В каких свойствах проявляется анизотропия
Данная статья рассказывает, что анизотропия – это неравенство значений некоей физической величины вдоль различных направлений твердого тела. Раскрывает, что вызывает анизотропию, где она встречается, как применяется. Также вкратце дано описание коэффициента анизотропии.
Определение анизотропии
Для начала дадим определение этого понятия. Анизотропия – это различие свойств и параметров объекта в разных направлениях. Получается слегка непонятно и явно требует пояснения. Под свойствами понимаются любые характеристики веществ – упругость, скорость звука, показатель преломления, теплопроводность, электропроводность. Таким образом, например, для скорости звука анизотропия – это такое явление, когда поперек каменной глыбы звуковые волны распространяются с другой скоростью, чем вдоль. В данном случае это свойство помогает определить породы, залегающие в глубине земной коры. Естественное распространение при землетрясении, например, или при специально созданном сильном ударе даст представление о плотности и угле залегания разных полезных ископаемых.
Чем обусловлена анизотропия?
При упоминании этого термина чаще всего имеется в виду анизотропия кристаллов. Этим разделом занимается физика твердого тела. И любой ученый из данной области прежде всего знает: свойства вещества зависят не только от того, из каких атомов оно состоит, но и в каком порядке и какими частями между собой эти атомы соединены. И самое главное: они зависят от группы симметрии получающейся структуры. Всего их тридцать две. Группа симметрии показывает, сколько и каких движений надо совершить, чтобы те же элементы наложились друг на друга и совпали полностью. К этим действиям относятся: поворот вокруг оси (на определенный угол), отражение от плоскости или точки, инверсия. Группа симметрии и показывает, какой будет анизотропия кристаллов. Вещества с кубической структурой, например, этим свойством не обладают. Параметры таких твердых тел одинаковы во всех направлениях.
Какой угол нужен для анизотропии?
Выше мы привели пример, когда распространение звука неодинаково во взаимно поперечных направлениях. Это частный случай того, как проявляется анизотропия свойств, который называется термином “оротропия”. Однако симметрия кристаллов бывает не только кубической или ромбической. Она бывает тригональной, когда повтор элементов структуры происходит при повороте на треть круга, или даже гексагональной, тогда угол поворота равняется одной шестой круга. Симметрия низшей категории, моноклинная, дает возможность свойствам быть неодинаковыми в кристалле в трех взаимно не перпендикулярных направлениях. Таким образом, анизотропия – это качество кристаллических тел, которое может проявляться под любыми углами как в одной плоскости, так и в объеме.
Все ли свойства должны обладать анизотропией?
Этот вопрос закономерен. Если одно свойство в данном кристалле обладает анизотропией, должны ли другие параметры следовать этому примеру? Необязательно. Возьмем, например, кристаллы, которые используются в приборах ночного видения. Они способны превращать невидимый инфракрасный свет в видимый диапазон (чаще всего получается картинка разных оттенков зеленого). В таких материалах анизотропия – это основное свойство, которое подходит для применения и может быть полезно. Причем, чтобы эффект был наилучшим, кристаллы должны быть повернуты под определенным углом (для этого их специально выращивают строго определенным образом). В других направлениях преобразование излучения меньше или совсем отсутствует. При этом теплопроводность, скорость звука или электродиффузия в них распространяется равномерно во всех направлениях. Бывает и так, что для одного свойства угол различия его характеристик один, а для другого – другой. Но это уже совсем экзотические случаи.
Где еще бывает анизотропия?
Когда человек слышит «кристаллы», обычно представляет себе полупрозрачные столбики кварца или аметиста. Некоторые девушки наверняка думают об украшениях. Однако кристаллическим может быть любое твердое тело. Изделия из железа, алюминия, меди, олова тоже состоят из кристаллов, только очень маленьких. И в каждой такой вещи на микроуровне также наблюдается анизотропия металлов. Однако свойства, которые распространяются в перпендикулярных направлениях по-разному, весьма специфические и в повседневной жизни незаметны. Например, в кубических кристаллах железа и алюминия модули упругости Юнга меняются в зависимости от выбранной оси. А линейное расширение олова в разных направлениях различается почти в два раза. Однако такие подробности, как правило, не требуется учитывать каждый день. Ведь анизотропия металлов и её последствия, как правило, закладываются во все возможные их применения на стадии проектирования вещей, зданий, самолетов, машин.
Как вычислить анизотропию?
Все написанное выше, мы надеемся, достаточно ясно рассказало читателю, что такое анизотропия. Однако возникает и другой вопрос: как посчитать, насколько различаются свойства вдоль несовпадающих направлений в твердых телах? Для этого есть коэффициент анизотропии. Сразу оговоримся, для каждой величины он вычисляется по-своему. Показатели, испытывающие анизотропию, могут быть непохожи друг на друга. Свойства механической или квантовой системы различаются кардинально, что приемлемо для одной, для другой будет невыполнимо или вовсе невозможно. Поэтому говорить о некоем общем для любой величины коэффициенте не стоит. К тому же чаще всего вычислить его чисто теоретически не представляется возможным, эту величину получают только опытным путем. Коэффициент анизотропии включает соотношение значений исследуемой величины в разных направлениях. Иногда этот показатель включает угол между выбранными направлениями. Правда, чаще всего лишь как показатель у основания значения величины. Например, Кху показывает, что данный коэффициент относится к разнице значений физической величины вдоль осей икс и игрек.
Источник
Анизотропия и металлография
Анизотропия (от др. uреч. ἄνισος — неравный и τρόπος — направление) – зависимость свойств материала (например, механических: предела прочности, относительного удлинения, твердости, износостойкости и др.) от направления внутри этого материала. Если материал изотропен, то его свойства одинаковы во всех направлениях.
Металлография тесно связана с вопросами анизотропии. По некоторым свойствам материал может быть изотропен, по другим — анизотропен. Материалы могут отличаться степенью анизотропии. Вопрос анизотропности материала связан с выбором направления внутри этого материала. В одном направлении материал может рассматриваться как анизотропный, в других – как изотропный. Анизотропия в металлографии может рассматриваться на разных масштабных уровнях. Например, на микроуровне (внутри зерна) материал может быть анизотропен, а на другом – изотропен (например в объеме образца).
Анизотропия может быть разделена на естественную и искусственную.
Примером естественной анизотропии на микроуровне является анизотропия элементарной кристаллической ячейки. Если рассматривать отдельные направления внутри элементарной ячейки, то проявляется анизотропия: различные направления имеют различные свойства на масштабном уровне, определяющемся размерами кристаллической решетки. В качестве примера можно привести монокристалл медного купороса (рис.1). Степень анизотропии кристаллов кубической сингонии гораздо выше. Если рассматривать направления осей x, у и z, то монокристалл поваренной соли изотропен (рис.1б). Овализованный кристалл поваренной соли имеет изотропную форму.
Рисунок 1. Гидратированные кристаллы медного купороса (а); естественный и овализованный кристаллы хлорида натрия (б).
Плотность и удельная теплоёмкость у всех кристаллов не зависят от направления. Анизотропия остальных физических свойств кристаллов тесно связана с их симметрией и проявляется тем сильнее, чем ниже симметрия. Например, усилие сдвига, скорость роста или растворения кристалла зависят от направления. Пример анизотропной структуры электролитического покрытия меди представлен на рис. 2. Кристаллиты покрытия растут на подложке в определенном направлении и все они ориентированы в пространстве одинаково. Скорость роста кристаллов максимальна в направлении, перпендикулярном подложке.
Рисунок 2. Структура электролитического покрытия меди.
Молекулярные кристаллы (белки или полимеры) также являются анизотропными объектами. Изделия, созданные на основе полимеров могут быть как анизотропными (например искусственные нити для производства тканей), так и изотропными (изделия, получаемые при горячем формообразовании полимерных порошков). Сам порошок (рис.3) можно считать изотропным.
Рисунок 3. Порошок политетрафторэтилена; освещение по методу темного поля.
Помимо белков, естественная анизотропия свойственна другим материалам биологического происхождения. Например: слюда, костные и мышечные ткани человека и животных, древесина и листья, трава и т.д.
Анизотропия материалов связана либо с естественной анизотропией материала, либо создается искусственно для придания материалу определенных свойств. Поликристаллические материалы (металлы, сплавы) принято считать изотропными, поскольку кристаллиты, составляющие металл, ориентированы хаотично относительно внешних и внутренних направлений в материале. Анизотропия в металлических материалах создается искусственно. Это, например, специальные условия кристаллизации (рис.4) (направленный теплоотвод). На рис.4а показана структура литой меди; кристаллиты вытянуты в направлении теплоотвода. Структура на рис.4б не имеет направленности. Анизитропную структуру можно получить при деформации – прокаткой и волочением. Например, на рис.5а показана структура прокатанной стали. Видны полосы перлита (темные), вытянутые вдоль направления деформации. Структура, показанная на рис.5б тоже состоит из перлита и феррита, но такую структуру можно считать изотропной, потому что феррит и перлит равномерно распределены в объеме стали. Сам перлит анизотропен, потому что имеет пластинчатое строение (в противоположность зернистому перлиту, который является изотропным).
Анизотропия, созданная тпластической деформацией, сохраняется в изделии или материале после прекращения воздействия и определяет комплекс его физико-механических свойств. Например, после холодной прокатки на 90% и отжига при 8000С медь имеет различное относительное удлинение: вдоль направления деформации – 40%, под углом 450 к направлению деформации – 75%.
Рисунок 4. Макроструктура литья: а – анизотропия макроструктуры меди за счет направленного теплоотвода; б – изотропная структура меди, формирующаяся при равномерном теплоотводе.
Рисунок 5. Анизотропия структуры углеродистой стали, созданная холодной прокаткой (а), и однородная структура, полученная нормализацией (б).
Композиционные материалы представляют собой искусственные анизотропные материалы, созданные, как правило, из двух и более материалов, часто различной природы. Композиционный материал состоит из армирующего прочного материала (как правило анизотропного) и связующего изотропного вещества с более низкими свойствами. Часто в качестве армирующего элемента используются высокопрочные волокна – графитовое или борное волокно, стекловолокно и т.д. (рис.6 а). Понятно, что в продольном сечении материал можно рассматривать как анизотропный (рис. 6 б), в поперечном сечении – как изотропный, т.к. сечение волокна сферическое (рис. 6в). Из элементарных соображений понятно, что свойства композиционного материала вдоль волокна будут существенно отличаться от свойств в поперечном направлении. Этот случай анизотропии представляет собой частный случай анизотропии под названием ортотропия (от др. греч. ὀρθός — прямой и τρόπος — направление) —различие свойств материала по взаимно перпендикулярным направлениям.
Рисунок 6. Анизотропия композиционных материалов: а – борное волокно; б – волокно в составе композита, продольное сечение материала; в – поперечное сечение материала.
Источник
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
Из Википедии — свободной энциклопедии
Анизотропи́я (от др.-греч. ἄνισος — неравный и τρόπος — направление) — различие свойств среды (например, физических: упругости, электропроводности, теплопроводности, показателя преломления, скорости звука или света и др.) в различных направлениях внутри этой среды; в противоположность изотропии.
В отношении одних свойств среда может быть изотропна, а в отношении других — анизотропна; степень анизотропии также может различаться.
Частный случай анизотропии — ортотропия (от др.-греч. ὀρθός — прямой и τρόπος — направление) —
неодинаковость свойств среды по взаимно перпендикулярным направлениям.
Примеры
Анизотропия является характерным свойством кристаллических тел (точнее, лишь тех, кристаллическая решетка которых не обладает высшей — кубической — симметрией). При этом свойство анизотропии в простейшем виде проявляется только у монокристаллов. У поликристаллов анизотропия тела в целом (макроскопически) может не проявляться вследствие беспорядочной ориентировки микрокристаллов, или даже совсем не проявляется, за исключением случаев специальных условий кристаллизации, специальной обработки и т. п.
Причиной анизотропности кристаллов является то, что при упорядоченном расположении атомов, молекул или ионов силы взаимодействия между ними и межатомные расстояния (а также некоторые не связанные с ними прямо величины, например, поляризуемость или электропроводность) оказываются неодинаковыми по различным направлениям. Причиной анизотропии молекулярного кристалла может быть также асимметрия его молекул. Макроскопически эта неодинаковость проявляется, как правило, лишь если кристаллическая структура не слишком симметрична.
Помимо кристаллов, естественная анизотропия — характерная особенность многих материалов биологического происхождения, например, деревянных брусков.
Анизотропия свойственна жидким кристаллам, движущимся жидкостям (неньютоновским — особенно).
Анизотропией особого рода в масштабах всего кристалла или его областей обладают ферромагнетики и сегнетоэлектрики.
Во многих случаях анизотропия может быть следствием внешнего воздействия (например, механической деформации, воздействия электрического или магнитного поля и т. д.). В ряде случаев анизотропия среды может в какой-то степени (а в некоторой слабой степени — часто) сохраняться после исчезновения вызвавшего её внешнего воздействия.
Обменная анизотропия
Обменная анизотропия — особенность петель гистерезиса перемагничивания магнитных материалов, проявляющаяся в несимметричном расположении петли относительно оси ординат.
Анизотропия времени
- Выражается в существовании необратимых процессов.
- Философская и естественнонаучная проблема, исторически связанная с началами термодинамики и понятием энтропии.
- В классической механике время является абсолютной величиной; законы Ньютона инвариантны по отношению к направлению времени.
Примечания
См. также
- Асимметрия
- Направленность времени
Ссылки
1. Физическая энциклопедия / под ред. Прохорова А. М. — М.: Советская энциклопедия, 1988. — Т. I. — С. 83.
Источник
Анизотропия (от греч. ánisos — неравный и tróроs — направление), зависимость физических свойств вещества (механических, тепловых, электрических, магнитных, оптических) от направления (в противоположность изотропии — независимости свойств от направления). Примеры А.: пластинка слюды легко расщепляется на тонкие листочки только вдоль определённой плоскости (параллельно этой плоскости силы сцепления между частицами слюды наименьшие); мясо легче режется вдоль волокон, хлопчатобумажная ткань легко разрывается вдоль нитки (в этих направлениях прочность ткани наименьшая).
Естественная А. — наиболее характерная особенность кристаллов. Именно потому, что скорости роста кристаллов в разных направлениях различны, кристаллы вырастают в виде правильных многогранников: шестиугольные призмы кварца, кубики каменной соли, восьмиугольные кристаллы алмаза, разнообразные, но всегда шестиугольные звёздочки снежинок. Анизотропны, однако, не все свойства кристаллов. Плотность и удельная теплоёмкость у всех кристаллов не зависят от направления. А. остальных физических свойств кристаллов тесно связана с их симметрией и проявляется тем сильнее, чем ниже симметрия кристаллов.
При нагревании шара из изотропного вещества он расширяется во все стороны равномерно, т. е. остаётся шаром. Кристаллический шар при нагревании изменит свою форму, например превратится в эллипсоид (рис. 1, а). Может случиться, что при нагревании шар будет расширяться в одном направлении и сжиматься в другом (поперечном к первому, рис. 1, б). Температурные коэффициенты линейного расширения вдоль главной оси симметрии кристалла (a//) и перпендикулярно этой оси (a^) различны по величине и знаку.
Таблица 1. — Температурные коэффициенты линейного расширения некоторых кристаллов вдоль главной оси симметрии кристалла и в перпендикулярном ей направлении
α//·106, град-4 | α^·106, град-4 | |
Олово | 30,5 | 15,5 |
Кварц | 13,7 | 7,5 |
Графит | 28,2 | —1,5 |
Теллур | —1,6 | 27,2 |
Аналогично различаются удельные электрические сопротивления кристаллов вдоль главной оси симметрии r// и перпендикулярно ей r^.
Таблица 2. — Удельное электрическое сопротивление некоторых кристаллов вдоль главной оси симметрии и перпендикулярно ей (1 ом·см = 0,01 ом·м)
Магний | r//·106, ом·см | r^ ом·см |
3,37 | 4,54 | |
Цинк | 5,83 | 5,39 |
Кадмий | 7,65 | 6,26 |
Олово (белое) | 13,13 | 9,05 |
При распространении света в прозрачных кристаллах (кроме кристаллов с кубической решёткой) свет испытывает двойное лучепреломление и поляризуется различно в разных направлениях (оптическая А.). В кристаллах с гексагональной, тригональной и тетрагональной решётками (например, в кристаллах кварца, рубина и кальцита) двойное лучепреломление максимально в направлении, перпендикулярном к главной оси симметрии, и отсутствует вдоль этой оси. Скорость распространения света в кристалле v или показатель преломления кристалла n различны в различных направлениях. Например, у кальцита показатели преломления видимого света вдоль оси симметрии n// и перпендикулярно ей n ^ равны: n// = 1,64 и n ^ = 1,58; у кварца: n//= 1,53, n ^ = 1,54.
Механическая А. состоит в различии механических свойств — прочности, твёрдости, вязкости, упругости — в разных направлениях. Количественно упругую А. оценивают по максимальному различию модулей упругости. Так, для поликристаллических металлов с кубической решёткой отношение модулей упругости вдоль ребра и вдоль диагонали куба для железа равно 2,5, для свинца 3,85, для бета-латуни 8,7. Кубические монокристаллы характеризуются тремя главными значениями модулей упругости (табл. 3).
Таблица 3. — Главные значения модулей упругости некоторых кубических кристаллов
Алмаз | 95 | 39 | 49 |
Алюминий | 10,8 | 6,2 | 2,8 |
Железо | 24,2 | 14,6 | 11,2 |
Для кристаллов более сложной структуры (более низкой симметрии) полное описание упругих свойств требует знания ещё большего числа значений (компонент) модулей упругости по разным направлениям, например для цинка или кадмия — 5, а для триглицинсульфата или винной кислоты — 13 компонент, различных по величине и знаку. Об А. магнитных свойств см. подробнее в статье Магнитная анизотропия.
Математически анизотропные свойства кристаллов характеризуются векторами и тензорами, в отличие от изотропных свойств (например, плотности), которые описываются скалярными величинами. Например, коэффициент пироэлектрического эффекта (см. Пироэлектричество) является вектором. Электрическое сопротивление, диэлектрическая проницаемость, магнитная проницаемость и теплопроводность — тензоры второго ранга, коэффициент пьезоэлектрического эффекта (см. Пьезоэлектричество) — тензор третьего ранга, упругость — тензор четвёртого ранга. А. графически изображают с помощью указательных поверхностей (индикатрисс): из одной точки во всех направлениях откладывают отрезки, соответствующие константе в этом направлении. Концы этих отрезков образуют указательную поверхность (рис. 2—5).
Поликристаллические материалы (металлы, сплавы), состоящие из множества кристаллических зёрен (кристаллитов), ориентированных произвольно, в целом изотропны или почти изотропны. А. свойств поликристаллического материала проявляется, если в результате обработки (отжига, прокатки и т. п.) в нём создана преимущественная ориентация отдельных кристаллитов в каком-либо направлении (текстура). Так, при прокатке листовой стали зёрна металла ориентируются в направлении прокатки, в результате чего возникает А. (главным образом механических свойств), например для прокатанных сталей предел текучести, вязкость, удлинение при разрыве, вдоль и поперёк направления проката различаются на 15—20% (до 65%).
Причиной естественной А. является упорядоченное расположение частиц в кристаллах, при котором расстояние между соседними частицами, а следовательно, и силы связи между ними различны в разных направлениях (см. Кристаллы). А. может быть вызвана также асимметрией и определённой ориентацией самих молекул. Этим объясняется естественная А. некоторых жидкостей, особенно А. жидких кристаллов. В последних наблюдается двойное лучепреломление света, хотя большинство других их свойств изотропно, как у обычных жидкостей.
А. наблюдается также и в определённых некристаллических веществах, у которых существует естественная или искусственная текстура (древесина и т. п.). Например, фанера или прессованная древесина вследствие слоистости строения могут обладать пьезоэлектрическими свойствами, как кристаллы. Комбинируя стеклянное волокно с пластмассами, удаётся получить анизотропный листовой материал с прочностью на разрыв до 100 кгс/мм2. Искусственную А. можно также получить, создавая заданное распределение механических напряжений в первоначально изотропном материале. Например, при закалке стекла можно получить в нём А., которая влечёт за собой упрочнение стекла.
Искусственная оптическая А. возникает в кристаллах и в изотропных средах под действием электрического поля (см. Электрооптический эффект в кристаллах, Керра явление в жидкостях), магнитного поля (см. Коттон—Мутона эффект), механического воздействия (см. фотоупругость).
М. П. Шаскольская.
А. широко распространена также в живой природе. Оптическая А. обнаруживается в некоторых животных тканях (мышечной, костной). Так, миофибриллы поперечно исчерченных мышечных волокон при микроскопии кажутся состоящими из светлых и тёмных участков. При исследовании в поляризованном свете эти тёмные диски, как и гладкие мышцы и некоторые структуры костной ткани, обнаруживают двойное лучепреломление, т. е. они анизотропны.
В ботанике А. называется способность разных органов одного и того же растения принимать различные положения при одинаковых воздействиях факторов внешней среды. Например, при одностороннем освещении верхушки побегов изгибаются к свету, а листовые пластинки располагаются перпендикулярно к направлению лучей.
Лит.: Бокий Г. Б., Флинт Е. Е., Шубников А. В., Основы кристаллографии, М.—Л., 1940; Най Дж., Физические свойства кристаллов…, пер. с английского, 2 изд., М., 1967; Волокнистые композиционные материалы, пер. с английского, М., 1967; Дитчберн Р., Физическая оптика, пер. с английского, М., 1965.
Рис. 1. Изменение формы кристаллического шара (пунктир) при нагревании.
Рис. 4. Сечения поверхности модуля кручений (а) и модуля Юнга (б) кристалла кварца; сечение поверхности пьезоэлектрического коэффициента в кварце (в).
Рис. 3. Сечения поверхностей коэффициентов упругости кристалла сегнетовой соли.
Рис. 5. Поверхность коэффициентов разрывной прочности кристалла каменной соли.
Рис. 2. Сечение поверхности скоростей упругих волн кристалла бромистого калия.
Оглавление
Источник