В каких реакциях соляная кислота проявляет окислительные свойства примеры
Характеристики и физические свойства соляной кислоты
Сильная кислота: pKa = -7,1. Концентрированная соляная кислота содержит около 37% HCl.
Основные физические свойства соляной кислоты приведены в таблице:
Температура плавления, oС | -30 |
Температура кипения, oС | 48 |
Энтальпия образования, кДж/моль | -605,22 |
Плотность, г/см3 | 1,19 |
Удельная теплоемкость, кДж/(кг×К) | 2,46 |
Вязкость, МПа×с | 1,99 |
Получение соляной кислоты
Соляная кислота получается растворением в воде хлороводорода. В настоящее время основным способом промышленного получения хлороводорода является синтез его из водорода и хлора:
H2 + Cl2 = 2HCl + 183 кДж.
Этот процесс осуществляют в специальных установках, в которых смесь водорода и хлора непрерывно образуется и тут же сгорает ровным пламенем. Тем самым достигается спокойное (без взрыва) протекание реакции. Исходным сырьем для получения хлороводорода служат хлор и водород, образующиеся при электролизе раствора хлорида натрия.
Большие количества соляной кислоты получают также в качестве побочного продукта хлорирования органических соединений согласно уравнению реакции, представленному ниже:
R-H + Cl2 = R-Cl + HCl,
где R – углеводородный радикал.
Химические свойства соляной кислоты
Соляная кислота – сильный электролит. Для нее характерны следующие химические свойства, общие для всех кислот:
— способность взаимодействовать с основаниями с образованием солей:
HCldilute + NaOHdilute = NaCl + H2O;
HCldilute + NH3×H2O = NH4Cl + H2O;
— способность взаимодействовать с некоторыми металлами с выделением водорода (разбавленный раствор):
2HCldilute + Fe = FeCl2 + H2↑;
2HCldilute + Zn = ZnCl2 + H2↑;
— способность вступать в реакции взаимодействия с основными и амфотерными оксидами с образованием солей и воды:
4HClconc + MnO2 = MnCl2 + 2H2O + Cl2↑;
4HClconc + PbO2 = PbCl2↓ + Cl2↑ + 2H2O;
— способность взаимодействовать с солями более слабых кислот:
2HCldilute + CaCO3 = CaCl2 + CO2↑ + H2O;
— способность изменять цвета индикаторов, в частности, вызывать красную окраску лакмуса;
— кислый вкус.
При диссоциации соляной кислоты образуются ионы водорода:
HCl↔H+ + Cl—.
Нагревание смеси растворов соляной и азотной кислот до температуры 100-150oС приводит к образованию очень сильного окислителя — соединения, которое называют «царская водка»:
6HClconc + 2HNO3 conc = 2NO↑ + 3Cl2↑ + 4H2O.
Соляная кислота в окислительно-восстановительных реакциях может выступать и как восстановитель (за счет хлорид-аниона Cl—) и как окислитель (за счет катиона водорода H+). Уравнения ОВР с участием соляной кислоты приведены ниже:
16HClconc + 2KMnO4 = 2MnCl2 + 5Cl2↑ + 8H2O + 2KCl;
14 HClconc + K2Cr2O7 = 2CrCl3 + 3Cl2↑ + 7H2O + 2KCl (t = 60 – 80oC);
4 HClconc + Ca(ClO)2 = 2Cl2↑ + CaCl2 + 2H2O;
6 HClconc + KClO3 = 3Cl2↑ + KCl + 3H2O.
Применение соляной кислоты
Соляная кислота – одна из важнейших кислот в химической практике. Ежегодное мировое производство соляной кислоты исчисляется миллионами тонн. Широкое применение находят также многие её соли.
Соляная кислота применяется в таких областях народного хозяйства как гидрометаллургия и гальванопластика, для травления, декапирования и лужения поверхности металлов; пищевом производстве, как регулятор кислотности (добавка Е507); в медицине, в качестве лекарства (смесь с ферментом пепсином) при недостаточной кислотности желудка.
Примеры решения задач
Источник
Кислоты – это класс химических соединений, в которых есть атом водорода и кислотный остаток. Напомню, что кислоты делятся на одно-, двух- и трёхосновные (основность определяется числом атомов водорода) и на кислородсодержащие и бескислородные (а это можно узнать, взглянув на кислотный остаток). А сейчас пришло время узнать, как ведут себя кислоты в химических реакциях.
Фото: cornellasap.org
Химические свойства кислот
1. Взаимодействие с металлами
Кислоты могут реагировать с некоторыми металлами. Чтобы узнать, с какими именно металлами могут взаимодействовать металлы, нам понадобится воспользоваться электрохимическим рядом активности металлов (также его называют электрохимическим рядом напряжений металлов). Ряд активности металлов относится к числу справочных материалов, учить наизусть его нет необходимости, поскольку обычно он представлен в учебнике химии или висит в классе химии. Выглядит он следующим образом:
Фото: из открытых источников
Найдите в ряду водород и запомните, что
металлы, стоящие в ряду напряжений ДО водорода (левее водорода), реагируют с кислотами с образованием соли и газообразного водорода, металлы, стоящие ПОСЛЕ (правее) водорода, с кислотами не реагируют.
Пример 1.
Будет ли серная кислота реагировать с цинком? Если будет, напишите уравнение реакции.
Для ответа на первый вопрос найдём в ряду активности металлов цинк. Он стоит левее водорода, следовательно, взаимодействие будет. Записываем уравнение:
Zn + Н2SO4 = ZnSO4 + H2
Пример 2.
Будет ли соляная кислота реагировать с алюминием? Если будет, напишите уравнение реакции.
Алюминий находится в ряду активности до водорода, поэтому реакция будет. Уравнение выглядит так:
Al + 6HCl = 2AlCl3 +3 H2
Пример 3.
Будет ли фосфорная кислота реагировать с серебром? Если будет, напишите уравнение реакции.
Серебро стоит в ряду активности металлов правее водорода, поэтому взаимодействия между фосфорной кислотой и серебром не будет.
2. Взаимодействие с оксидами.
Кислоты реагируют с основными оксидами (оксидами металлов) с образованием солей и воды. С кислотными оксидами (оксидами неметаллов) кислоты не реагируют.
Пример.
Запишите уравнение реакции между оксидом натрия и сернистой кислотой.
Na2O + H2SO3 = Na2SO3 + H2O
В данном случае мы наблюдаем реакцию обмена, когда два исходных реагента поменялись составными частями. В результате реакции между основным оксидом и кислотой всегда образуется соль и вода.
3. Взаимодействие с основаниями.
При взаимодействии кислот с основании также протекает реакция обмена, в результате которой образуются соль и вода.
Пример.
Запишите уравнение реакции между гидроксидом магния и азотной кислотой.
Mg(OH)2 + 2HNO3 = Mg(NO3)2 + 2H2O
С другими кислотами кислоты не реагируют.
Также напомню, что существует особая группа гидроксидов – амфотерные. Они могут вести себя в зависимости от условий как основания или как кислоты.
Амфотерные гидроксиды при взаимодействии с кислотами ведут себя как основания и реагируют с кислотами с образованием соли и воды.
И это нужно запомнить.
Пример.
Запишите уравнение реакции между амфотерным гидроксидом железа (III) и соляной кислотой.
Как сказано чуть выше, с кислотами амфотерные гидроксиды реагируют как основания с образованием соли и воды, то есть здесь будет следующая реакция:
Fe(OH)3 + 3HCl = FeCl3 + 3H2O
4. Взаимодействие с солями.
Кислоты могут реагировать с солями, если соль образована более слабой кислотой (к числу слабых относятся, например, угольная H2CO3 и сернистая H2SO3).
Пример.
Запишите уравнение реакции между карбонатом натрия и серной кислотой.
Карбонат – соль угольной кислоты, поэтому уравнение выглядит так:
Na2CO3 + H2SO4 = Na2SO4 + H2CO3.
Угольная кислота довольно нестойкая в обычных условиях и разлагается на углекислый газ и воды (особенно активно при повышении температуры) по такой схеме:
H2CO3 = H2O + CO2.
Пишите, пожалуйста, в комментариях, что осталось непонятным, и я обязательно дам дополнительные пояснения. Жалуйтесь на сложности в изучении школьного курса и говорите, что вас испугало в учебнике химии. И тогда следующая статья будет рассказывать именно об этой проблеме.
Источник
Классификация кислот
Кислоты можно классифицировать исходя из разных критериев:
1) Наличие атомов кислорода в кислоте
Кислородсодержащие | Бескислородные |
H3PO4,HNO3,HNO2,H2SO4,H3PO4,H2CO3,H2CO3, HClO4 все органические кислоты (HCOOH, CH3COOH и т.д.) | HF, HCl, HBr, HI, H2S |
2) Основность кислоты
Основностью кислоты называют число «подвижных» атомов водорода в ее молекуле, способных при диссоциации отщепляться от молекулы кислоты в виде катионов водорода H+, а также замещаться на атомы металла:
одноосновные | двухосновные | трехосновные |
HBr, HCl, HNO3, HNO2, HCOOH, CH3COOH | H2SO4, H2SO3, H2CO3, H2SiO3 | H3PO4 |
3) Летучесть
Кислоты обладают различной способностью улетучиваться из водных растворов.
Летучие | Нелетучие |
H2S, HCl, CH3COOH, HCOOH | H3PO4, H2SO4, высшие карбоновые кислоты |
4) Растворимость
Растворимые | Нерастворимые |
HF, HCl, HBr, HI, H2S, H2SO3, H2SO4, HNO3, HNO2, H3PO4, H2CO3, CH3COOH, HCOOH | H2SiO3, высшие карбоновые кислоты |
5) Устойчивость
Устойчивые | Неустойчивые |
H2SO4, H3PO4, HCl, HBr, HF | H2CO3, H2SO3 |
6) Способность к диссоциации
хорошо диссоциирующие (сильные) | малодиссоциирующие (слабые) |
H2SO4, HCl, HBr, HI, HNO3, HClO4 | H2CO3, H2SO3, H2SiO3 |
7) Окисляющие свойства
слабые окислители (проявляют окислительные свойства за счет катионов водорода H+) | сильные окислители (проявляют окислительные свойства за счет кислотообразующего элемента) |
практически все кислоты кроме HNO3 и H2SO4 (конц.) | HNO3 любой концентрации, H2SO4 (обязательно концентрированная) |
Химические свойства кислот
1. Способность к диссоциации
Кислоты диссоциируют в водных растворах на катионы водорода и кислотные остатки. Как уже было сказано, кислоты делятся на хорошо диссоциирующие (сильные) и малодиссоциирующие (слабые). При записи уравнения диссоциации сильных одноосновных кислот используется либо одна направленная вправо стрелка (), либо знак равенства (=), что показывает фактически необратимость такой диссоциации. Например, уравнение диссоциации сильной соляной кислоты может быть записано двояко:
либо в таком виде: HCl = H+ + Cl—
либо в таком: HCl → H+ + Cl—
По сути направление стрелки говорит нам о том, что обратный процесс объединения катионов водорода с кислотными остатками (ассоциация) у сильных кислот практически не протекает.
В случае, если мы захотим написать уравнение диссоциации слабой одноосновной кислоты, мы должны использовать в уравнении вместо знака две стрелки . Такой знак отражает обратимость диссоциации слабых кислот — в их случае сильно выражен обратный процесс объединения катионов водорода с кислотными остатками:
CH3COOH CH3COO— + H+
Многоосновные кислоты диссоциируют ступенчато, т.е. катионы водорода от их молекул отрываются не одновременно, а по очереди. По этой причине диссоциация таких кислот выражается не одним, а несколькими уравнениями, количество которых равно основности кислоты. Например, диссоциация трехосновной фосфорной кислоты протекает в три ступени с поочередным отрывом катионов H+ :
H3PO4 H+ + H2PO4—
H2PO4— H+ + HPO42-
HPO42- H+ + PO43-
Следует отметить, что каждая следующая ступень диссоциации протекает в меньшей степени, чем предыдущая. То есть, молекулы H3PO4 диссоциируют лучше (в большей степени), чем ионы H2PO4— , которые, в свою очередь, диссоциируют лучше, чем ионы HPO42-. Связано такое явление с увеличением заряда кислотных остатков, вследствие чего возрастает прочность связи между ними и положительными ионами H+.
Из многоосновных кислот исключением является серная кислота. Поскольку данная кислота хорошо диссоциирует по обоим ступеням, допустимо записывать уравнение ее диссоциации в одну стадию:
H2SO4 2H+ + SO42-
2. Взаимодействие кислот с металлами
Седьмым пунктом в классификации кислот мы указали их окислительные свойства. Было указано, что кислоты бывают слабыми окислителями и сильными окислителями. Подавляющее большинство кислот (практически все кроме H2SO4(конц.) и HNO3) являются слабыми окислителями, так как могут проявлять свою окисляющую способность только за счет катионов водорода. Такие кислоты могут окислить из металлов только те, которые находятся в ряду активности левее водорода, при этом в качестве продуктов образуется соль соответствующего металла и водород. Например:
H2SO4(разб.) + Zn ZnSO4 + H2
2HCl + Fe FeCl2 + H2
Что касается кислот-сильных окислителей, т.е. H2SO4 (конц.) и HNO3, то список металлов, на которые они действуют, намного шире, и в него входят как все металлы до водорода в ряду активности, так и практически все после. То есть концентрированная серная кислота и азотная кислота любой концентрации, например, будут окислять даже такие малоактивные металлы, как медь, ртуть, серебро. Более подробно взаимодействие азотной кислоты и серной концентрированной с металлами, а также некоторыми другими веществами из-за их специфичности будет рассмотрено отдельно в конце данной главы.
3. Взаимодействие кислот с основными и амфотерными оксидами
Кислоты реагируют с основными и амфотерными оксидами. Кремниевая кислота, поскольку является нерастворимой, в реакцию с малоактивными основными оксидами и амфотерными оксидами не вступает:
H2SO4 + ZnO ZnSO4 + H2O
6HNO3 + Fe2O3 2Fe(NO3)3 + 3H2O
H2SiO3 + FeO ≠
4. Взаимодействие кислот с основаниями и амфотерными гидроксидами
HCl + NaOH H2O + NaCl
3H2SO4 + 2Al(OH)3 Al2(SO4)3 + 6H2O
5. Взаимодействие кислот с солями
Данная реакция протекает в случае, если образуется осадок, газ либо существенно более слабая кислота, чем та, которая вступает в реакцию. Например:
H2SO4 + Ba(NO3)2 BaSO4↓ + 2HNO3
CH3COOH + Na2SO3 CH3COONa + SO2↑ + H2O
HCOONa + HCl HCOOH + NaCl
6. Специфические окислительные свойства азотной и концентрированной серной кислот
Как уже было сказано выше, азотная кислота в любой концентрации, а также серная кислота исключительно в концентрированном состоянии являются очень сильными окислителями. В частности, в отличие от остальных кислот они окисляют не только металлы, которые находятся до водорода в ряду активности, но и практически все металлы после него (кроме платины и золота).
Так, например, они способны окислить медь, серебро и ртуть. Следует однако твердо усвоить тот факт, что ряд металлов (Fe, Cr, Al) несмотря на то, что являются довольно активными (находятся до водорода), тем не менее, не реагируют с концентрированной HNO3 и концентрированной H2SO4 без нагревания по причине явления пассивации — на поверхности таких металлов образуется защитная пленка из твердых продуктов окисления, которая не позволяет молекулами концентрированной серной и концентрированной азотной кислот проникать вглубь металла для протекания реакции. Однако, при сильном нагревании реакция все таки протекает.
В случае взаимодействия с металлами обязательными продуктами всегда являются соль соответствующего метала и используемой кислоты, а также вода. Также всегда выделяется третий продукт, формула которого зависит от многих факторов, в частности, таких, как активность металлов, а также концентрация кислот и температура проведения реакций.
Высокая окислительная способность концентрированной серной и концентрированной азотной кислот позволяет им реагировать не только практическим со всеми металлами ряда активности, но даже со многими твердыми неметаллами, в частности, с фосфором, серой, углеродом. Ниже в таблице наглядно представлены продукты взаимодействия серной и азотной кислот с металлами и неметаллами в зависимости от концентрации:
7. Восстановительные свойства бескислородных кислот
Все бескислородные кислоты (кроме HF) могут проявлять восстановительные свойства за счет химического элемента, входящего в состав аниона, при действии различных окислителей. Так, например, все галогеноводородные кислоты (кроме HF) окисляются диоксидом марганца, перманганатом калия, дихроматом калия. При этом галогенид-ионы окисляются до свободных галогенов:
4HCl + MnO2 MnCl2 + Cl2↑ + 2H2O
16HBr + 2KMnO4 2KBr + 2MnBr2 + 8H2O + 5Br2
14НI + K2Cr2O7 3I2↓ + 2Crl3 + 2KI + 7H2O
Среди всех галогеноводородных кислот наибольшей восстановительной активностью обладает иодоводородная кислота. В отличие от других галогеноводородных кислот ее могут окислить даже оксид и соли трехвалентного железа.
6HI + Fe2O3 2FeI2 + I2↓ + 3H2O
2HI + 2FeCl3 2FeCl2 + I2↓ + 2HCl
Высокой восстановительной активностью обладает также и сероводородная кислота H2S. Ее может окислить даже такой окислитель, как диоксид серы:
2H2S + SO2 3S↓+ 2H2O
Источник
Продолжение. Cм. в № 22/2005;
1, 2, 3, 5, 6, 8, 9, 11, 13, 15, 16, 18, 22/2006;
3, 4, 7, 10, 11, 21/2007;
2, 7, 11, 18, 19, 21/2008;
1, 3/2009
ЗАНЯТИЕ 29
10-й класс (первый год обучения)
Галогены и их важнейшие соединения
П л а н
1.
Положение в таблице Д.И.Менделеева, строение
атома.
2. Происхождение названий.
3. Физические свойства.
4. Химические свойства (на примере хлора).
5. Нахождение в природе.
6. Основные методы получения (на примере хлора).
7. Хлороводород и хлориды.
8. Kислородсодержащие кислоты хлора и их соли.
Галогены («солероды») расположены в VIIа
подгруппе периодической системы. K ним относятся
фтор, хлор, бром, йод и астат. Все галогены
относятся к р-элементам, имеют конфигурацию
внешнего энергетического уровня ns2p5.
Поскольку на внешнем уровне атомов галогенов
находится 1 неспаренный р-электрон,
характерная валентность равна I. Kроме фтора, у
атомов всех галогенов в возбужденном состоянии
может увеличиваться число неспаренных
электронов, поэтому возможны валентности III, V и
VII.
Cl: 1s22s22p63s23p53d
(валентность I),
Cl*: 1s22s22p63s23p43d1
(валентность III),
Cl**: 1s22s22p63s23p33d2
(валентность V),
Cl***: 1s22s22p63s13p33d3
(валентность VII).
Галогены являются типичными неметаллами,
проявляют окислительные свойства. Степень
окисления галогенов в соединениях с металлами и
водородом –1; во всех кислородсодержащих
соединениях галогены (кроме фтора) проявляют
степени окисления +1, +3, +5, +7, например:
Вниз по подгруппе изменяется агрегатное
состояние галогенов, уменьшается растворимость
в воде, увеличивается радиус атома, уменьшаются
электроотрицательность, неметаллические
свойства и окислительная способность (фтор –
самый сильный окислитель). Для соединений
галогенов: от Cl– к I– увеличивается
восстановительная способность галогенид-ионов.
В ряду бескислородных и кислородсодержащих
кислот происходит усиление кислотных свойств:
Название фтора произошло от греческого слова – разрушающий,
поскольку плавиковая кислота, из которой
пытались получить фтор, разъедает стекло. Хлор
получил свое название благодаря окраске от
греческого слова –
желто-зеленый – цвет увядающей листвы. Бром
назван по запаху жидкого брома от греческого
слова –
зловонный. Название йода произошло от греческого
слова –
фиолетовый – по цвету парообразного йода.
Радиоактивный астат назван от греческого слова – неустойчивый.
По ф и з и ч е с к и м с в о й с т в а м
фтор – трудносжижаемый газ светло-зеленого
цвета, хлор – легко сжижающийся газ
желто-зеленого цвета, бром – тяжелая жидкость
красно-бурого цвета, йод – твердое
кристаллическое вещество темно-фиолетового
цвета с металлическим блеском, легко
подвергается возгонке (сублимации). Все галогены,
кроме йода, обладают резким удушливым запахом,
токсичны.
Х и м и ч е с к и е с в о й с т в а
Все галогены проявляют высокую химическую
активность, которая уменьшается при переходе от
фтора к йоду. Химические свойства галогенов
рассмотрим на примере хлора:
Н2 (+):
(F2 – со взрывом; Br2, I2 –
на свету и при повышенной температуре.)
О2 (–).
Металлы (+):
2Na + Cl2 = 2NaCl;
2Fe + 3Cl2 2FeCl3.
Неметаллы (+/–):*
N2 + Cl2 реакция не идет.
Н2О (+):
Основные оксиды (–).
Kислотные оксиды (–).
Основания (+/–):
Kислоты (+/–):
2HBr + Cl2 = 2HCl + Br2,
HCl + Br2
реакция не идет.
Соли (+/–):
2KBr + Cl2 = 2KCl + Br2,
KCl + Br2
реакция не идет.
В п р и р о д е в свободном виде галогены не
встречаются из-за высокой химической активности.
Среди наиболее распространенных соединений
хлора можно выделить каменную или поваренную
соль (NaCl), сильвинит (KCl•NaCl), карналлит (KCl•MgCl2).
Большое количество хлоридов содержится в
морской воде. Хлор входит в состав хлорофилла.
Природный хлор состоит из двух изотопов 35Cl
и 37Cl. Подчеркнем, что в случае хлора число
нейтронов в атоме возможно рассчитать только для
каждого изотопа в отдельности:
35Cl, p = 17, e = 17, n = 35 – 17 = 18;
37Cl, p = 17, e = 17, n = 37 – 17 = 20.
В п р о м ы ш л е н н о с т и хлор получают
электролизом водного раствора или расплава
хлорида:
Л а б о р а т о р н ы е м е т о д ы получения
(действие концентрированной соляной кислоты на
различные окислители):
MnO2 + 4HCl (конц.) = MnCl2 + Cl2 + 2H2O,
2KMnO4 + 16HCl (конц.) = 2MnCl2 + 5Cl2 + 2KCl + 8H2O,
KClO3 + 6HCl (конц.) = KCl + 3Cl2 + 3H2O,
K2Cr2O7 + 14HCl (конц.) = 2CrCl3
+ 3Cl2 + 2KCl + 7H2O,
Ca(ClO)2 + 4HCl (конц.) = CaCl2 + 2Cl2 + 2H2O.
Х л о р о в о д о р о д и х л о р и д ы
Хлороводород (HCl) – бесцветный газ с
резким запахом, тяжелее воздуха, хорошо
растворим в воде (в 1 объеме воды растворяется 450
объемов хлороводорода). Молекула образована по
типу ковалентной полярной связи. Водный раствор
хлороводорода называется соляной кислотой.
Kонцентрированная соляная кислота «дымит» на
воздухе, максимальная концентрация
хлороводорода в растворе составляет 35–36 %. Это
сильная кислота, проявляющая все характерные
свойства кислот:
HCl H+ + Cl–,
2HCl + Zn = ZnCl2 + H2,
HCl + Cu реакция
не идет,
2HCl + CaO = CaCl2 + H2O,
HCl + NaOH = NaCl + H2O,
2HCl + Na2CO3 = 2NaCl + H2O + CO2.
Kачественной реакцией на соляную кислоту и ее
соли (хлориды) является реакция с раствором
нитрата серебра:
Ag+ + Cl– —> AgCl,
AgNO3 + NaCl —> AgCl + NaNO3.
Хлороводород можно получить:
• прямым синтезом из водорода и хлора
(синтетический способ):
• действием концентрированной серной кислоты
на твердые хлориды – сульфатный способ
(аналогично можно получить HF, но нельзя получить
HBr и HI):
NaCl (тв.) + H2SO4 (конц.) = HCl + NaHSO4.
С ростом степени окисления хлора сила кислот
резко возрастает. Так, хлорноватистая кислота
очень слабая (слабее угольной), а хлорная
кислота – самая сильная из всех известных
кислот.
K и с л о р о д с о д е р ж а щ и е к и с л
о т ы х л о р а и и х с о л и
Хлорноватистая кислота (HClO) –
слабая, очень неустойчивая.
Соли этой кислоты (гипохлориты) являются очень
сильными окислителями. Наибольшее применение
находит смешанная соль соляной и хлорноватистой
кислот – хлорид-гипохлорит кальция (хлорная
известь):
Хлорноватая кислота (HClO3) –
существует только в разбавленных растворах. Сама
кислота и ее соли (хлораты) являются сильными
окислителями. Наиболее известной солью этой
кислоты является хлорат калия (бертолетова соль).
5KClO3 + 6P = 3P2O5 + 5KCl,
KClO3 + 3MnO2 + 6KOH = KCl + 3K2MnO4
+ 3H2O,
4KClO3 + 3K2S = 4KCl + 3K2SO4.
Многие соли кислородсодержащих кислот хлора
термически неустойчивы, например:
2KClO3 2KCl + 3O2,
4KClO3 3KClO4
+ KCl (без катализатора),
3KClO KClO3 +
2KCl,
KClO4 KCl + 2O2.
Тест по теме «Галогены и их
важнейшие соединения»
1.
Газ имеет плотность 3,485 г/л при давлении 1,2 атм и
температуре 25 °С. Установите формулу газа.
а) Фтор; б) хлор;
в) бромоводород;
г) хлороводород.
2. Явление перехода вещества из твердого
состояния в газообразное, минуя жидкое,
называется:
а) конденсация; б) сублимация;
в) возгонка; г) перегонка.
3. Природный хлор представляет собой смесь
изотопов с массовыми числами 35 и 37. Рассчитайте
изотопный состав хлора, приняв его относительную
атомную массу за 35,5.
а) 75 % и 25 %;
б) 24,4 % и 75,8 %;
в) 50 % и 50 %;
г) недостаточно данных для решения задачи.
4. Хлор можно получить, проводя электролиз:
а) расплава хлорида калия;
б) раствора хлорида калия;
в) расплава хлорида меди;
г) раствора хлорида меди.
5. Раствор фтороводорода в воде называют:
а) жавелевой водой;
б) плавиковой кислотой;
в) белильной известью;
г) фтороводородной кислотой.
6. Оксид хлора(V) является ангидридом
следующей кислоты:
а) хлорноватистой; б) хлорноватой;
в) хлористой; г) хлорной.
7. При прокаливании бертолетовой соли в
присутствии диоксида марганца в качестве
катализатора образуются:
а) хлорид калия и кислород;
б) перхлорат калия и хлорид калия;
в) перхлорат калия и озон;
г) гипохлорит калия и хлор.
8. K подкисленному раствору, содержащему 0,543
г некоторой соли, в состав которой входят литий,
хлор и кислород, добавили раствор йодида натрия
до прекращения выделения йода. Масса
выделившегося йода составила 4,57 г. Название
исходной соли:
а) гипохлорит лития; б) хлорит лития;
в) хлорат лития; г) перхлорат лития.
9. В молекулах галогенов химическая связь:
а) ковалентная полярная;
б) ковалентная неполярная;
в) ионная;
г) донорно-акцепторная.
10. Хлор, в отличие от фтора, при
определенных условиях может реагировать с:
а) водой; б) водородом;
в) медью; г) гидроксидом натрия.
Kлюч к тесту
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
б | б, в | а | а, б, в, г | б, г | б | а | в | б | г |
Задачи и упражнения на галогены и их
соединения
Ц е п о ч к и п р е в р а щ е н и й
1.
Хлорид калия —> хлор —> хлороводород —>
хлорид кальция —> хлороводород —> хлор —>
хлорат калия.
2. Хлор —> бертолетова соль —> хлорид
калия —> соляная кислота + диоксид марганца +
вода —> хлор —> хлорид меди(II) —> хлор.
3. Хлорид калия —> хлор —> хлорат калия
—> хлорид калия —> калий.
4. Хлорид калия —> хлор —> хлороводород
—> хлор —> гипохлорит калия.
5. Хлорид натрия —> хлороводород —> хлор
—> бертолетова соль —> хлорид калия —>
гидроксид калия —> гипохлорит калия.
6. Хлорат калия —> А —> В—> С —> А —>
нитрат калия (вещества А, В, С содержат хлор,
первые три превращения –
окислительно-восстановительные реакции).
7. Оксид кальция —> гидроксид кальция —>
белильная известь —> хлорид кальция —>
кальций.
8. Бромид натрия —> хлорид натрия —> хлор
—> хлорная известь —> карбонат кальция —>
гидрокарбонат кальция —> углекислый газ.
9. Йодид натрия —> йод —> йодид калия —>
йодид серебра.
10. Гипохлорит калия —> хлорат калия —>
перхлорат калия —> хлорид калия.
1. Сосуд с 200 г хлорной воды
выдержали на прямом солнечном свету и собрали
выделившийся газ, объем которого при н.у.
составил 0,18 л. Определите состав хлорной воды
(массовую долю хлора).
Ответ. 0,57 %.
2. Газ, полученный прокаливанием 9,8 г
бертолетовой соли, смешан с газом, полученным на
аноде в результате полного электролиза расплава
22,2 г хлорида кальция. Полученную смесь газов
пропустили через 400 г 2%-го горячего раствора
гидроксида натрия. Определите состав
полученного раствора.
Ответ. 2,38 % NaCl; 0,84 % NaClO3.
3. Рассчитать массу соли и объем газа (н.у.),
образовавшихся при разложении 17 г соли,
окрашивающей пламя горелки в желтый цвет и
содержащей 27,06 % металла, 16,47 % азота и 56,47 %
кислорода. Kакая масса бертолетовой соли
потребуется для получения такого же количества
газа?
Ответ. 13,8 г NaNO2; 2,24 л O2; 8,13
г KClO3.
4. Kакой объем хлора (н.у.) можно получить из 1
м3 раствора (плотность 1,23 г/см3),
содержащего 20,7 % хлорида натрия и 4,3 %
хлорида магния?
Ответ. 61,2 м3.
5. Газ, выделившийся на аноде при
электролизе 200 г 20%-го раствора хлорида натрия,
пропустили через 400 г 30%-го раствора бромида
калия. K полученному раствору добавили избыток
раствора нитрата серебра. Определите
количественный состав выпавшего осадка.
Ответ. 59,4 г AgBr; 98,154 г AgCl.
1. Через трубку с порошкообразной
смесью хлорида и йодида натрия массой 3 г
пропустили 1,3 л хлора при температуре 42 °С и
давлении 101,3 кПа. Полученное в трубке вещество
прокалили при 300 °С, при этом осталось 2 г
вещества. Определите массовые доли солей в
исходной смеси.
Ответ. 45,3 % NaCl; 54,6 % NaI.
2. Смесь йодида магния и йодида цинка
обработали избытком бромной воды, полученный
раствор выпарили. Масса сухого остатка оказалась
в 1,445 раза меньше массы исходной смеси. Во сколько
раз масса осадка, полученного после обработки
такой же смеси избытком карбоната натрия, будет
меньше массы исходной смеси?
Ответ. В 2,74 раза.
3. Для окисления 2,17 г сульфита
щелочно-земельного металла добавили хлорную
воду, содержащую 1,42 г хлора. K полученной смеси
добавили избыток бромида калия, при этом
выделилось 1,6 г брома. Определите состав осадка,
содержащегося в смеси, и рассчитайте его массу.
Решение
Уравнение реакции:
Далее с избытком KBr из полученной смеси (HCl, MSO4,
избыток Cl2 или избыток MSO3) с
выделением Br2 может реагировать только Cl2:
2KBr + Cl2 = 2KCl + Br2, (2)
(Br2)
= m(Br2)/M(Br2) = 1,6/160 = 0,01 моль.
По уравнению реакции (2):
(Cl2)
= (Br2) = 0,01
моль.
Суммарно в двух реакциях израсходовано хлора:
(Cl2)
= m(Cl2)/M(Cl2) = 1,42/71 = 0,02 моль.
Следовательно, в реакции (1) прореагировало:
0,02 – 0,01 = 0,01 моль Cl2.
По уравнению реакции (1):
(MSO3)
= n(Cl2) = 0,01 моль;
M(MSO3) = m(MSO3)/(MSO3) = 2,17/0,01 = 217 г/моль.
Таким образом, соль, участвующая в реакции, –
сульфит бария BaSO3.
Уравнение реакции (1):
BaSO3 + Cl2 + H2O = 2HCl + BaSO4.
(BaSO4)
= (BaSO3) = 0,01
моль,
m(BaSO4) = (BaSO4)•M(BaSO4) = 0,01•233 = 2,33 г.
Ответ. 2,33 г BaSO4.
4. Через 800 г 10%-го водного раствора хлорида
натрия пропустили ток. После окончания процесса
электролиза соли весь выделившийся на аноде газ
поглотили горячим раствором, получившимся в
результате электролиза. Определите состав
раствора, полученного после поглощения газа.
Ответ. В растворе 8,35 % NaCl и
3,03 % NaClO3.
5. Плотность смеси хлора с водородом при
давлении 0,2 атм и температуре 27 °С равна
0,0894 г/л. Хлороводород, полученный при взрыве 100
л (н.у.) такой смеси, растворили в 500 г 10%-й соляной
кислоты. Найдите массовую долю хлороводорода в
полученном растворе.
Ответ. 17 %.
K а ч е с т в е н н ы е з а д а ч и
1. Назовите вещества А, В и С, если известно,
что они вступают в реакции, описываемые
приведенными ниже схемами; напишите полные
уравнения реакций этих схем:
А + Н2 —> В,
А + Н2О В +
С,
А + Н2О + SО2 —> В + … ,
С —> В + … .
Ответ. Вещества: А – Сl2,
B – HCl; С – HClO.
2. Газ А под действием концентрированной
серной кислоты превращается в простое вещество
В, которое реагирует с сероводородной кислотой с
образованием простого вещества С и раствора
исходного вещества А. Идентифицируйте вещества,
напишите уравнения реакций.
Ответ. Вещества: А – HBr; B – Br2;
С – S.
3. При пропускании хлора через раствор
сильной кислоты А выделяется простое вещество В
и раствор приобретает темную окраску. При
дальнейшем пропускании хлора вещество В
превращается в кислоту С и раствор
обесцвечивается. Назовите вещества А, В и С,
напишите уравнения реакций.
Ответ. Вещества: А – HI; B – I2,
C – HIO3.
4. Приведите примеры реакций, в ходе которых
происходит полное восстановление свободного
брома: а) в кислом водном растворе; б) в щелочном
водном растворе; в) в газовой фазе.
Ответ. Уравнения реакций:
5. Kакие вещества вступили в реакцию и при
каких условиях, если в результате образовались
следующие вещества (указаны все продукты без
коэффициентов): а) хлорид бария и гидроксид калия;
б) бромид кальция и бромоводород; в) хлорид калия
и пентаоксид фосфора. Напишите полные уравнения
реакций.
Ответ. Уравнения реакций:
а) Ba(ClO)2 + 2KH = BaCl2 + 2KOH;
б) CaH2 + 2Br2 = CaBr2 + 2HBr;
в) 5KClO3 + 6P
5KCl + 3P2O5 .
6. Для дегазации необходимо 254 г хлорной
извести. В лаборатории имеются: кальций, диоксид
марганца, натрий, цинк, хлорид натрия, серная
кислота, вода, фосфор, сера, сульфат бария. Kакие
реагенты и в каком количестве потребуются?
Напишите полные уравнения реакций.
Ответ. 142 г Ca; 830,7 г