В каких продуктах содержится гелий

В каких продуктах содержится гелий thumbnail

Слово «гелий» у большинства потребителей ассоциируется с праздником. Легкий газ поднимает высоко в небо воздушные шары. С его помощью несложно создать безопасные разноцветные облака с поздравлением. Они будут плавно перемещаться под потолком. Вдыхание газа забавно меняет голос: на короткое время тембр повышается, создавая мультяшный эффект (звук в гелиевой атмосфере движется значительно быстрее воздуха).

Дарить радость — приятная, но далеко не единственная задача благородного газа. В пищевой индустрии гелий зарегистрирован как пищевая добавка E 939 (Е–939). Уникальное по химическим и физическим свойствам вещество защищает еду от заражения гнилостными бактериями, предохраняет от окислительной порчи.

Название продукта

В середине XIX века английский астроном Джозеф Норман Локьер и его коллега француз Жюль Жансен обнаружили в солнечных протуберанцах неизвестное вещество. Ученые назвали его гелий (от греческого «солнце»). С тех пор за вторым элементом химической системы Менделеева закреплено это название.

Международный синоним — Helium.

Тип вещества

СанПиН 2.3.2.1293-03 отводит добавке Е 939 роль пропеллента и защитного газа.

Основной промышленный способ получения гелия — выделение вещества из нефтяных и природных гелиеносных газов. Гелий является примесью, его содержание колеблется от 2 до 10% в зависимости от месторождения.

Отделяют благородный газ от других компонентов методом глубокого охлаждения. Сырая смесь содержит также водород (его убирают оксидом меди) и неон. Очистка проводится угольным сорбентом после охлаждения сырья в кипящем жидком азоте. Способ позволяет получить гелий высокой степени очистки. Такой газ идет на нужды пищевой промышленности, медицины.

Для остальных отраслей выпускают гелий технический. В его составе допустимо присутствие небольшого количества азота, аргона, водорода, неона, кислорода в виде примесей.

Гелий можно получить из сжиженного воздуха как побочный продукт при выделении аргона, азота и других ценных газов.

Выпускают продукт в виде газа или криогенной жидкости.

Свойства

ПоказательСтандартные значения
Цветбесцветный
Составгелий. Химическая формула Не
Внешний видгаз, может находиться в сжиженном состоянии
Запахбез запаха
Вкусбез вкуса
Содержание основного вещества99,985%%
Растворимостьхорошо в этаноле, средне в воде
Плотность вещества1,784 кг/м3 (при нормальном давлении)
Другиехимически инертный, не смешивается, не вступает в реакцию с другими веществами; отличается высокой теплопроводностью и проникающей способностью; имеет самую низкую температуру кипения: -268,94 °C; жидкий гелий обладает сверхтекучестью

Упаковка

Добавку E 939 поставляют под давлением 150 атмосфер в стальных баллонах, соответствующих ГОСТ 949-73. Емкости должны быть окрашены в коричневый цвет, для обеспечения полной герметичности иметь мембранные вентили марки КВБ-53М (допустимы аналоги).

В зависимости от вида продукции баллоны маркируют надписями белого цвета «Гелий технический» или «Гелий высокой чистоты». Емкости помещают в специальные контейнеры.

Стандартный объем 40 литров. В розничную продажу (например, для наполнения воздушных шаров) разрешено поставлять гелий в баллонах меньшего объема (5, 10, 20 л).

Жидкий гелий перевозят в сосудах Дьюара, окрашенных в светло-серый цвет. Обязательное условие транспортировки и хранения — вертикальное положение.

Применение

Добавка Е 939 разрешена к применению во всех странах, кроме Новой Зеландии и Австралии.

Гелий используют для упаковки продуктов питания по технологии MAP (так называемая модифицированная газовая среда или регулируемая атмосфера).

Интересный факт! За основу метода был взят опыт английских предпринимателей. Начиная с 1930 года, они перевозили в газовой среде мясо из Австралии и Новой Зеландии. Сама же упаковка MAP была изобретена в 70-х годах.

Гелиевая среда защищает продукты от окисления, подавляет жизнедеятельность болезнетворных бактерий.

Гелий может быть использован в качестве пропеллента в аэрозолях малого объема.

Добавку E 939 применяют для упаковки и хранения:

  • детского питания, жидких смесей-заменителей женского молока;
  • продуктов, содержащих жиры и эфирные масла: какао, арахис, специи, кофе;
  • овощей, фруктов (дополнительно гелий предохраняет продукты от высыхания, замедляет перезревание);
  • кремы, сливки для взбивания.

Гелий не оказывает отрицательного воздействия на цвет, аромат, вкус, не разрушает витамины, полностью сохраняет биологическую ценность продуктов.

Некоторые западные производители применяют технологию обработки продуктов ионизирующим излучением изотопами цезия или кобальта в гелиевой среде («радиационная стерилизация»). Метод позволяет полностью уничтожить патогенные микроорганизмы внутри упаковки. Способ считается безопасным, но в нормативные документы пока не внесен.

Добавка Е 939 пользуется спросом в медицине.

Жидкий гелий применяют для охлаждения деталей аппаратов магнитно-резонансной томографии.

Газообразное вещество в качестве пропеллента используют в медицинских аэрозолях.

Смесь гелия и кислорода — эффективное средство для облегчения состояния при астме. Гелий обладает высокой проникающей способностью. Вдыхание подогретого газа:

  • ускоряет транспорт кислорода, улучшает газообмен в легких;
  • разжижает мокроту;
  • восстанавливает кислотно-щелочной баланс;
  • расслабляет гладкую мускулатуру, облегчая дыхание.

Лечебная смесь восстанавливает силы после тяжелых физических нагрузок, улучшает питание клеток, повышает сопротивляемость организма.

Гелиево-кислородная смесь хорошо зарекомендовала себя в терапии острых отравлений наркотическими и химическими веществами.

Лазер на основе гелия и неона — популярный атрибут современных медицинских и косметологических клиник. С его помощью ускоряют заживление ран, улучшают мозговое кровообращение, облегчают состояние при остеохондрозе. Гелий-неоновый лазер применяют для разрушения раковых клеток.

В косметологии прибор используют для лечения угревой сыпи, рассасывания рубцов.

При вдыхании допустимой концентрации гелий не вызывает состояния медикаментозного наркоза. Это свойство использовали производители смесей для водолазов. Состав из 99% гелия и 1% кислорода позволяет опускаться на глубину до 450 м.

Уникальные свойства гелия нашли применение в различных технических сферах:

  • космонавтике (смесь для атмосферы обитаемых космических станций);
  • топливной системе ракет;
  • машиностроении (сварка);
  • низкотемпературной, термоядерной и ядерной энергетике;
  • воздухоплавании: наполнение аэростатов, дирижаблей и подобных летательных аппаратов.

Во многих отраслях гелий невозможно заменить другими веществами.

Микрокристалическую целлюлозу (Е460) используют при производстве мясной продукции.

Парафин часто применяют в произвдостве кремов для рук. Какую функцию он при этом выполняет, читайте здесь.

Использование и изготовление перекиси ацетона карается Уголовным Кодексом. Подробнее об этом веществе читайте в нашей статье.  

Польза и вред

Добавку E 939 можно отнести к нейтральным веществам. Сам по себе гелий нетоксичен. При попадании внутрь с продуктами питания не разрушает витамины и биологически значимые макро- и микроэлементы.

Опасность для человека представляет высокая концентрации газа в атмосфере. Народное развлечение — вдыхание гелия из воздушного шарика — далеко не безвредно, как принято считать.

Попадание большого количества газа в дыхательные пути может вызвать:

  • тошноту, рвоту;
  • головокружение;
  • носовое кровотечение;
  • потерю сознания.

Неисправный баллон с гелием или неплотно закрытый вентиль может стать причиной смерти от кислородного голодания! Газ не имеет запаха, его невозможно увидеть в атмосфере. Нарастающая постепенно концентрация становится критической. Человек внезапно впадает в кому.

Основные производители

Большая часть мировых запасов гелия сосредоточена в России и США.

Крупные месторождения гелиеносных газов есть в Республике Саха (Якутии), Астраханской, Оренбургской областях.

Экономическая ситуация развивается так, что в настоящее время товарный гелий производит единственное предприятие — завод «Газпром добыча Оренбург», дочерняя компания энергетической корпорации «Газпром».

Российский продукт имеет высокую себестоимость из-за низкого содержания гелия в природном газе.

Из 16 ведущих мировых заводов-изготовителей 13 находятся на территории США. В стране есть даже памятник гелию!

Крупнейшие — на месторождениях Хьюготон (штат Техас) и Райли Ридж (штат Вайоминг).

25% мирового гелия производит Катар (нефтегазовый гигант Qatar Petroleum), но блокада государства Саудовской Аравией сделала поставки невозможными.

Небольшие заводы по производству гелия есть во Франции, Китае, Австралии, Нидерландах.

Ученые уверены: уникальные свойства гелия найдут применение в технологиях будущего. Уже сейчас появилась новая наука — гелиеметрия. Она изучает процессы проникновения инертного газа через различные сферы. Практическое применение исследования нашли в геологии: на основе полученных данных была составлена тектоническая карта поверхности Земли. Это помогает определять глубинные разломы, обнаруживать залежи ценных руд.

Источник

20 апреля на совещании у президента России академик РАН пульмонолог Александр Чучалин рассказал о новой инициативе российских врачей в лечении людей с коронавирусной инфекцией. В частности, для снятия синдрома “кислородного голодания” предлагается использовать гелий. Он, благодаря своей низкой плотности, поможет людям с обструкцией легких, вызванной COVID-19, лучше насыщать ткани кислородом.

Читайте также:  Хлористый калий в каких продуктах содержится

Как рассказал доктор медицинских наук Суворов, первые комплексные эксперименты с применением кислородно-гелиевых смесей для дыхания людей начались в лаборатории инертных газов ИМБП РАН еще в 70-х годах прошлого века. В частности, для того чтобы доказать возможности человека жить без азота, был проведен эксперимент с месячным пребыванием в кислородно-гелиевой среде в наземном экспериментальном комплексе на базе института.

Изучалась возможность применения искусственной газовой среды для космических полетов и глубоководных погружений. В итоге пришли к выводу, что в космосе целесообразней всего использовать воздух при нормальном атмосферном давлении. А для глубоководных погружений были доказаны преимущества кислородно-гелиевых смесей.

“Чтобы погрузиться на глубину более 60 метров, нельзя использовать воздух, так как входящий в него азот обладает наркотическим действием. Неслучайно азотный наркоз сравнивают с алкогольным опьянением. Для того чтобы погружаться на большие глубины, потребовалась замена азота на гелий. Помимо безнаркотического действия, он обладает меньшей плотностью, следовательно, с ним легче дышать и выполнять тяжелую работу”, — отметил Суворов.

Ученый уточнил, что гелий имеет плотность в семь раз меньше плотности воздуха (именно это свойство снижает сопротивление дыханию), но обладает большей теплопроводностью, поэтому температура для пребывания в кислородно-гелиевой среде должна быть порядка +30 °C.

Использование гелия в спорте

Почти одновременно специалисты ИМБП стали изучать влияние гелия на повышение работоспособности людей, в частности, для повышения профессиональной выносливости во время специальных заданий.

Было выявлено, что если человек выполняет тяжелую физическую нагрузку, которая связана с необходимостью очень большой вентиляции легких, то кислородно-гелиевая смесь улучшает транспорт газов (кислород лучше доставляется в ткани, а углекислота лучше вымывается из организма). Таким образом, возможности человека повышаются примерно на 20%

Александр Суворов

доктор медицинских наук

Еще более выраженный эффект у кислородно-гелиевых смесей оказался в период восстановления спортсменов. По словам ученого, если человеку после тяжелейшей тренировки дать кислородно-гелиевую смесь, то у него значительно укорачивается время восстановления, а процесс ликвидации так называемого кислородного долга происходит значительно быстрей.

Гелий при обструктивных заболеваниях легких

Примерно 80 лет назад исследования с гелием были начаты в медицинской сфере и были отмечены его преимущества. Врачи в клиниках попробовали применять гелий для больных с обструктивными заболеваниями легких (обструкция — сужение просвета бронхов и, как следствие, сопротивление газовым потокам внутри легких).

“Если использовать кислородно-гелиевые смеси, то у нас значительно снижается сопротивление дыханию. Гелий позволяет больным, у которых сужен просвет бронхов (в результате спазма или отека), легче дышать. Он быстрее доставляется к альвеолам и проникает в них, в результате повышается содержание кислорода в крови”, — пояснил заведующий отделом ИМБП РАН.

Таким образом, использование гелия не излечивает напрямую обструкцию легких, но помогает сгладить тяжелую симптоматику — дыхательную недостаточность, сопровождающуюся снижением содержания кислорода и повышением содержания углекислоты в крови.

В настоящее время для поддержки дыхания больных в большинстве случаев используется кислород. Но, по мнению ученого, кислородно-гелиевые смеси лучше, чем чистый кислород, потому что последний при длительном применении оказывает токсическое действие. Чистый кислород, особенно под высоким давлением, повреждает сурфактант легких. В некоторых ситуациях, например у летчиков-истребителей, сочетание двух факторов — чистый кислород и перегрузки — приводит к спадению некоторых участков легочной ткани.

Поэтому я стою на позиции, что чистый кислород при нормальном или повышенном давлении никому никогда не надо применять. Необходимо использовать либо смеси, обогащенные кислородом (40% кислорода вполне достаточно), но еще лучше использовать кислородно-гелиевые смеси. Это значительно эффективнее улучшает поступление кислорода и будет ощутимо снижать сопротивление дыханию и нагрузку на респираторную систему

Александр Суворов

доктор медицинских наук

Данный подход поддерживал советский и российский реаниматолог профессор Владимир Львович Кассиль, вместе с которым была изучена методика высокочастотной вспомогательной вентиляции легких. “В итоге исследований мы пришли к выводу о том, что лучше всего помогает больным с дыхательной недостаточностью кислородно-гелиевая смесь, на втором месте был чистый кислород, и на третьем — воздух”, — отметил представитель ИМБП РАН.

Лечение больных с COVID-19 и технические ограничения

“С точки зрения патофизиологии при лечении дыхательной недостаточности, которая развивается у больных с COVID-19, несомненно, что кислородно-гелиевые смеси имеют преимущества. Они помогут облегчить течение болезни”, — заверил Суворов. Однако он пояснил, что использовать кислородно-гелиевую смесь для всех больных с коронавирусной инфекцией не получится.

И для этого есть несколько объективных причин. Перевести всех больных на кислородно-гелиевую смесь невозможно технически. Пациенты с COVID-19 делятся на две группы: те, кому достаточна вспомогательная вентиляция легких (то есть человеку помогают ингаляции кислородом или кислородно-гелиевыми смесями), и люди в бессознательном состоянии, нуждающиеся в аппарате ИВЛ. И если для первой группы есть готовые аппараты, то для второй — только экспериментальные образцы, которые нуждаются в клинической проверке.

Кроме того, в России на данный момент нет такого количества аппаратов вспомогательной вентиляции, которые работают с кислородно-гелиевыми смесями. “Часть больных перевести можно, это будет целесообразно и оправданно. Лечение легочной недостаточности будет более эффективным. В особенности когда речь идет о больных с сопутствующими заболеваниями кардиореспираторной системы, нуждающихся в профилактике осложнений”, — считает Суворов.

Если говорить об экономической составляющей вопроса, то использование кислорода является самой дешевой вспомогательной вентиляцией. При использовании кислородно-гелиевой смеси такая процедура становится дороже, но кратность и продолжительность короче, следовательно, итоговая стоимость существенно не возрастет.

“Не исключено, что сложившаяся ситуация станет толчком для более широкого использования кислородно-гелиевых смесей в медицине”, — отметил ученый. Также возможно получат ускорение и те исследования, которые в настоящее время проводятся в ИМБП РАН с кислородом и гелием, но с добавлением других инертных газов, которые более эффективно позволяют преодолевать гипоксические состояния.

Милена Синева

Источник

pic_2017_05_08.jpgОткуда берется гелий? Большая часть его образовалась при рождении вещества во Вселенной, в так называемом первичном нуклеосинтезе, то есть от столкновения тех протонов, нейтронов и электронов, что родились в Большом взрыве. При этом в основном формировался гелий-4, с незначительной добавкой гелия-3. Именно гелий и водород оказались основными продуктами первичного нуклеосинтеза: на них приходится соответственно 76 и 23% массы всего вещества Вселенной. Оставшийся один процент — это все остальные элементы. Второй источник гелия — горение водорода в звездах; оно также дает гелий-4 и немного гелия-3.

Однако на Земле гелия мало. Причина в том, что этот легчайший газ не способен вступать в химические реакции, поэтому первичный, содержавшийся в протопланетном облаке гелий давно улетел прочь. Тот же гелий, что есть на Земле, — это продукт радиоактивного распада, прежде всего распада урана и тория, ядра которых испускают альфа-частицы, то есть ядра гелия-4. Гелия-4 на Земле относительно много: 3.10-7 от массы коры и 7.10-5 от массы атмосферы. Каждый год образуется примерно 30 миллионов кубометров гелия-4. А гелия-3 на нашей планете — десятки тысяч тонн, например, в атмосфере содержится лишь 35 тысяч тонн этого изотопа, то есть он весьма редок и, стало быть, дефицитен. Для физических экспериментов и других нужд его получают в результате распада трития.

Чему мешает дефицит гелия-3? Этот изотоп идеален как сырье для термоядерного синтеза, а именно с ним связаны надежды на получение безграничного количеств энергии для нужд цивилизации. Есть две реакции, которые могут быть использованы при зажигании рукотворного Солнца: реакция дейтерия с тритием, порождающая альфа-частицу и нейтрон, и реакция дейтерия с гелием-3, дающая альфа-частицу и протон. Первая идет проще — при меньшей температуре и занимает меньше времени, то есть удерживать горячую плазму легче. Однако для второй не нужен тритий, который мало того что радиоактивен, так и еще и служит для создания термоядерной бомбы, а стало быть, работа с ним строго регламентирована, чтобы это опасное вещество не попало в плохие руки. Считается, что, после того как управляемая термоядерная реакция будет зажжена на тритиевой реакции, неизбежно встанет вопрос о переходе к гелиевой реакции и тогда придется задуматься об источнике гелия-3.

Читайте также:  В каком из следующих предложений содержится информация об урбанизации

Впрочем, в США об этой проблеме начали думать еще в 2009 году, ведь у гелия-3 есть применения и помимо термоядерного синтеза. Важнейшее из них — детектирование нейтронов. В рамках Договора о нераспространении ядерного оружия, ядерные государства, прежде всего США и РФ, должны оснастить международные аэропорты, пограничные переходы и другие подобные места специальными мониторами, предотвращающими незаконное перемещение ядерных материалов. А судят об их наличии как раз по повышенному потоку нейтронов. Гелий-3, как изотоп с недостатком нейтронов, оказывается прекрасным рабочим телом такого монитора: захватив нейтрон, он испускает протон и становится тритием; спектр испускаемых протонов узок, и реакция хорошо различима. Подобные мониторы нужны не только службам безопасности, но и исследователям, работающим с источниками нейтронов.

Другое важное применение связано с большим магнитным моментом этих ядер: это свойство используют для изучения легких методом ЯМР. Гелий при вдыхании прекрасно заполняет все закоулки этого органа благодаря своей легкости, а томограф, отображая картину его распределения, позволяет лучше увидеть дефекты.

Поскольку производство трития было прекращено в середине 80-х годов, сейчас гелий-3 получают, откачивая продукты распада уже наработанного оружейного трития. И вот выяснилось, что такое производство недостаточно продуктивно. В результате открытые аукционы по продаже гелия-3 в США были отменены, его стали распределять в соответствии с заявками государственных агентств и только на неотложные нужды. Одновременно начали прорабатывать идеи более масштабного производства гелия-3, например с помощью ускорителей или атомных реакторов. В любом случае для детекторов и научных целей такого производства хватит, а вот для энергетики — никак.

Где можно найти много гелия-3? Коль скоро оба изотопа гелия в большом количестве рождаются в звездах, есть смысл поискать гелий-3 в продуктах их жизнедеятельности. Таких продуктов два. Во-первых, это протозвездные облака, получающиеся при взрыве сверхновых. В ходе формирования звездной системы гелий из облака частично выдувается, частично оказывается в планетах. Считается, что на холодных планетах-гигантах, в глубинах которых гелий находится в виде жидкости, сохранилось так много гелия из первичного облака, что запасы его можно назвать неисчерпаемыми. Однако лететь за гелием-3 до Юпитера и Сатурна далековато.

Есть менее мощный, но более близкий источник — солнечный ветер, приносящий к Земле ионы этого элемента. Увы, плотность вещества в солнечном ветре слишком мала, чтобы можно было собирать гелий из него в режиме реального времени. Но вот поверхность Луны миллиарды лет аккумулирует компоненты солнечного ветра. Исследования лунного грунта показали, что гелия-3 в нем не так уж и мало — если развернуть его добычу, то нужды человечества в таком источнике энергии будут обеспечены, по разным оценкам, на столетия или тысячелетия. Однако неужели добыча какого бы то ни было вещества на Луне может оказаться выгодной? Как ни странно, да — соответствующий расчет американские исследователи представили, например, в 1986 году на конференции в Ялте по проблемам управляемого термоядерного синтеза (см. «Химию и жизнь», 1991, 2). Расчет делали не в деньгах, а в энергетических единицах, и оказалось, что добыча гелия-3 и его доставка на Землю даст в 250 раз больше энергии, чем будет затрачено на производство. Для сравнения: сжигание угля дает лишь 16-кратный выигрыш энергии, а урана — 20-кратный.

Из этого расчета следует интересный вывод. Возникновение термоядерной энергетики выведет человеческую цивилизацию на качественно иной уровень не потому, что люди получат мощный источник энергии, а потому, что выход в космос и освоение, по крайней мере, нашего спутника превратятся в экономически состоятельное мероприятие. Колония на Луне, занятая добычей гелия-3, окажется не дорогой игрушкой, заводить которую никто не жаждет, а самоокупаемым предприятиям, которое неизбежно будет развивать межпланетную транспортную инфраструктуру. Еще одна причина, по которой вызывает разочарование очередной перенос срока запуска первого экспериментального термоядерного реактора ИТЕР с 2016 года на 2020-й.

Чем опасен гелий? Этот газ легко проходит сквозь воздух, воду, пластики, стекло. А сквозь тяжелые металлы — железо, платиноиды — и многие минералы он пройти не может. При этом гелий еще и плохо растворяется в металле, то есть, попав в него, склонен собираться в разного рода полостях. Такая особенность вызывает сильную головную боль у инженеров-ядерщиков, ведь гелий легко оказывается в металле, из которого сделаны их объекты, — он влетает туда в виде альфа-частицы, рожденной при распаде ядра либо в термоядерной реакции. Иначе говоря, в металлических конструкциях реактора АЭС, прямо в топливных сборках и в конструкциях строящегося термоядерного реактора неизбежно станет накапливаться гелий. В металле альфа-частица обретает электрон и становится атомом газа, который перемещается по решетке и скапливается возле дефектов кристаллического строения. Со временем там формируются газовые пузыри и металл распухает — это явление так и называют «гелиевое распухание». Если пузыри формируются вблизи поверхности, то она крошится. Материаловеды, занятые созданием сплавов для ядерной энергетики, тратят много времени на решение проблемы гелиевого распухания — в этом легко убедиться, просмотрев свежие публикации научных журналов с ключевым словом «гелий».

Что еще интересует в гелии исследователей? Его можно использовать для датировки всевозможных геологических пород. Поскольку гелий получается при распаде радиоактивных элементов, по его накоплению можно судить о возрасте минерала. Это не главный, но неплохой рабочий метод при построении разного рода хронологии.

Зачем гелий нужен непосредственно человеку? В 20-х годах XX века его начали использовать как компонент дыхательных смесей. Первоначальная идея состояла в том, что гелий — легкий газ, поэтому, заменив им азот, можно сделать смесь, дышать которой гораздо легче, — и эта смесь поможет восстанавливать здоровье или даже спасать жизни людям, испытывающим трудности с дыханием. Удивительно, но почти за столетие врачи так и не смогли разобраться, работает эта идея или нет — в клинической практике гелиево-кислородные подушки применяют, однако исследования в рамках доказательной медицины можно пересчитать по пальцам одной руки, причем и по их результатам сделать вразумительные выводы не удается. Время от времени составляются обзоры тех немногочисленных работ, что все-таки появляются в научных журналах, авторы которых неизменно призывают провести больше клинических испытаний метода и разгадать в конце концов эту загадку.

А вот водолазами воздушные смеси с гелием вполне подошли. У них проблема в том, что азот при высоком давлении — а оно возникает при погружении глубже пятидесяти метров — вызывает опьянение. Значит, его содержание в смеси для дыхания надо уменьшить, заменив азот другим химически инертным газом. Но тяжелые инертные газы способны вызывать наркоз, накапливаясь в жировых тканях. Легкий гелий в этом не замечен, но и у него есть недостаток — высокая теплопроводность. Из-за нее человек в помещении, заполненном смесью гелия и кислорода, сильно мерзнет. Поэтому сейчас водолазам лишь часть азота заменяют гелием.

Есть идеи заполнять такой смесью космические корабли, особенно межпланетные. Здесь возможны два выигрыша. Во-первых, более легкий газ требует меньших усилий при прокачке в системе вентиляции, стало быть, снижается вес оборудования. А во-вторых, при выходе за пределы радиационных поясов Земли космический корабль станет подвергаться бомбардировке быстрыми частицами солнечного ветра и космических лучей. Возникнет наведенная радиация: в частности, атомы азота становятся радиоактивными. Гелий же при облучении не порождает радиоактивных изотопов. При полетах внутри поясов — а именно там сейчас проходят все пилотируемые экспедиции — этой проблемы не возникает, но при возобновлении полетов людей на Луну, а тем более на Марс этот фактор придется учитывать.

Читайте также:  В каких продуктах содержится силденафила

Как люди начали использовать гелий? Гелий как новый элемент обнаружили при изучении спектров Солнца в 1868 году, с разницей в несколько месяцев, француз Жюль Жансен и англичанин Норман Локьер. (Последний знаменит не только как человек, давший гелию его имя, но и как создатель и первый главный редактор журнала «Нейчур», а также как основатель археоастрономии — направления науки, которое ищет астрономическое значение в памятниках древности.) Письма об открытии попали в Парижскую академию наук одновременно и были зачитаны с интервалом в несколько минут. Это совпадение так поразило академиков, что была выпущена специальная памятная медаль с изображением обоих ученых. С высоты сегодняшнего знания можно сказать, что так было зафиксировано проявление парадокса Шелдрейка: если человек в одном месте научился делать что-то, в другом месте люди обучаются делать то же самое быстрее (см. «Химию и жизнь», 1984, 8; 2001, 2).

Первым же «подержал в руках» гелий неутомимый Уильям Рамзай. В 1895 году он выделил этот газ при разложении клевеита — минерала, содержащего много урана и тория. А жидкий гелий в 1908 году сделал Хейке Камерлинг-Оннес и благодаря этому сумел открыть сверхпроводимость — в подавляющем большинстве веществ она если и возникает, то как раз при гелиевой температуре. Промышленность сжиженных газов дала возможность получать гелий в больших количествах, и, естественно, это дорогое вещество нашло применение там, где затрат не считают, — в военной технике. Уже в 1915 году немцы бомбили Лондон с дирижаблей, заправленных гелием. Преимущество этого газа понятно — водород, более широко применявшийся в те годы для заправки дирижаблей, весьма взрывоопасен.

pic_2017_05_09.jpg

Вверху: так выглядел корпус токамака ИТЕР в апреле 2017 года. 

Внизу: в этом ангаре площадью 8 тысяч м
2 станут изготавливать 

и хранить жидкие азот и гелий. Ежедневный объем производства жидкого азота составит 50 тонн, и он послужит для предварительного 


охлаждения газа при получении жидкого гелия. В системе ИТЕР будет циркулировать 25 тонн этого вещества при температуре ­269 
оС, 

чего должно хватить для поддержания 10 тысяч тонн магнитов 


в сверхпроводящем состоянии


Фото: ITER Organization/EJF Riche

Как сейчас используют гелий? Основное его количество идет на криогенику. И это отнюдь не Большой адронный коллайдер, в котором жидкий гелий охлаждает сверхпроводящие магниты, или другие гигантские приборы, где нужно охлаждать детекторы. Пятую часть мирового производства гелия расходуют при проведении магнитно-резонансных исследований в клиниках: он поддерживает низкую температуру установленных в томографах электромагнитов, чтобы перевести их в сверхпроводящее состояние. Далее идет аргонно-дуговая сварка — добавка гелия в газ для создания дуги повышает качество швов при сварке толстых изделий из-за высокой теплопроводности. Надувные шарики-игрушки и прочие шары, например метеорологические зонды или дирижабли для доставки грузов в отдаленные районы, которые всё обещают возродить, но никак не соберутся, — третье по объему применение гелия. Еще он нужен в металлургии для создания защитных атмосфер или продувания отливок — вместе с гелием из растворенного металла выходят другие газы, и качество изделия повышается; преимущество гелия в том, что он гораздо меньше растворяется в металлах, чем другие инертные газы. Гелием выдавливают жидкости из резервуаров, например топливо из баков космического корабля; каждый запуск американского шаттла требовал 20 тысяч м3 гелия. Нужен гелий и в приборах для поиска разного рода течей. Незаменим он при испытаниях изделий, которым предстоит работать в вакууме. Так, «Буран» перед полетом испытывали на герметичность в криокамере объемом 10 тысяч м3 — ее стенки охлаждали гелием, чтобы выморозить все неоткачанные газы и обеспечить глубокий вакуум. Гелий широко применяют при производстве микроэлектроники и оптических волокон. Короче говоря, годовое производство гелия ныне превысило 200 млн м3 и стабильно растет последние полвека со скоростью 5% в год. Используют его в основном промышленно развитые страны, и лидер тут — США, где годовое потребление составляет более 100 млн м3. В Евросоюзе — 40 млн, Канаде — 25 млн, КНР — 15 млн, Индии около 10 млн. Данные по РФ весьма неопределенные — от 1 до 10 млн м3 в год.

Считается, что потребность в гелии и далее будет расти, поскольку могут появиться новые области его использования. Прежде всего это монорельсовый транспорт на сверхпроводящей магнитной подушке. Если ориентироваться на низкотемпературные сверхпроводники, то гелий будет незаменим — без него никак не удастся охладить магнит до нужной температуры. Пока что на планете есть один такой поезд: он возит пассажиров из центра Шанхая в аэропорт, преодолевая 35 км за 7 минут. Инженеры надеются на развитие этой технологии в основном в густонаселенных странах вроде Японии, где строить обычные дороги непросто из-за дефицита места. Так вот, запуск этого поезд сразу на четверть увеличил потребность КНР в гелии.

Другое, не менее интересное направление — полностью безопасный атомный реактор. В него вместо стержней насыпают гранулы с ядерным топливом, а они омываются гелиевым теплоносителем. В таком перспективном реакторе атомный взрыв невозможен, и даже при аварии не происходит разрушение активной зоны и загрязнение радиоактивными элементами. Гелий как теплоноситель хорош не только из-за своей высокой теплоемкости, но и потому, что не порождает радиоактивных элементов при облучении. Правда, пока что проектирование такого реактора продвигается медленно и намеченные в конце XX века сроки давно сорваны. Подобный реактор должен был послужить для уничтожения советского оружейного плутония.

pic_2017_05_10.jpg

В этой колонне Оренбургского гелиевого завода происходит выделение гелия из природного газа Оренбургского нефтегазоконденсатного месторождения

Как получают гелий? Его добывают из природного газа, точнее, из остатков, получающихся после сжижения. Вообще, именно в природном газе концентрируется более половины всего гелия планеты. Причина в том, что гелий, как и метан, путешествуя сквозь земную кору, в конце концов разделяет его участь — оказывается запертым в породах-коллекторах. Содержание гелия в газе разных месторождений сильно различается; добыча гелия считается рентабельной, когда оно достигает 0,05%. В СССР прекрасный завод по получению гелия был построен в начале 80-х в Оренбургской области (см. «Химию и жизнь», 1981, 3). На заводе очищают природный газ от сероводорода, разделяют его на фракции, например отделяя этан от метана, а в итоге получают и гелий. Сейчас это единственный завод такого профиля в РФ, хотя гелий можно извлекать из газа и других месторождений.

На самом деле человечество крайне расточительно обращается с гелием. По сути, это невозобновляемое сырье, поскольку число радиоактивных элементов, порождающих гелий, на планете только уменьшается. И при этом в трубу вместе со сгоревшим газом ежегодно улетают сотни миллионов кубометров гелия. Понятно, что объем производства определяется спросом, однако можно принимать меры по сохранению ценного газа. В США в середине XX века попытались создать стратегический запас гелия — извлекали его из природного газа и закачивали в подземные хранилища; в 1996 году программа была свернута, хранилища приватизировали, и сейчас этот госзапас успешно распродают.

Поскольку РФ добывает огромные количества газа, на нас в значительной степени лежит ответственность за сохранение гелиевого богатства. Отечественные специалисты не первый год бьют тревогу и требуют принять программу по более полному извлечению гелия из прир?