В каких продуктах содержится актин и миозин

В каких продуктах содержится актин и миозин thumbnail

В человеческом организме аминокислоты являются своеобразными строительными материалами для ногтей, волос (альфа-кератины), соединительных тканей, мышц, кожи и т.д. и т.п. Но при этом собственных «хранилищ» полезных аминокислот и протеинов (составляющих молекулы белка) в организме человека нет. Поэтому, то, что пища с высоким содержанием белка для нашего организма очень полезна – это очевидно.

В каких продуктах содержится актин и миозин

Кроме всего, абсолютно все процессы, происходящие в нашем организме, не обходятся без участия в них белков. К примеру, за перенос ко всем клеткам организма кислорода отвечает белок – гемоглобин, белки миозином и актином обеспечивают мышечную работу, порообразующие белки регулируют правильность передачи информации от головного мозга ко всем внутренним органам. Также белки – это неотъемлимая часть нашей иммунной системы – в ней они играют роль антител, защищающих организм человека от вирусов и вредоносных бактерий.

Параметры определения содержания белка в пище:

Основными параметрами при выборе продуктов с большим количеством полезных белков является их содержание на единицу калорий и коэффициент, опять же, их усвоения организмом. Поэтому при выборе продуктов обращайте внимание на низкое содержание в них жиров и высокое – белков. Традиционно к таким продуктам питания относят те, у которых на 100 г массы содержится более 10 г протеинов, и практически отсутствуют углеводы. Суточная норма белков, входящих в дневной рацион здорового взрослого человека не должна быть ниже 100-120 грамм.

Основные продукты с высоким содержанием белка:

Продукты, содержащие достаточно большое количество полезных белков (протеинов) могут быть разного происхождения – животного и растительного. Рассмотрим самые основные:

1. Молочные продукты содержат около 30% белка. К таким продуктам можно отнести сыры разных сортов (сливочный, чеддер, мюнстер, моцарелла, пармезан и итальянский «Рикотта»). Также большое количество белка содержится в сырном соусе, обезжиренном твороге и нежирном молоке. Творог рекомендовано употреблять с добавлением йогурта или кефира и небольшого количества сахара, которые ускоряют усвоение белка организмом.

В каких продуктах содержится актин и миозин

2. Яйца (белок) относятся к низкокалорийным продуктам, употребляя которые вы получаете отличный строительный материал для своих мышц. Съедая два яйца (приблизительно 100 г), вы пополняете свой организм 17-ю граммами белка.

В каких продуктах содержится актин и миозин

3. Печень – недорогой, но довольно таки богатый белком (25%) и питательный продукт. В пищу рекомендовано употреблять в тушеном и вареном виде, а также в качестве разнообразных паштетов.

В каких продуктах содержится актин и миозин

4. Рыба и морепродукты содержат около 25% белка. В список этих продуктов входят: вареный тихоокеанский и атлантический морской окунь, палтус, запеченное в духовке филе трески, анчоусы, скумбрия, пикша, тунец, лосось, семга, кефаль, сардины, сайда и вареные креветки смешанных видов.

Рыба и морепродукты

5. Говядина в своем составе содержит не менее 25% отличного животного белка. Рекомендовано употреблять в пищу вареную, тушеную или приготовленную на пару говядину не старше двухлетнего возраста, тогда этот продукт будет не только оптимально богат белками, но еще и отличаться замечательными вкусовыми характеристиками.

В каких продуктах содержится актин и миозин

6. Мясо птицы содержит от 15% до 20% белка, который очень хорошо усваивается организмом и при этом содержит минимум калорий. К таким продуктам можно отнести куриную грудку и крылышки (бульоны на их основе), а также белое мясо индейки, но без кожи.

В каких продуктах содержится актин и миозин

7. Бобовые. Соя, пожалуй, самый богатый белками (14%) продукт растительного происхождения. На сегодняшний день из нее изготавливают огромное количество всевозможных кулинарных блюд, являющихся заменителями мясных продуктов. Богаты белками и соевый творог «Тофу», зрелые бобы фасоли (вареные или запеченные без соли), черные бобы, лимская фасоль, нут (турецкий горох) и некоторые другие. Приготовленные бобы чечевицы (1 чашка) содержат 28 г отличного растительного белка и огромное количество витаминов группы В.

Соя (бобовые)

8. Крупы и зерновые. Эти продукты содержат около 12% белка, легко усваиваются и способствуют нормальному пищеварению. Самое большое содержание белков в зерновых и крупах находится в овсе (хлопья, каша), рисе (коричневом и белом с длинным волокном), гречневой непросеянной муке, желтой кукурузе и обогащенной кукурузной муке. Кроме этого белком очень богата кинва, поэтому ее и называют «абсолютно белковой». В 100 граммах этой зерновой культуры содержится около 16,5 г белка, причем высокого качества, идеально сочетающегося со многими натуральными аминокислотами.

В каких продуктах содержится актин и миозин

9. Семечки. Одна четверть стакана подсолнуховых семян содержит 21 грамм белка, а семена тыквы в том же количестве – 19 грамм. Семечки рекомендуют добавлять к кашам и салатам.

В каких продуктах содержится актин и миозин

10. Миндальное масло (1/4 стакана), как и сам миндаль (приблизительно горсть) содержит чуть больше 8 грамм белка, приблизительно как арахис, но при этом не вызывает аллергии и не причиняет вреда. Маслом миндаля, как правило, заправляют салаты, а орешки добавляют в кашу за завтраком или используют как перекус.

В каких продуктах содержится актин и миозин

11. Фрукты и овощи. Высокое содержание белка также содержится и в некоторых фруктах и овощах (не менее 9%). К таким можно отнести брюссельскую капусту, спаржу, сладкий картофель, тыкву, кокос, шпинат, папайю, а также сушеные сливы и абрикосы.

В каких продуктах содержится актин и миозин

Усваивание белков организмом происходит намного лучше, если их подвергнуть тепловой обработке, после которой они становятся для ферментов желудка и кишечника более доступными. Также следует помнить, что пища, содержащая большое количество белков требует больше времени для усваивания ее организмом и для вывода из него продуктов белкового обмена. По этой причине, во избежание обезвоживания организма рекомендуется выпивать в сутки не менее 2,5 литров воды.

Эту статью находят по запросу: «Где много белка»

 628 total views,  4 views today

Поделиться

Источник

Пища человека состоит из многих ингредиентов. Они делятся на макроэлементы — белки, жиры и углеводы и микронутриенты — витамины, микроэлементы и т. д. Белок обеспечивает около 10-15%. дневной энергии. 1 грамм белка высвобождает 4 ккал. 

Белок — это основной строительный блок тела. Белки расщепляются на аминокислоты, которые важны для регенерации мышц, костей, кожи, крови и других жизненно важных систем. Кроме того, они используются в синтезе нуклеиновых кислот, несущих генетическую информацию.

Функции белков

У взрослых белок составляет около 16% массы тела. Из них 43% содержатся в мышцах,15% – в коже, 16% в крови и др. 

Функции белков в организме человека:

  • Структурная. Примерно половина белков в организме играет «каркасную» роль, например, в коже и мышцах. Эти белки — коллаген, актин и миозин.
  • Транспортная. Белки помогают транспортировать многие питательные вещества через кровь и другие жидкости организма, такие как гемоглобин, липопротеины.
  • Гормональная. Гормоны — это аминокислотные цепи, из которых состоят пептиды, такие как инсулин.
  • Ферментативная. Все ферменты — белки. Например, пищеварительный фермент амилаза и другие.
  • Иммунная. Антитела — это белковые молекулы. Белки также участвуют в подавлении воспалительных реакций.
  • Защитная. Белок альбумин выполняет защитную функцию, поддерживая необходимый pH крови.

Функции белков в организме человека

По питательной ценности белок делится на полезный и менее ценный. Значение зависит от набора аминокислот, которые лучше всего усваиваются человеческим организмом. Этот «набор» меняется в зависимости от физиологического развития человека.

Коллаген

Коллаген — это основной белок соединительной ткани у животных. Коллаген содержится в костях, хрящах, сухожилиях, зубах, коже, роговице, легких, печени, кровеносных сосудах и других органах и тканях. На его долю приходится около 25-30% белка млекопитающих. 

У человека и позвоночных было идентифицировано двенадцать типов коллагена, состоящего из более чем 24 различных полипептидных α-спиралей. Комбинации этих спиралей определяют типы коллагена. Например, наиболее распространенный коллаген I типа (90% общей массы коллагена) состоит из 2 спиралей α-1 и 1 α-2. 

Структура коллагена

Коллаген отличается от других белков организма своим уникальным аминокислотным составом: 33%. из всех аминокислот составляют Gly, 10% – про, 10% – гидрокси-Pro и 1% – гидрокси-Lys. Основная структурная единица коллагена — тропоколаген, состоит из трех левовращающихся α-спиралей, скрученных в одну правовращающуюся суперспираль. Такие суперспирали связываются поперечными ковалентными связями с образованием фибрилл.

Миозин

Миозин — это белок сокращения мышечных волокон. Его молекула состоит из α-спирали двух полипептидных цепей. Мол. масса около – 470000, что составляет 40-60% всех мышечных белков. Связавшись с актином, он образует актомиозин — основной белок в системе сокращения мышц. Он характеризуется активностью аденозинтрифосфатазы: она преобразует химическую энергию АТФ в механическую энергию сокращения мышц. В 1 см 3 мышцы содержится около 1 г миозина.

Молекула миозина

Инсулин

Это полипептидный гормон, секретируемый В-клетками поджелудочной железы. Инсулин регулирует уровень глюкозы в крови, увеличивая проницаемость клеток мышечной и жировой ткани для глюкозы. 

Инсулин

Гликоген синтезируется из глюкозы в печени и мышцах, а инсулин подавляет синтез глюкозы из других веществ (молочной кислоты, аминокислот, глицерина) в печени. При нехватке инсулина (из-за недостаточной выработки рукой или нарушения транспорта глюкозы из крови в клетки) начинается заболевание, называемое диабетом (сахарный диабет).

Аминокислоты

Белки состоят из аминокислотной цепи. Аминокислоты связываются между собой с образованием пептидных цепей, более 10 аминокислот — полипептиды.

Общая формула аминокислот H 2 N – CHR – COOH. Строение отдельных аминокислот кардинально отличается. Согласно им выделяют три основные группы аминокислот: 

  • алифатические;
  • ароматические;
  • гетероциклические. 

Алифатические кислоты делятся на моноаминомонокарбоновые и моноаминодикарбоновые кислоты. В молекуле трех аминокислот — цистеина, цистина и метионина содержится атом серы. 

Строение аминокислот

Аминокислоты — бесцветные кристаллические вещества. За исключением глицина, все они имеют асимметричный атом углерода и оптически активны. Человеческий белок содержит 20 отдельных аминокислот. Некоторые из них незаменимы (существенны), другие — заменяемы, потому что их можно синтезировать.

Во время катаболизма всех аминокислот образуются шесть веществ, которые участвуют в общем катаболическом процессе. Эти вещества представляют собой пируват, ацетил-КоА, кетоглутарат, сукцинил-КоА, фумарат и оксалоацетат. 

Аминокислоты, из которых промежуточные продукты цикла Кребса (α-кетоглутарат, сукцинил-КоА, фумарат) образуются во время катаболизма и впоследствии превращаются в конечный продукт оксалоацетат и могут использоваться для гликогенеза, называются гликогенными аминокислотами. 

Некоторые аминокислоты превращаются в ацетоацетат или ацетил-CoA во время катаболизма и могут использоваться для синтеза ацетоновых материалов. Их называют кетогенными. Многие аминокислоты используются в синтезе веществ глюкозы и ацетона, потому что катаболизм производит два продукта, соответствующий метаболит цикла Кребса и ацетоацетат (Tyr, Phe, Trp) или ацетил-КоА (Ile). Такие аминокислоты называют смешанными или гликокетогенными.

Почти все природные аминокислоты (за исключением метионина) реагируют с α-кетоглутаровой кислотой. Эта катализируемая трансаминазой реакция дает глутаминовую кислоту и соответствующую α-кетоновую кислоту. Образовавшаяся глутаминовая кислота подвергается окислительному дезаминированию под действием каталитической глутаматдегидрогеназы.

Незаменимые аминокислоты

Некоторые аминокислоты могут вырабатываться в организме, другие необходимо получать с пищей. Есть восемь незаменимых аминокислот.

Продукты, содержащие незаменимые аминокислоты

Важность некоторых аминокислот зависит от стадии физиологического развития человека. Например, в детстве очень важна одна аминокислота, а для взрослых она уже не важна. Пример: аргинин, гистидин, цистеин, глицин, тирозин, глутамин, пролин. Эти аминокислоты очень важны для детей, потому что детский организм не может их синтезировать из-за повышенной потребности. Во время метаболического стресса синтез глутамина может быть недостаточным, что делает его в таких случаях незаменимым.

Тирозин

Тирозин — ароматическая аминокислота, одна из двадцати аминокислот, необходимых для синтеза белка. Он образован из фенилаланина и других аминокислот. Тирозин участвует в синтезе адреналина, норадреналина, серотонина и дофамина. 

Для правильного метаболизма тирозина в мозге необходимы витамин B 6 (пиридоксин) и фолиевая кислота. Тирозин используется для синтеза белков, катехоламинов, гормонов щитовидной железы, меланинов и может расщепляться на конечные метаболиты CO 2, H 2 O, NH + и энергию. 

Между тирозином и α-кетоновой кислотой происходит реакция пераминирования, в результате чего п-гидроксифенилпируват вступает в реакцию с O 2.образуется гомогентизат. Ароматическое кольцо гомогентизата далее разрушается молекулярным кислородом с образованием малеилацетата. Он изомеризуется в фумарилацетоацетат, который гидролизуется до фумарата и ацетоацетата. 

  • Тирозин обладает улучшающими настроение и антидепрессивными свойствами. 
  • Он действует как адаптоген — улучшает адаптацию организма при стрессовых реакциях, снижает негативные последствия стресса, подавляет аппетит. 
  • Тирозин участвует в синтезе энкефалинов, обезболивающих. 
  • Используется в качестве нейротрансмиттера для стимуляции синтеза L-допа при болезни Паркинсона. 
  • Тирозин используется в сочетании с триптофаном и имипрамином в качестве антидепрессанта. Эти аминокислоты содержатся в соевых продуктах, курице, индейке, рыбе, бананах, молоке, сыре, семенах кунжута, овсянке. 

Недостаток тирозина снижает синтез белка, отмечается повышенная утомляемость, признаки депрессии, нарушение функции печени, снижение активности щитовидной железы. Очень серьезный дефицит тирозина может возникнуть при генетическом заболевании — фенилкетонурии, при котором организм не может метаболизировать аминокислоту фенилаланин, поэтому ее необходимо исключить из рациона. В отсутствие фенилаланина тирозин не может образовываться.

Недостаток тирозина снижает активность щитовидной железы

Биологическая ценность белков

Биологическую ценность белков определяют аминокислоты. Белки со всеми незаменимыми аминокислотами в достаточном количестве, имеют высокую биологическую ценность. Белки с высокой биологической ценностью содержатся в источниках животного происхождения: мясе, яйцах, молочных продуктах, рыбе. 

Если в белке нет одной или нескольких незаменимых аминокислот, его биологическая ценность низкая. Как правило, белки растительного происхождения имеют низкую биологическую ценность. Если питательная ценность ежедневного рациона слишком низкая, для выработки энергии используются белки организма. 

Дефицит белка часто встречается у пациентов, перенесших операцию, и у пожилых людей. Дефицит белка возникает при заболеваниях почек, серьезных травмах, ожогах, сепсисе, мальабсорбции. Дефицит белка вызывает потерю мышечной массы, плохое заживление ран, восприимчивость к инфекциям, отек и ожирение печени.

Поделиться ссылкой:

Источник

Белковый состав мышечной ткани весьма сложен. Уже с давних пор он изучается многими учеными. Основоположник отечественной биохимии А. Я. Данилевский, исследуя белки мышечной ткани, дал правильное представление о физиологической роли ряда белков и о значении сократительного белка миозина, содержащегося в миофибриллах.
В дальнейшем миозин исследовали В. А. Энгельгардт, И. И. Иванов и другие советские ученые. Большой вклад в изучение мышечного сокращения внес венгерский ученый Сцент-Джордьи. Другой венгерский ученый Штрауб открыл белок мышц актин.
Изучение мышечной ткани следует начинать с белков, так как на их долю приходится около 80% сухого остатка мышечной ткани. В соответствии с морфологической структурой мышечного волокна белки распределяются следующим образом:

Белки мышечной ткани

Из приведенной схемы видно, что белковый состав мышечной ткани очень разнообразен. В саркоплазме содержится четыре белка: миоген, миоальбумин, глобулин X и миоглобин. В миофибриллах содержится комплекс, состоящий из актина и миозина, называемый актомиозином. Все белки саркоплазмы называются внутриклеточными, а белки сарколеммы — внеклеточными, В ядрах содержатся нуклеопротеиды, в сарколемме — коллаген и эластин. Если учесть, что в мышечной ткани, кроме того, содержится еще значительное количество различных ферментов и каждый из них является особым белком, то белковый состав мышечной ткани оказывается еще более сложным.

Миозин

Основным белком мышечной ткани является миозин. Он составляет почти половину всех белков мышечной ткани, причем он встречается в мышцах всех млекопитающих, птиц и рыб. По пищевой ценности он является полноценным белком. В табл. 7 приведен аминокислотный состав миозина быка.

Белки мышечной ткани

Миозин был детально изучен советскими биохимиками, обнаружившими, что он является не только структурным белком мышечной ткани, т. е. белком, участвующим в построении клетки, но и ферментом — аденозинтрифосфатазой, катализирующей реакцию гидролиза АТФ. При этом образуются АДФ (аденозинди-фосфорная кислота) и фосфорная кислота и выделяется большое количество энергии, используемой при мышечной работе.
Миозин получен в чистом кристаллическом виде. Молекулярный вес его очень большой, примерно 1,5 млн. Кристаллический миозин при полном отсутствии солей прекрасно растворим в воде. Ho достаточно добавить к воде ничтожное количество какой-либо соли, например хлористого натрия, как он полностью теряет способность растворяться и растворение наступает уже при концентрации хлористого натрия около 1%. Однако по отношению к солям, например к сернокислому аммонию, миозин ведет себя как типичный глобулин.
При извлечении белков мяса водой миозин не переходит в раствор. При обработке мяса солевыми растворами он обнаруживается в солевой вытяжке. При разведении водой солевого раствора миозина уменьшается концентрация соли и миозин начинает выпадать в осадок. Миозин высаливается при полном насыщении хлористым натрием и сернокислым магнием (высаливание производят кристаллической солью, иначе добиться полного насыщения невозможно).
Изоэлектрическая точка миозина находится при pH 5,4—5,5.
Миозин обладает свойством вступать в особые связи с различными веществами, в первую очередь с белками, с образованием комплексов. Особую роль в деятельности мышц играет комплекс миозина с актином — актомиозин.

Актин и актомиозин

Белок актин может существовать в двух формах: фибриллярной и глобулярной. В покоящейся мышце актин находится в фибриллярной форме; при мышечном сокращении он переходит в глобулярную. Большое значение в этом превращении имеют аденозинтрифосфорная кислота и соли.
В мышечной ткани содержится 12—15% актина. В раствор он переходит при длительном извлечении солевыми растворами; при кратковременном извлечении он остается в строме. Молекулярный вес актина около 75 000.
При смешивании растворов актина и миозина образуется комплекс, называемый актомиозином, из которого в основном построены миофибриллы. Этот комплекс отличается высокой вязкостью, способен резко сжиматься при определенных концентрациях ионов калия и магния (0,05 м KCl >и 0,001 м MgCl2) в присутствии аденозинтрифосфата. При более высоких концентрациях солей (0,6 м KCl) актомиозин при добавлении АТФ распадается на актин и миозин. Вязкость раствора при этом заметно снижается.
По представлениям Сцент-Джордьи сжатие актомиозина под действием АТФ лежит в основе сокращения живой мышцы.
Актомиозин, как подлинный глобулин, не растворим в воде. При обработке мяса солевыми растворами в раствор переходит актомиозин с неопределенным содержанием актина в зависимости от длительности извлечения.

Глобулин X

В мышечной ткани содержится около 20% глобулина X от всего количества белка. Он является типичным глобулином, т. е. не растворяется в воде, но растворяется в солевых растворах средней концентрации; осаждается из растворов при половине насыщения сернокислым аммонием (1 объем раствора белка и 1 объем насыщенного раствора сернокислого аммония), хлористым натрием при полном насыщении.

Mиоген

В мышечной ткани содержится около 20% миогена от всего количества белка. Его нельзя отнести к типичным альбуминам или глобулинам, так как он растворяется в воде, недостаточно высаливается хлористым натрием и сернокислым магнием при насыщении (кристаллической солью), в то же время осаждается сернокислым аммонием при 2/3 насыщения (1 объем белкового раствора и 2 объема насыщенного раствора сернокислого аммония). Этот белок был получен в кристаллическом виде. Молекулярный вес миогена 150 000.
В. А. Энгельгардт обнаружил у миогена способность катализировать одну из важнейших реакций, протекающих в процессе гликолиза мышечной ткани. Этим открытием впервые было показано, что ферментативной активностью могут обладать структурные белки, т. е. белки, участвующие в построении тканей.

Mиоальбумин

В мышечной ткани содержится около 1—2% миоальбумина от всего количества белка. Он является типичным альбумином, т. е. растворяется в воде, не осаждается хлористым натрием при насыщении, но осаждается сернокислым аммонием.

Mиоглобин

Миоглобин — сложный белок хромопротеид с молекулярным весом 16 900. При гидролизе он распадается на белок глобин и небелковую группу гем. Миоглобин окрашивает мышцы в красный цвет; от гемоглобина он отличается белковой частью; простетическая группа у них одинакова.
При окислении гем переходит в гематин, а в присутствии соляной кислоты — в гемин. По содержанию гемина можно судить о количестве миоглобина в мышечной ткани.
Содержание гемина в мышцах крупного рогатого скота колеблется от 42 до 60 мг на 100 г ткани; в мышцах свиней его значительно меньше — от 22 до 42 мг на 100 г ткани, поэтому они слабее окрашены.
Миоглобин, как и пигменты крови, имеют характерный спектр поглощения.
Принцип получения спектров поглощения окрашенных веществ, в частности пигментов мяса и крови, состоит в том, что световая энергия, проходя через раствор пигмента, поглощается этим раствором. При этом происходит так называемая абсорбция (поглощение) света, которую можно обнаружить спектроскопом.
Характерные полосы поглощения для пигментов мышечной ткани и крови находятся в пределах от 400 до 700 ммк. В этом интервале волны воспринимаются нашим глазом, и мы можем увидеть посредством спектроскопа в спектре темные полосы, получающиеся благодаря абсорбции света с определенной длиной волны.

Белки мышечной ткани

Поглощение света окрашенными веществами можно определить количественно спектрофотометром. Полученные результаты принято выражать графически. В этом случае по оси абсцисс откладывают длину волны света, а по оси ординат — количество света в процентах, прошедшее через раствор. Чем меньше прошло света, тем больше поглотилось его окрашенным веществом. Полное пропускание света раствором принимается за 100%.
На рис. 10 показано поглощение (абсорбция) света раствором оксимиоглобина; из него видно, что оксимиоглобин имеет две ярко выраженные характерные полосы поглощения в видимой области спектра, т. е. два участка, в которых он меньше всего пропускает света и, следовательно, больше всего поглощает света. Максимумы этих участков находятся при двух длинах волн; λ 585 ммк и λ 545 ммк,
На рис. 11 показана для сравнения спектрофотометрическая кривая оксигемоглобина.
Миоглобин обладает большей способностью связываться с кислородом, чем гемоглобин крови. Посредством миоглобина мышечная ткань снабжается кислородом. В работающих мышцах миоглобина содержится больше, так как в них окисление протекает интенсивнее. Известно, что мышцы ног сильнее окрашены, чем спинная мышца; мышцы работающих волов окрашены также сильнее, чем неработающих животных. Особенно это заметно у птиц, грудные мышцы которых, являясь нерабочими, почти не окрашены.

Коллаген и эластин

Коллаген и эластин — соединительнотканные белки не растворимые в воде и солевых растворах. Они образуют сарколемму — тончайшую оболочку мышечного волокна.

Нуклеопротеиды

Нуклеопротеиды — белки, составляющие клеточное ядро. Характерной особенностью их является способность растворяться в растворах слабых щелочей. Это объясняется тем, что в их молекуле содержится простетическая группа, имеющая кислотные свойства.

Разделение белков мышечной ткани

При обработке мышечной ткани солевыми растворами средней концентрации ее белки можно разделить на белки стромы и белки плазмы. Под стромой понимают не растворимую в солевом растворе структурную основу мышечной ткани, которая состоит главным образом из белков сарколеммы (см. схему).

Белки мышечной ткани

Растворимость внутриклеточных белков мышечной ткани различна. Например, актомиозин и глобулин X не растворяются в воде и легче осаждаются из солевых растворов сернокислым аммонием и хлористым натрием, чем миоген. Миоген растворяется в воде подобно миоальбумину, но отличается от него по высаливаемости.
Растворимость белков мышечной ткани в растворах солей при нейтральной реакции и их осаждаемость приведены в табл. 8.

Белки мышечной ткани

При посоле, варке и других видах технологической обработки мяса происходит потеря белковых веществ. Величины потерь белков обусловлены различными растворимостью и осаждаемастью их.
Зная свойства белков, можно подобрать такие условия, при которых потери будут наименьшими. Поэтому на изучение указанных свойств белков должно быть обращено особое внимание.

  • Химия мышечной ткани
  • Денатурация белков крови
  • Использование крови для технических целей
  • Использование крови для лечебных целей
  • Использование крови для пищевых целей
  • Порча крови
  • Химический состав плазмы крови
  • Гемолиз крови
  • Химия эритроцитов
  • Химический состав крови
  • Постоянство состава и физико-химические свойства крови
  • Дефибринирование крови
  • Стабилизация крови
  • Свертывание крови
  • Химия крови
  • Автолиз
  • Гниение белков в кишечнике
  • Обмен сложных белков
  • Образование специфических веществ
  • Декарбоксилирование белков
  • Переаминирование белков
  • Дезаминирование белков
  • Синтез белков
  • Обмен белков
  • Обмен жиров и липоидов
  • Связь между дыханием и брожением
  • Обмен углеводов
  • Всасывание
  • Пищеварение
  • Пищевые вещества

Источник