В каких реакциях азотная кислота проявляет окислительные свойства
СПЕЦИФИЧЕСКИЕ СВОЙСТВА АЗОТНОЙ КИСЛОТЫ
Азотная
кислота – сильный окислитель
N+5
→ N+4→ N+2→ N+1→ No →N-3
N+5
+ 8e–→N-3
окислитель, восстанавливается
1.
Разлагается на свету и при нагревании
4HNO3 t˚C→ 2H2O + 4NO2
+ O2
Образуется бурый газ
2.
Окрашивает белки в оранжево-желтый цвет (при попадании на кожу рук –
“ксантопротеиновая реакция”)
3.
Реагирует с металлами.
В зависимости от концентрации кислоты и
положения металла в электрохимическом ряду напряжений Н. Бекетова могут
образовываться разные азотсодержащие продукты.
При взаимодействии с металлами никогда
не выделяется водород
HNO3 + Me = соль + H2O + Х
Щелочные и щелочноземельные | Fe, Cr, Al, | Металлы до водорода | Металлы после водорода (Cu и др) | Благородные Au, Pt, Os, Ir, Ta | |
HNO3 | N2O | пассивация (при обычных условиях); NO2 (при нагревании) | NO2 | NO2 | Нет реакции |
HNO3 | NH3, | Основной NO, но в зависимости от | NO |
Таблица. Продукты реакции взаимодействия азотной
кислоты с металлами
Взаимодействие меди с азотной
кислотой
Упрощенная
схема
«Продукты реакции взаимодействия азотной
кислоты с металлами»
Царская водка: V(HNO3)
: V(HCl) = 1 : 3 растворяет
благородные металлы.
HNO3 + 4HCl + Au
= H[AuCl4]
+ NO + 2H2O
4HNO3 + 18HCl + 3Pt = 3H2[PtCl6] + 4NO
+ 8H2O
4.
Реагирует с неметаллами.
Азотная кислота превращается в NO (или в
NO2); неметаллы окисляются до соответствующих кислот:
Видео “Взаимодействие азотной кислоты с углем”
S0 + 6HNO3(конц) → H2S+6O4 + 6NO2 + 2H2O
B0 + 3HNO3 → H3B+3O3
+ 3NO2
3P0 + 5HNO3 + 2H2O → 5NO + 3H3P+5O4
HNO3 (конц.)
+ неметалл = окисление неметалла до кислоты в высшей степени окисления + NO2 +
вода
HNO3(разбав.) + неметалл +
вода = окисление неметалла до кислоты в высшей степени окисления + NO
ВИДЕО – ЭКСПЕРИМЕНТЫ
Видео – Эксперимент ” Индикаторы в
азотной кислоте”
Видео – Эксперимент “Действие
азотной кислоты на белки”
Видео – Эксперимент “Действие
азотной кислоты на бумагу и солому”
Видео – Эксперимент “Взаимодействие
меди с азотной кислотой”
Видео – Эксперимент “Свойства
азотной кислоты”
Видео – Эксперимент “Взаимодействие
азотной кислоты с металлами”
Видео – Эксперимент “Взаимодействие
безводной азотной кислоты с белым фосфором”
Видео – Эксперимент “Взаимодействие
безводной азотной кислоты с углем”
Видео – Эксперимент “Взаимодействие
безводной азотной кислоты со скипидаром”
Видео – Эксперимент “Окислительные
свойства азотной кислоты”
Тренажёр “Взаимодействие азотной
кислоты с металлами”
ЗАДАНИЯ ДЛЯ ЗАКРЕПЛЕНИЯ
№1. Осуществите
превращения по схеме, назовите вещества, для УХР со * составить ОВ баланс, а
для** разбор РИО:
NH4Cl**→ NH3* → N2 → NO → NO2
→ HNO3 → NO2
№2. Осуществить превращения по схеме
(внимательно посмотрите, куда направлены стрелки):
Соль аммония←Аммиак←Нитрид Лития ←Азот →
Оксид азота (II)←Азотная кислота
Для ОВР составить е-баланс, для РИО
полные, ионные уравнения.
№3. Напишите уравнения реакций взаимодействия
азотной кислоты со следующими веществами в молекулярном и ионном виде:
a) Al2O3
б) Ba(OH)2
в) Na2S
№4. Запишите уравнения, составьте
электронный баланс, укажите процессы окисления и восстановления, окислитель и
восстановитель:
А) Сa + HNO3 (конц.)
Б) Сa + HNO3 (paзбавл.)
№5. Осуществите переход по ссылке,
изучите информацию на странице и посмотрите видео , нажмите “посмотреть
опыт”.
Напишите в молекулярном и ионном виде уравнения реакций, с помощью которых
можно различить азотную, серную и соляную кислоту.
Это интересно:
“Фотохимический смог”
Источник
Àçîòíàÿ êèñëîòà (HNO3) – áåñöâåòíàÿ æèäêîñòü ñ óäóøëèâûì çàïàõîì. Åñòü äàííûå îá îáðàçîâàíèè àçîòíîé êèñëîòû â âîçäóõå ïîñëå ãðîçû.
Ñòðîåíèå àçîòíîé êèñëîòû.
Ñòåïåíü îêèñëåíèÿ ó àòîìà àçîòà â åãî êèñëîòå ðàâíà +5 (õîòÿ âàëåíòíîñòü ðàâíà 4). Äâîéíàÿ ñâÿçü ðàâíîìåðíî ðàñïðåäåëåíà ìåæäó àòîìàìè êèñëîðîäà. Ñòðåëêîé ïîêàçàíà äîíîðíî-àêöåïòîðíàÿ ñâÿçü.
Ôèçè÷åñêèå ñâîéñòâà àçîòíîé êèñëîòû.
Ïðè îáû÷íûõ óñëîâèÿõ àçîòíàÿ êèñëîòà – ýòî æèäêîñòü ñ ðåçêèì çàïàõîì. Ïðè õðàíåíèè îíà æåëòååò (ò.ê. ìàëîóñòîé÷èâà ê âîçäåéñòâèþ ñâåòà è ÷àñòè÷íî ðàçëàãàåòñÿ).
Ïîëó÷åíèå àçîòíîé êèñëîòû.
 1915 ãîäó Èâàí Èâàíîâè÷ Àíäðååâ ïîëó÷èë àçîòíóþ êèñëîòó èç àçîòà è êèñëîðîäà ñ ïîìîùüþ ýëåêòðîãóãîâîãî ìåòîäà (íî îí íå ïîëó÷èë øèðîêîãî ïðèìåíåíèÿ) ïðè 2000 ºÑ.
 íàñòîÿùåå âðåìÿ ïîëó÷àþò êèñëîòó äåéñòâèåì êîíöåíòðèðîâàííîé ñåðíîé êèñëîòû íà íèòðàòû:
NaNO3 + H2SO4 = NaHSO4 + HNO3,
Ñâîéñòâà àçîòíîé êèñëîòû.
HNO3 ÿâëÿåòñÿ ñèëüíîé êèñëîòîé è âñòóïàåò âî âñå ðåàêöèè, ñâîéñòâåííûå êèñëîòàì. Ñïåöèôè÷åñêîé îñîáåííîñòüþ àçîòíîé êèñëîòû ÿâëÿåòñÿ åå îêèñëèòåëüíàÿ ñïîñîáíîñòü (ñòåïåíü îêèñëåíèÿ ó àçîòà +5).
Ìîæíî îïèñàòü îáùåé ñõåìîé:
1. Âñòóïàåò â ðåàêöèþ ñî ëþáûìè ìåòàëëàìè (èñêë: áëàãîðîäíûå ìåòàëëû è âîëüôðàì).
 íîðìàëüíûõ óñëîâèÿõ êèñëîòà ïàññèâèðóåò ïðè ðåàêöèè ñ æåëåçîì, àëþìèíèåì è õðîìîì, îíà ïàññèâèðóåò, íî ïðè ñèëüíîì íàãðåâå âñòóïàåò â ðåàêöèþ.
2. Ñ íåìåòàëëàìè êèñëîòà âîññòàíàâëèâàåòñÿ, êàê ïðàâèëî, äî îêñèäà àçîòà (II):
3Ñ + 8HNO3 = 3CO2 + 4NO + 2H2O,
ZnS + 8HNO3(êîíö) = ZnSO4 + 8NO2 + 4H2O,
3P + 5HNO3 + 2H2O = 3H3PO4 + 5NO.
3. Êîíöåíòðàöèÿ êèñëîòû âëèÿåò íà õàðàêòåð ïîëó÷åííûõ ïðîäóêòîâ.
4. Êîíöåíòðèðîâàííàÿ àçîòíàÿ ðàñòâîðÿåò çîëîòî. Äëÿ ýòîãî áåðóò ñìåñü àçîòíîé è ñîëÿíîé êèñëîò â ïðîïîðöèè 1:3. Òàêîé ðàñòâîð íàçûâàþò öàðñêîé âîäêîé.  ðåçóëüòàòå ïîëó÷àþòñÿ ñîîòâåòñòâóþùèå õëîðèäû:
Au + HNO3 + 3HCl = AuCl3+ NO + 2H2O.
5. Êèñëîòà ðàçëàãàåòñÿ ïîä äåéñòâèåì ñâåòà:
4HNO3 = 4NO2 +2H2O + O2.
Êàëüêóëÿòîðû ïî õèìèè | |
Õèìèÿ îíëàéí íà íàøåì ñàéòå äëÿ ðåøåíèÿ çàäà÷ è óðàâíåíèé. | |
Êàëüêóëÿòîðû ïî õèìèè |
Êèñëîòû, ñâîéñòâà êèñëîò. | |
Óãîëüíàÿ, ôîñôîðíàÿ, íóêëåèíîâàÿ, õëîðíàÿ, éîäíàÿ, êàðáîíîâàÿ, êðåìíèåâàÿ, ñåðíàÿ, àçîòíàÿ è äðóãèå êèñëîòû è èõ ñâîéñòâà | |
Êèñëîòû, ñâîéñòâà êèñëîò. |
Õèìèÿ 7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ | |
Îñíîâíàÿ èíôîðìàöèÿ ïî êóðñó õèìèè äëÿ îáó÷åíèÿ è ïîäãîòîâêè â ýêçàìåíàì, ÃÂÝ, ÅÃÝ, ÎÃÝ, ÃÈÀ | |
Õèìèÿ 7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ |
Êèñëîòû. | |
Êèñëîòû êëàññ ñîåäèíåíèé, êîòîðûå ñîñòîÿò èç ïðîòîíà ( âîäîðîäà ) è êèñëîòíîãî îñòàòêà. | |
Êèñëîòû. |
Источник
Азотная кислота является одной из самых сильных минеральных кислот, в концентрированном виде выделяет пары
желтого цвета с резким запахом. За исключением золота и платины растворяет все металлы.
Применяют азотную кислоту для получения красителей, удобрений, органических нитропродуктов, серной и фосфорной
кислот. В результате ожога азотной кислотой образуется сухой струп желто-зеленого цвета.
Получение
В промышленности азотную кислоту получают в результате окисления аммиака на платино-родиевых катализаторах.
NH3 + O2 → (кат. Pt) NO + H2O
NO + O2 → NO2
NO2 + H2O + O2 → HNO3
Чистая азотная кислота впервые была получена действием на селитру концентрированной серной кислоты:
KNO3 + H2SO4(конц.) → KHSO4 + HNO3↑
Химические свойства
- Кислотные свойства
- Термическое разложение
- Реакции с неметаллами
- Реакции с металлами
Является одноосновной сильной кислотой, вступает в реакции с основными оксидами, основаниями. С солями реагирует при условии
выпадения осадка, выделения газа или образования слабого электролита.
CaO + HNO3 → Ca(NO3)2 + H2O
HNO3 + NaOH → NaNO3 + H2O
Na2CO3 + HNO3 → NaNO3 + H2O + CO2↑
При нагревании азотная кислота распадается. На свету (hv) также происходит подобная реакция, поэтому азотную кислоту следует хранить в
темном месте.
HNO3 → (hv) NO2 + H2O + O2
Азотная кислота способна окислить все неметаллы, при этом, если кислота концентрированная, азот обычно восстанавливается до NO2,
если разбавленная – до NO.
HNO3(конц.) + C → CO2 + H2O + NO2
HNO3(конц.) + S → H2SO4 + NO2 + H2O
HNO3(разб.) + S → H2SO4 + NO + H2O
HNO3(конц.) + P → H3PO4 + NO2 + H2O
В любой концентрации азотная кислота проявляет свойства окислителя, при этом азот восстанавливается до степени окисления от +5 до -3. На какой
именно степени окисления остановится азот, зависит от активности металла и концентрации азотной кислоты.
Для малоактивных металлов (стоящих в ряду напряжений после водорода) реакция с концентрированной азотной кислотой происходит с образованием
нитрата и преимущественно NO2.
Cu + HNO3(конц.) → Cu(NO3)2 + NO2 + H2O
С разбавленной азотной кислотой газообразным продуктом преимущественно является NO.
Cu + HNO3(разб.) → Cu(NO3)2 + NO + H2O
В реакциях с металлами, стоящими левее водорода в ряду напряжений, возможны самые разные газообразные (и не газообразные) продукты: бурый газ NO2,
NO, N2O, атмосферный газ N2, NH4NO3.
Помните о закономерности: чем более разбавлена кислота и активен металл, тем сильнее восстанавливается азот. Ниже представлены реакции цинка
с азотной кислотой в различных концентрациях.
Zn + HNO3(70% – конц.) → Zn(NO3)2 + NO2 + H2O
Zn + HNO3(35% – ср. конц.) → Zn(NO3)2 + NO + H2O
Zn + HNO3(20% – разб.) → Zn(NO3)2 + N2O + H2O
Zn + HNO3(10% – оч. разб.) → Zn(NO3)2 + N2 + H2O
Zn + HNO3(3% – оч. разб.) → Zn(NO3)2 + NH4NO3 + H2O
Посмотрите на таблицу ниже, в которой также отражены изученные нами закономерности.
Концентрированная холодная азотная кислота пассивирует хром, железо, алюминий, никель, свинец и бериллий. Это происходит
за счет оксидной пленки, которой покрыты данные металлы.
Al + HNO3(конц.) ⇸ (реакция не идет)
При нагревании или амальгамировании (покрытие ртутью) перечисленных металлов реакция с азотной кислотой идет, так
как оксидная пленка на поверхности металлов разрушается.
Al + HNO3 → (t) Al2O3 + NO2 + H2O
Соли азотной кислоты – нитраты NO3-
Получение
Получают нитраты в ходе реакции азотной кислоты с металлами, их оксидами и основаниями.
Fe + HNO3(разб.) → Fe(NO3)2 + NH4NO3 + H2O
В реакциях с оксидами и основаниями газообразный продукт обычно не выделяется.
MgO + HNO3 → Mg(NO3)2 + H2O
Cr(OH)3 + HNO3 → Cr(NO3)3 + H2O
Нитрат аммония получают реакция аммиака с азотной кислотой.
NH3 + HNO3 → NH4NO3
Обратите внимание на следующую закономерность: концентрированная азотная кислота, как правило, окисляет железо и хром до +3. Разбавленная
кислота – до +2.
Fe + HNO3(разб.) → Fe(NO3)2 + NH4NO3 + H2O
Fe + HNO3(конц.) → Fe(NO3)3 + NO + H2O
Химические свойства
- Реакции с металлами, основаниями и кислотами
- Разложение нитратов
Как и для всех солей, из нитратов можно вытеснить металл другим более активным. Соли реагируют с основаниями и кислотами, если в результате
реакции выпадает осадок, выделяется газ или образуется слабый электролит (вода).
Hg(NO3)2 + Mg → Mg(NO3)2 + Hg
Pb(NO3)2 + LiOH → Pb(OH)2 + LiNO3
AgNO3 + KCl → AgCl↓ + KNO3
Ba(NO3)2 + Na2SO4 → BaSO4 + NaNO3
Нитраты разлагаются в зависимости от активности металла, входящего в их состав.
Pb(NO3)2 → (t) PbO + NO2 + O2
NaNO3 → (t) NaNO2 + O2
Cu(NO3)2 → (t) CuO + NO2 + O2
PtNO3 → (t) Pt + NO2 + O2
© Беллевич Юрий Сергеевич 2018-2020
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.
Источник
Эта статья включает описание термина «Меланж»; см. также другие значения.
Азотная кислота | |
---|---|
Систематическое наименование | азотная кислота |
Хим. формула | HNO3 |
Состояние | жидкость |
Молярная масса | 63,012 г/моль |
Плотность | 1,513 г/см³ |
Энергия ионизации | 11,95 ± 0,01 эВ[2] |
Температура | |
• плавления | −41,59 °C |
• кипения | 82,6 °C |
Мол. теплоёмк. | 109,9 Дж/(моль·К) |
Энтальпия | |
• образования | −174,1 кДж/моль |
• плавления | 10,47 кДж/моль |
• кипения | 39,1 кДж/моль |
• растворения | −33,68 кДж/моль |
Давление пара | 56 гПА |
Константа диссоциации кислоты | −1,64 [1] |
Растворимость | |
• в воде | смешивается |
Показатель преломления | 1,397 |
Дипольный момент | 2,17 ± 0,02 Д |
Рег. номер CAS | 7697-37-2 |
PubChem | 944 |
Рег. номер EINECS | 231-714-2 |
SMILES | O[N+](=O)[O-] |
InChI | InChI=1S/HNO3/c2-1(3)4/h(H,2,3,4) GRYLNZFGIOXLOG-UHFFFAOYSA-N |
RTECS | QU5775000 |
ChEBI | 48107 |
Номер ООН | 2031 |
ChemSpider | 919 |
ЛД50 | 430 мг/кг |
Токсичность | 3 класс (умеренноопасная) |
Пиктограммы СГС | |
NFPA 704 | 4 COR |
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное. | |
Медиафайлы на Викискладе |
Азо́тная кислота́ (HNO3) — сильная одноосновная кислота. Твёрдая азотная кислота образует две кристаллические модификации с моноклинной и ромбической решётками.
Азотная кислота смешивается с водой в любых соотношениях. В водных растворах она практически полностью диссоциирует на ионы. Образует с водой азеотропную смесь с концентрацией 68,4 % и tкип 120 °C при нормальном атмосферном давлении. Известны два твёрдых гидрата: моногидрат (HNO3·H2O) и тригидрат (HNO3·3H2O). Кислота ядовита.
Физические и физико-химические свойства[править | править код]
Плотность раствора азотной кислоты в зависимости от концентрации
Фазовая диаграмма водного раствора азотной кислоты
Азот в азотной кислоте четырёхвалентен[3], степень окисления +5.
Азотная кислота — бесцветная, дымящая на воздухе жидкость, температура плавления −41,59 °C, кипения +82,6 °C (при нормальном атмосферном давлении) с частичным разложением. Азотная кислота смешивается с водой во всех соотношениях. Водные растворы HNO3 с массовой долей 0,95—0,98 называют «дымящей азотной кислотой», с массовой долей 0,6—0,7 — концентрированной азотной кислотой.
С водой образует азеотропную смесь (массовая доля 68,4 %, d20 = 1,41 г/см3, Tкип = 120,7 °C)
При кристаллизации из водных растворов азотная кислота образует кристаллогидраты:
- моногидрат HNO3·H2O, Tпл = −37,62 °C;
- тригидрат HNO3·3H2O, Tпл = −18,47 °C.
Твёрдая азотная кислота образует две кристаллические модификации:
- моноклинная сингония, пространственная группа P 21/a, параметры ячейки a = 1,623 нм, b = 0,857 нм, c = 0,631 нм, β = 90°, Z = 16;
- ромбическая
Моногидрат образует кристаллы ромбической сингонии, пространственная группа P na2, параметры ячейки a = 0,631 нм, b = 0,869 нм, c = 0,544 нм, Z = 4.
Плотность водных растворов азотной кислоты как функция её концентрации описывается уравнением
где d — плотность в г/см³, c — массовая доля кислоты. Данная формула плохо описывает поведение плотности при концентрации более 97 %.
Химические свойства[править | править код]
Высококонцентрированная HNO3 имеет обычно бурую окраску вследствие происходящего на свету процесса разложения:
При нагревании азотная кислота распадается по той же реакции. Азотную кислоту можно перегонять без разложения только при пониженном давлении (указанная температура кипения при атмосферном давлении найдена экстраполяцией).
Золото, некоторые металлы платиновой группы и тантал инертны к азотной кислоте во всём диапазоне концентраций, остальные металлы реагируют с ней, ход реакции при этом определяется её концентрацией.
HNO3 как сильная одноосновная кислота взаимодействует:
а) с основными и амфотерными оксидами:
б) с основаниями:
в) вытесняет слабые кислоты из их солей:
При кипении или под действием света азотная кислота частично разлагается:
Азотная кислота в любой концентрации проявляет свойства кислоты-окислителя, при этом азот восстанавливается до степени окисления от +5 до −3. Глубина восстановления зависит в первую очередь от природы восстановителя и от концентрации азотной кислоты. Как кислота-окислитель, HNO3 взаимодействует:
а) с металлами, стоящими в ряду напряжений правее водорода:
Концентрированная HNO3
Разбавленная HNO3
б) с металлами, стоящими в ряду напряжений левее водорода:
Все приведенные выше уравнения отражают только доминирующий ход реакции. Это означает, что в данных условиях продуктов данной реакции больше, чем продуктов других реакций, например, при взаимодействии цинка с азотной кислотой (массовая доля азотной кислоты в растворе 0,3) в продуктах будет содержаться больше всего NO, но также будут содержаться (только в меньших количествах) и NO2, N2O, N2 и NH4NO3.
Единственная общая закономерность при взаимодействии азотной кислоты с металлами: чем более разбавленная кислота и чем активнее металл, тем глубже восстанавливается азот:
увеличение концентрации кислоты увеличение активности металла
Продукты, полученные при взаимодействии железа с HNO3, разной концентрации
С золотом и платиной азотная кислота, даже концентрированная, не взаимодействует. Железо, алюминий, хром холодной концентрированной азотной кислотой пассивируются. С разбавленной азотной кислотой железо взаимодействует, причем в зависимости от концентрации кислоты образуются не только различные продукты восстановления азота, но и различные продукты окисления железа:
Азотная кислота окисляет неметаллы, при этом азот обычно восстанавливается до NO или NO2:
и сложные вещества, например:
Некоторые органические соединения (например амины, скипидар) самовоспламеняются при контакте с концентрированной азотной кислотой.
Некоторые металлы (железо, хром, алюминий, кобальт, никель, марганец, бериллий), реагирующие с разбавленной азотной кислотой, пассивируются концентрированной азотной кислотой и устойчивы к её воздействию.
Смесь азотной и серной кислот носит название «меланж».
Азотная кислота широко используется для получения нитросоединений.
Смесь трех объёмов соляной кислоты и одного объёма азотной называется «царской водкой». Царская водка растворяет большинство металлов, в том числе золото и платину. Её сильные окислительные способности обусловлены образующимся атомарным хлором и хлоридом нитрозила:
Взаимодействие концентрированных азотной и соляной кислот с благородными металлами:
Нитраты[править | править код]
Азотная кислота является сильной кислотой. Её соли — нитраты — получают действием HNO3 на металлы и некоторые соединения неметаллов, оксиды, гидроксиды или карбонаты. Все нитраты хорошо растворимы в воде. Нитрат-ион в воде не гидролизуется.
Соли азотной кислоты при нагревании необратимо разлагаются, причём состав продуктов разложения определяется катионом:
а) нитраты металлов, стоящих в ряду напряжений левее магния (исключая литий):
б) нитраты металлов, расположенных в ряду напряжений между магнием и медью (а также литий):
в) нитраты металлов, расположенных в ряду напряжений правее ртути:
г) нитрат аммония:
Нитраты в водных растворах практически не проявляют окислительных свойств, но при высокой температуре в твердом состоянии являются сильными окислителями, например, при сплавлении твердых веществ:
Цинк и алюминий в щелочном растворе восстанавливают нитраты до NH3:
Соли азотной кислоты — нитраты — широко используются как удобрения. При этом практически все нитраты хорошо растворимы в воде, поэтому в виде минералов их в природе чрезвычайно мало; исключение составляют чилийская (натриевая) селитра и индийская селитра (нитрат калия). Большинство нитратов получают искусственно.
С азотной кислотой не реагируют стекло, фторопласт-4.
Исторические сведения[править | править код]
Методика получения разбавленной азотной кислоты путём сухой перегонки селитры с квасцами и медным купоросом была, по-видимому, впервые описана в трактатах Джабира (Гебера в латинизированных переводах) в VIII веке. Этот метод с теми или иными модификациями, наиболее существенной из которых была замена медного купороса железным, применялся в европейской и арабской алхимии вплоть до XVII века.
В XVII веке Глаубер предложил метод получения летучих кислот реакцией их солей с концентрированной серной кислотой, в том числе и азотной кислоты из калийной селитры, что позволило ввести в химическую практику концентрированную азотную кислоту и изучить её свойства. Метод Глаубера применялся до начала XX века, причём единственной существенной модификацией его оказалась замена калийной селитры на более дешёвую натриевую (чилийскую) селитру.
Во времена М. В. Ломоносова и вплоть до середины XX века азотная кислота в обиходе именовалась крепкой водкой[4].
Промышленное производство, применение и действие на организм[править | править код]
Азотная кислота является одним из самых крупнотоннажных продуктов химической промышленности.
Производство азотной кислоты[править | править код]
Современный способ её производства основан на каталитическом окислении синтетического аммиака на платино-родиевых катализаторах (процесс Оствальда) до смеси оксидов азота (нитрозных газов), с дальнейшим поглощением их водой
Все три реакции — экзотермические, первая — необратимая, остальные — обратимые[5]. Концентрация полученной таким методом азотной кислоты колеблется в зависимости от технологического оформления процесса от 45 до 58 %. Для получения концентрированной азотной кислоты либо смещают равновесие в третьей реакции путём повышения давления до 50 атмосфер, либо в разбавленную азотную кислоту добавляют серную кислоту и нагревают, при этом азотная кислота, в отличие от воды и серной кислоты, испаряется[6].
Впервые азотную кислоту получили алхимики, нагревая смесь селитры и железного купороса:
Чистую азотную кислоту получил впервые Иоганн Рудольф Глаубер, действуя на селитру концентрированной серной кислотой:
Дальнейшей дистилляцией может быть получена т.н. «дымящая азотная кислота», практически не содержащая воды.
Применение[править | править код]
- в производстве минеральных удобрений;
- в военной промышленности (дымящая — в производстве взрывчатых веществ, как окислитель ракетного топлива, разбавленная — в синтезе различных веществ, в том числе отравляющих);
- крайне редко в фотографии — разбавленная — подкисление некоторых тонирующих растворов[7];
- в станковой графике — для травления печатных форм (офортных досок, цинкографических типографских форм и магниевых клише);
- в производстве красителей и лекарств (нитроглицерин);
- в ювелирном деле — основной способ определения золота в золотом сплаве;
- в основном органическом синтезе (нитроалканы, анилин, нитроцеллюлоза, тротил)
Действие на организм[править | править код]
Азотная кислота ядовита. По степени воздействия на организм относится к веществам 3-го класса опасности.
Её пары очень вредны: пары вызывают раздражение дыхательных путей, а сама кислота оставляет на коже долгозаживающие язвы. При действии на кожу возникает характерное жёлтое окрашивание кожи, обусловленное ксантопротеиновой реакцией. При нагреве или под действием света кислота разлагается с образованием высокотоксичного диоксида азота NO2 (газа бурого цвета). ПДК для азотной кислоты в воздухе рабочей зоны по NO2 2 мг/м3[8]. Рейтинг NFPA 704 для концентрированной азотной кислоты: опасность для здоровья: 4, огнеопасность: 0, нестабильность: 0, специальное: СOR[9]
Юникод[править | править код]
В Юникоде есть алхимический символ азотной кислоты (лат. Aqua fortis).
Графема | Unicode | HTML | |||
---|---|---|---|---|---|
Код | Название | Шестнадцатеричное | Десятичное | Мнемоника | |
???? | U+1F705 | ALCHEMICAL SYMBOL FOR AQUAFORTIS | 🜅 | 🜅 | — |
См. также[править | править код]
- Красная дымящая азотная кислота
Примечания[править | править код]
- ↑ Справочник химика / Редкол.: Никольский Б.П. и др.. — 2-е изд., испр. — М.,Л.: Химия, 1965. — Т. 3. — 1008 с.
- ↑ https://www.cdc.gov/niosh/npg/npgd0447.html
- ↑ Азотная кислота: свойства и реакции, лежащие в основе производства Архивировано 27 октября 2011 года.
- ↑ Крепкая водка // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.;
Крепкая водка // Корзинка — Кукунор. — М. : Советская энциклопедия, 1953. — С. 337. — (Большая советская энциклопедия : [в 51 т.] / гл. ред. Б. А. Введенский ; 1949—1958, т. 23). - ↑ Ходаков, 1976, pp. 43,60—61.
- ↑ Ходаков, 1976, p. 61.
- ↑ Азотная кислота // Фотокинотехника: Энциклопедия / Гл. ред. Е. А. Иофис. — М.: Советская энциклопедия, 1981. — 447 с.
- ↑ Межгосударственный стандарт ГОСТ 12.1.005-88, Приложение 2, стр. 1
- ↑ Fisher Scientific.
Литература[править | править код]
- Ходаков Ю. В., Эпштейн Д. А., Глориозов П. А. Неорганическая химия. Учебник для 9 класса. — 7-е изд. — М.: Просвещение, 1976. — 2 350 000 экз.
- Энциклопедический словарь юного химика, Сост. В. А. Крицман, В. В. Станцо. — 2-е издание, М., 1990.
- Ахметов Н. С. Общая и неорганическая химия. М.: Высшая школа, 2001.
Ссылки[править | править код]
- Азотная кислота // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
- [www.xumuk.ru/encyklopedia/74.html Азотная кислота — Статья из Химической энциклопедии]
- Nitric Acid 65—67% (англ.). fishersci.com. Fisher Scientific. Дата обращения 13 апреля 2018.
Некоторые внешние ссылки в этой статье ведут на сайты, занесённые в спам-лист. Эти сайты могут нарушать авторские права, быть признаны неавторитетными источниками или по другим причинам быть запрещены в Википедии. Редакторам следует заменить такие ссылки ссылками на соответствующие правилам сайты или библиографическими ссылками на печатные источники либо удалить их (возможно, вместе с подтверждаемым ими содержимым). Список проблемных ссылок
|
Источник