)1.AA.05
Dana (7-ое издание)1.1.22.1
Dana (8-ое издание)1.1.1.5

ФИЗИЧЕСКИЕ СВОЙСТВА

Цвет минераласеровато-белый, белый
Прозрачностьнепрозрачный
Блескметаллический
Спайностьнет
Твердость (шкала Мооса)2-3
Прочностьковкий
Плотность (измеренная)2.7 г/см3
Радиоактивность (GRapi)

ОПТИЧЕСКИЕ СВОЙСТВА

Плеохроизмне плеохроирует

Типизотропный
Люминесценция в ультрафиолетовом излучениине флюоресцентный
Магнетизмпарамагнетик

КРИСТАЛЛОГРАФИЧЕСКИЕ СВОЙСТВА

Точечная группа(4/m 3 2/m) — изометричная гексаоктаэдральная
Пространственная группаF m3m, P m3m
Сингониякубическая
Параметры ячейкиa = 4.04Å

mineralpro.ru  

26.07.2016  

Источник

Алюминиевые, железистые (железные) и марганцевые породы

Алюминиевые, железистые (железные) и марганцевые породы рассматриваются совместно, исходя из того, что они взаимосвязаны единством климатических условий, необходимых для их формирования. Н.М. Страхов назвал эти породы триадой, которая служит надежным индикатором гумидных условий палеоклимата в противоположность эвапоритам, которые в парагенезе с пестроцветными карбонатно-терригенными толщами, содержащими рудопроявления Cu-Pb-Zn, свойственны только аридным климатическим обстановкам.

Алюминиевые породы

Алюминиевые (глиноземистые) породы – это исключительно экзогенные образования с пелитоморфными, бобовыми (оолитовыми), реже обломочными структурами, состоящие более чем на 50% из минералов свободного глинозема(диаспора и бемита AlO(OH), гиббсита (гидраргиллита) Al(OH)3), а также алюмосиликатов (каолинита, галлуазита, бертьерина и др.), гидроксидов и оксидов железа (гетита, гидрогетита, гематита) и, меньше, титана (анатаза, рутила и др.). Все минералы алюминия и железа присутствуют в тонкодисперсном состоянии, поэтому диагностируются в результате лабораторных исследований. Их главные представители: аллиты – по Г. Гарросовцу (1926), бокситы – по Бертье (1820), латериты – по Ф. Бьюкенену (1807).

Содержание Al2O3 колеблется в широких пределах, в промышленных рудах низшей категории не менее 28%, а в наивысшей – более 52%.

Боксит основная алюминиевая порода. Цвет зависит от количества и формы нахождения железа. Наиболее характерна коричневато-красная окраска различной интенсивности, но может быть розовая, светло-серая, желтая, белая и даже черные разности. Встречаются рыхлые землистые разности (пачкают руки) и прочные, твердые (яшмовидные бокситы), царапающие стекло. Структура разнообразна – бобовая, оолитовая, пелитомлорфная, афанитовая, конгломератовидная.

Латерит не всегда отличим от боксита, обычно менее прочный, пористый, землистого сложения. Представляет собой элювий коры выветривания алюмосиликатных пород. Образуется в условиях жаркого, влажного климата, в кислой, окислительной среде. Благодаря обилию воды и особенностям среды, легкоподвижные соединения, в том числе карбонаты и сульфаты выносятся.

Генезис алюминиевых пород по Н.В. Логвиненко (1984). Латериты – продукты современной коры выветривания силикатных пород, образующихся в условиях тропического и субтропического климата. Латеритная кора выветривания образуется при интенсивном промывании почвы дождевыми водами и выносе из профиля SiO2 и большинства катионов. На месте остаются наименее подвижные соединения.

Относительно формирования бокситов существуют различные точки зрения:

1) бокситы являются хемогенным осадком, образовавшимся в морских и озерных водах благодаря коагуляции и осаждению гелей глинозема (гипотеза А.Д. Архангельского). Глинозем (Al2O3), освобождающийся при выветривании подвижен только в резко кислых и резко щелочных условиях, которые редко встречаются в природе. Гидроокись алюминия (Al(OH)3) может образовывать устойчивые в растворе коллоиды с гумусовыми веществами и в таком виде они выносятся речными водами в озера и моря, где и отлагаются в виде геля гидроокисла.

Коллоидные частицы имеют размер 1-100 нм (нанометр 10-9) и положительный заряд оксиды Fe, Al, Cr, Ti, Zr, Ce. Отрицательный заряд имеют гумусовые вещества, глинистые коллоиды, Sb, Pb, Hg, Cd, двуокиси Mn. Коллоидные растворы могут быть в состоянии золей (дисперсное состояние) и гелей (студней) после коагуляции. Причины коагуляции: действие электролитов противоположного знака или действие коллоидов противоположного знака, например, Fe(OH)3+ → SiO2‾, Al(OH)3+ → SiO2‾.

Читайте также:  Ответы в каком предложении содержится необходимая для

2) воздействие H2SO4 на каолинитовые минералы H2SO4→FeS2 + O2 + H2O (маловероятная гипотеза).

3) хемогенное образование – ископаемая кора выветривания латеритного типа (Белгородское, Криворожское м-ия).

4) результат размыва латеритной коры выветривания и переотложения в морских и озерных водоемах (Тихвинское, Североонежское м-ия).

5) концентрация Al2O3 растениями в озерно-болотных условиях.

6) подводная вулканическая деятельность, сопровождающаяся выносом Al2O3 в морские воды и осаждением Al(OH)3 химическим путем.

Б.А. Богатырев в 1999 г. все многообразие о генезисе и постседиментационных преобразованиях бокситов свел к двум большим генетическим группам: I – выветривания (остаточный тип) с двумя классами А- элювиальный, или латеритный, Б – латеритно-карстовый и II – седиментогенной. Последняя группа включает классы: В – осадочный, делимый на подклассы субаэральных осадков (коллювиальный, делювиальный, пролювиальный и полигенный) и субаквальных осадков (овражно-балочный, аллювиальный, озерно-болотный, лагунный и прибрежно-морской); Г – диагенетический (включающий подклассы субаэрального и субаквального диагенеза); В – катагенетический.

Образование основной массы алюминиевых пород (около 80%) связано с латеритным выветриванием и продуктами их ближнего переотложения – коллювием, делювием и пролювием. Доля латеритно-карстовых экзодиагенетических и осадочно-диагенетических бокситов оценивается приблизительно в 15%. А суммарное количество бокситов, накопленных в разного типа водоемах вместе с образованными на стадиях субаквального диагенеза и катагенеза, не превышает 5%. Относительно механизмов формирования последней из перечисленных категорий было (и остается поныне) много дискуссионных проблем.

Гипотезу формирования латеритов как продуктов своеобразной и мощной коры выветривания кристаллических пород сформулировал в начале ХХ в. английский геолог Фокс. Латеритный профиль формируется в жарком климате с чередованием периодов ливней и засух в обстановках холмисто-овражных ландшафтов. Классический разрез такого профиля состоит из следующих зон (снизу вверх): 1) неизмененные магматические породы (например, базальты); 2) те же породы, дезинтегрированные и каолинизированные (на начальном этапе выветривания); 3) каолиновая глина; 4) зона окремненного каолинита (с линзовидными выделениями аутигенного опала и халцедона), названная Фоксом «кремнистым литомаржем»; 5) латеритный боксит; 6) твердая корка («кираса») гидроксидов железа. В этом профиле зона «кремнистого литомаржа» совпадает с уровнем просачивания атмосферных вод, питающих роднички на склонах балок и оврагов.

Данная последовательность соответствует этапности процессов выветривания и ярко иллюстрирует схему химической осадочной дифференциации Л.В. Пустовалова, а именно, миграция химических элементов начинается с наиболее подвижных К+, Nа+; затем мигирируют Са2+, Мg2+, Si4+ и все «останавливается» на Fe3+ и Аl3+. Кроме того, примесь чрезвычайно малоподвижного титана сохраняется во всем профиле практически неизменной (доли процентов).

Процессы латеритизации реализуются чрезвычайно медленно, на протяжении многих десятков и сотен тысяч лет. Очень важным для них условием является стабильность климато-тектонических обстановок.

Класс латеритно-карстовых бокситов возникает также в тропическом гумидном климате в результате десилификатизации алюмосиликатного материала (вулканических пеплов в том числе), скопившегося на закарстованной поверхности рифогенных известняков. Такие руды кайнозойского возраста известны на поверхности атоллов современной тропической акватории океанов. Их древними аналогами (мезозойско-палеозойскими) считаются карстовые бокситы складчатых областей Восточного Урала, Салаира, Средиземноморья и др.

Прочие три класса – осадочный совместно с диагененическим и катагенетическим – представлены бокситами разнообразных структурно-текстурных разновидностей и окрасок. Последние в большинстве представляются красно-бурыми, коричневато-бурыми. Однако в болотных, озерных и лагунных осадках, претерпевших субаквальный диагенез при восстановительных геохимических обстановках (обусловивших редукцию Fe3+→Fe2+ Мn3+→Мn2+, бокситы приобретают зеленовато-серую или серую окраски. Последующим катагенезом могут быть обусловлены каолинитизация, шамозитизация и связанное с ними обеление окрасок бокситов. Структуры их бывают пелитоморфными, обломочными и оолитовыми (при крупности оолитов до 2,5 мм и более, они именуются «бобовыми»). В вещественном составе наряду с гидраргиллитом заметную роль приобретают моногидраты алюминия – бемит отчасти диаспор с примесями аллофана, гетита, гематита, каолинита, шамозита и небольшими количествами иллита.

По данным Б.А. Богатырева и его коллег среди современных седиментогенных бокситов промышленные объекты связаны только со склоновыми образованиями. В древних бокситорудных формациях осадочные бокситы распространены более широко. В палеозойских отложениях превалируют бокситы ближнего переотложения – делювиальные, коллювиальные, пролювиальные (девонские отложения Среднего Тиммана), овражно-балочные (карбоновые отложения Тихвинского района). Лагунные или прибрежно-морские бокситы распространены среди палеозойских формаций на Урале, Салаире, Воронежском кристаллическом массиве, Тиммане, где они прослеживаются в виде маломощных (до 1 м), но выдержанных слоев с небольшим размывом залегающих на красных бокситах, накопившихся в субаэральной обстановке. Аллювиальные бокситы мелового возраста известны на Урале (Соколовское месторождение).

Преобладание среди перечисленных типов бокситов обломочных структур и текстур свидетельствуют о преимущественно механогенном их накоплении, косая слоистость – о донных течениях, а контракционные трещины – о периодическом высыхании водоемов. В то же время в мезозойских и кайнозоских осадочных бокситах отмечаются конкреционные и гелевидные структуры, указывающие на хемогенное происхождение части алюминия.

О механизмах и способе транспортировки алюминия в конечный бассейн и в настоящее время много дискуссий. Доминирует точка зрения, высказанная в 1935 г. С.Ф. Малявкиным, что осадочные бокситы являются продуктами перемыва латеритных кор, и способ транспортировки вещества механогенный. Дальность переноса – минимальная (от первых км до десятков км). Альтернативная гипотеза А.Д. Архангельского (1935 г.), объяснявшая генезис бокситов химическим растворением изложена выше.

Чисто химический способ бокситообразования ставится под сомнение, начиная с работ Н.М. Страхова, который в 1963 году говорил о том, что оолитовая, бобовая и пятнистая текстуры бокситовых руд возникали в диагенезе за счет перераспределения материала. Работы Ю. К. Горецкого в Грузии доказано, что Al2O3 и TiO2 в водах рек нетраснпортабельны. Новейшие исследования Б.А. Богатырева допускают хемогенный генезис только для части глинозема, поставляемого в осадочный бассейн в основном механогенным способом.

Источник