В каких продуктах есть карбон
В каких продуктах содержатся оксалаты?
Прежде всего, как говорилось выше, оксалаты содержатся в вареных овощах и фруктах.
Также соли щавелевой кислоты присутствуют в уксусе, горчице, шоколаде, жирном мясе, конфетах, винных ягодах, печенье, варенье, изделиях из теста, мороженом.
В каких продуктах содержится щавелевая кислота?
Безвредное количество солей щавелевой кислоты составляет 50 мг на 100 г пищи.
Лидерами по содержанию этой кислоты являются:
•зелень (щавель, ревень, шпинат, а также сельдерей и петрушка);
•какао;
•кофе;
•шоколад;
•чай;
•свекла;
•лимон и лайм (особенно кожура);
•карамболь;
•гречка;
•миндаль;
•кешью.
Кроме того, щавелевая кислота содержится в таких продуктах:
•перец;
•имбирь;
•морковь;
•лук;
•кулинарный мак;
•томаты;
•цикорий;
•малина;
•клубника;
•зеленая фасоль;
•капуста;
•огурцы;
•абрикосы;
•бананы;
•смородина;
•баклажаны;
•грибы;
•листья салата;
•бобовые;
•тыква;
•яблоки;
•крыжовник;
•ежевика;
•картофель;
•манго;
•гранат;
•апельсины;
•редис;
•орехи;
•зародыши пшеницы;
•кукуруза.
Фосфаты
Говоря о солях щавелевой кислоты, нельзя не сказать о фосфатах, представляющих собой соли, а также эфиры фосфорных кислот.
Сегодня фосфаты в жизни человека присутствуют повсеместно, ведь они содержатся в моющих средствах, продуктах, лекарственных препаратах, а также в сточных водах.
Фосфаты в качестве влагосвязывающих агентов используются в процессе переработки мяса и рыбы.
Кроме того, используются соли фосфорных кислот в кондитерской, а также молочной промышленностях: так, фосфаты разрыхляют тесто, придают однородность сырам и сгущенке.
Кратко роль фосфатов в пищевой промышленности можно свести к следующим пунктам:
•увеличение водосвязывающей и эмульгирующей способностей белков мышечной ткани (в итоге на наших столах “красуется” упругая и сочная колбаса, причем всеми этими качествами она обязана не высокому качеству самого мяса, а именно наличию в мясной продукции фосфатов);
•снижение скорости окислительных процессов;
•способствование цветообразованию мясных продуктов (фосфаты обеспечивают красивый розовый цвет колбас, сосисок, балыков и сарделек);
•замедление окисления жиров.
Но! Существуют определенные установленные нормы содержания в продуктах питания фосфатов, которые нельзя превышать, чтобы не нанести серьезный вред здоровью.
Так, максимально разрешенное содержание фосфатов на 1 кг мясной и рыбной продукции составляет не более 5 г (в целом этот показатель варьируется в пределах 1 – 5 г). Однако зачастую недобросовестные производители мясной и рыбной продукции эти нормы нарушают. По этой причине лучше потреблять приготовленные собственноручно мясные и рыбные блюда, сведя к минимуму (а лучше и вообще исключив) употребление магазинной мясной и рыбной продукции.
Фосфаты, присутствующие во многих продуктах (особую опасность представляют собой сладости, в состав которых входит большое количество красителей и усилителей вкуса), провоцируют развитие таких реакций:
•кожные высыпания;
•нарушение психических реакций (речь идет о гиперактивности и импульсивности у детей, ослаблении концентрации внимания, чрезмерной агрессивности);
•нарушение обмена кальция, что приводит хрупкости и ломкости костей.
Важно! При появлении аллергии к фосфатам следует исключить пищу, содержащую такие добавки как Е220, Е339, Е322, поскольку данные вещества в течение 30 минут могут спровоцировать тяжелые реакции.
В каких продуктах содержатся фосфаты?
Как говорилось выше, фосфаты присутствуют в мясной и рыбной продукции, консервированных морепродуктах, плавленом сыре, молочных консервах, газированных напитках.
Кроме того, фосфаты присутствуют во многих сладостях.
Пурины и мочевая кислота
Пурины (несмотря на то, что их причисляют к вредным веществам, провоцирующим развитие подагры) являются важнейшими соединениями, входящими в состав всех без исключения живых организмов и обеспечивающими нормальный обмен веществ. Мало того, пурины – это основа для формирования нуклеиновых кислот, отвечающих за хранение, наследственную передачу и реализацию информации (напомним, что нуклеиновые кислоты – это всем известные ДНК и РНК).
Когда клетки погибают, происходит разрушение пуринов с дальнейшим образованием мочевой кислоты, выступающей мощным антиоксидантом, защищающим наши кровеносные сосуды и предупреждающим преждевременное старение.
Но стоит лишь превысить норму содержания мочевой кислоты в организме, как она из “друга” превращается во “врага”, поскольку, накапливаясь в почках, суставах и других органах, приводит к развитию подагры, ревматизма, гипертонии, остеохондроза, мочекаменной и почечнокаменной болезней. Кроме того, избыток мочевой кислоты ослабляет деятельность сердца и способствует сгущению крови.
Поэтому крайне важно контролировать уровень мочевой кислоты в организме, а для этого достаточно следить за своим рационом, который не должен быть перенасыщен продуктами, в большом количестве содержащими пурины.
В каких продуктах содержатся пурины?
Важно! Среднесуточная норма потребления пуринов для здоровых людей, не имеющих проблем с почками, отвечающими за выведение лишней мочевой кислоты из организма, составляет 600 – 1000 мг. При этом продукты растительного происхождения, содержащие большое количество пуринов, не опасны для здоровья, поскольку являются поставщиками органических кислот, которые способствуют выведению избытка непосредственно мочевой кислоты.
Наиболее высокое содержание пуринов фиксируется в таких продуктах:
•дрожжи;
•телятина (особенно язык и вилочковая железа);
•свинина (особенно сердце, печень и почки);
•белые сушеные грибы;
•анчоусы;
•сардина;
•сельдь;
•мидии;
•какао.
Умеренное количество пуринов содержится в следующих продуктах:
•бычьих легких;
•беконе;
•говядине;
•форели;
•тунце;
•карпе;
•треске;
•морепродуктах;
•мясе птицы;
•ветчине;
•баранине;
•окуне;
•мясе кролика;
•оленине;
•чечевице;
•щуке;
•шпротах;
•скумбрие;
•фасоли;
•палтусе;
•сухих семенах подсолнуха;
•морском гребешке;
•судаке;
•нуте;
•изюме кишмиш.
Меньше всего пуринов присутствует в таких продуктах:
•ячмень;
•сухой горох;
•спаржа;
•цветная и савойская капуста;
•брокколи;
•мясные изделия;
•камбала;
•овсянка;
•лосось;
•консервированные грибы;
•арахис;
•шпинат;
•щавель;
•лук порей;
•творог;
•сыр;
•яйца;
•бананы;
•абрикос;
•чернослив;
•вяленые финики;
•рис;
•тыква;
•кунжут;
•сладкая кукуруза;
•миндаль;
•фундук;
•оливки зеленые;
•айва;
•сельдерей;
•виноград;
•орехи грецкие;
•слива;
•спаржа;
•помидоры;
•хлебобулочные изделия;
•баклажаны;
•огурцы;
•персики;
•клубника;
•ананас;
•авокадо;
•редис;
•яблоки;
•груши;
•киви;
•свекла;
•отваренный в кожуре картофель;
•малина;
•вишня;
•квашеная капуста;
•красная смородина;
•морковь;
•крыжовник.
Танин
Танин (это полезнейшее вещество имеет еще одно название – дубильная кислота) благоприятно влияет на организм человека, а именно:
•устраняет воспалительные процессы;
•способствует остановке кровотечений;
•нейтрализует последствия укусов пчел;
•способствует излечению различных кожных заболеваний;
•связывает и выводит из организма шлаки, токсины и тяжелые металлы;
•нейтрализует негативное воздействие микробов;
•укрепляет кровеносные сосуды;
•устраняет желудочно-кишечные расстройства;
•предупреждает развитие лучевой болезни, а также белокровия.
В каких продуктах содержатся танины?
Важно! Продукты, содержащие танины (и любые другие дубильные вещества), желательно потреблять натощак либо в промежутках между приемами пищи, в противном случае они связываются с белками самой пищи, поэтому не достигают слизистой как желудка, так и кишечника.
Пищевые источники танинов:
•чай зеленый и черный;
•терн;
•гранат;
•хурма;
•кизил;
•айва;
•клюква;
•земляника;
•черника;
•черная смородина;
•виноград;
•орехи;
•пряности (гвоздика, корица, тмин, а также тимьян, ваниль и лавровый лист);
•бобовые;
•кофе.
Важно! Возникновение ощущения вязкости во рту при приеме в пищу того или иного продукта свидетельствует о содержании в нем танина.
Креатин
Это азотсодержащая карбоновая кислота, обеспечивающая энергетический обмен не только в мышечных, но и в нервных клетках. Это своеобразный “склад” энергии, из которого организм при необходимости получает силы, не говоря уже о повышении выносливости.
Польза креатина
•Существенное увеличение мышечной массы.
•Ускорение темпа восстановления после интенсивных физических нагрузок.
•Выведение токсинов.
•Укрепление сердечно-сосудистой системы.
•Снижение риска развития болезни Альцгеймера.
•Способствование росту клеток.
•Улучшение работы мозга, а именно усиление памяти и мышления.
•Ускорение метаболизма, что способствует сжиганию жира.
Если говорить о вреде креатина, то при умеренном потреблении продуктов, содержащих это вещество, никаких побочных эффектов наблюдаться не будет, что было подтверждено многими исследованиями.
Но! Поступление в организм креатина в чрезмерных дозах может привести к развитию ожирения, а также к перегрузке систем и органов, отвечающих не только за усвоение, а и за переработку различных пищевых компонентов.
Важно! Креатин производится самим человеческим организмом из аминокислот, но все же определенная его часть должна поставляться с пищей.
В каких продуктах содержится креатин?
Креатин крайне чувствителен к нагреванию, поэтому в процессе термической обработки продуктов существенная его часть уничтожается.
Основные пищевые источники креатина:
•говядина;
•свинина;
•молоко;
•клюква;
•лосось;
•тунец;
•сельдь;
•треска.
Аспирин
Аспирин (или ацетилсалициловая кислота) является производной салициловой кислоты.
Польза аспирина неоспорима:
•Препятствование образованию и так называемому слипанию тромбов.
•Стимулирование образования большого количества биологически активных веществ.
•Активизирование работы ферментов, которые расщепляют белки.
•Укрепление сосудов и клеточных мембран.
•Регулирование образования соединительной, хрящевой, а также костной тканей.
•Препятствование сужению сосудов, что является отличной профилактикой развития инфарктов и инсультов.
•Снятие воспаления.
•Устранение лихорадочных состояний, сопровождаемых повышением температуры тела.
•Снятие головной боли (аспирин способствует разжижению крови, а, следовательно, снижению внутричерепного давления).
Важно! Как известно, при длительном применении аспирина в виде таблеток могут наблюдаться различные побочные эффекты, поэтому (дабы избежать различных осложнений) в профилактических целях лучше потреблять продукты растительного происхождения, содержащие ацетилсалициловую кислоту. Натуральные продукты не вызывают никаких серьезных осложнений.
В каких продуктах содержится аспирин?
Ацетилсалициловая кислота содержится во многих фруктах и овощах. Все приведенные ниже продукты должны обязательно входить в меню пожилых людей и тех, кто страдает гипертонией и иными сердечно-сосудистыми болезнями.
Основные пищевые источники аспирина:
•яблоки;
•абрикосы;
•персики;
•крыжовник;
•смородина;
•вишня;
•клубника;
•клюква;
•малина;
•слива;
•чернослив;
•апельсины;
•огурцы;
•помидоры;
•виноград;
•изюм;
•дыня;
•сладкий перец;
•морская капуста;
•кефир;
•лук;
•чеснок;
•какао-порошок;
•красное вино;
•свекла;
•цитрусовые (особенно лимоны).
Мощнейшими аспириноподобными свойствами обладает также рыбий жир.
Автор: Филипенко Д. С.
Источник: nashaplaneta.su
Источник
Всем привет, наткнулся на интересную статью, тут на драйве 2, ну и решил ее откопировать себе, думаю многим будет интересно почитать, ибо самим как правило оень “по-Google-ть”)))
За статью спасибо говорим rules26 у него много чего интересного в блоге)
Сегодня мы поможем разобраться в одном из самых интересных материалов 21 века. Начнем с военных технологий, закончим тюнингом.
Углеродное волокно — материал, состоящий из тонких нитей диаметром от 3 до 15 микрон, образованных преимущественно атомами углерода. Атомы углерода объединены в микроскопические кристаллы, выровненные параллельно друг другу. Выравнивание кристаллов придает волокну большую прочность на растяжение. Углеродные волокна характеризуются высокой силой натяжения, низким удельным весом, низким коэффициентом температурного расширения и химической инертностью.
Углеродное волокно является основой для производства углепластиков (или карбона, карбонопластиков, от “carbon”, “carbone” — углерод). Углепластики — полимерные композиционные материалы из переплетенных нитей углеродного волокна, расположенных в матрице из полимерных (чаще эпоксидных) смол.
Углеродные композиционные материалы отличаются высокой прочностью, жесткостью и малой массой, часто прочнее стали, но гораздо легче.
Что такое карбон?
Слово «карбон» — своего рода профессиональный жаргонизм, точнее сокращение от английского Carbon Fiber (углеродное волокно), под эгидой которого, в общем понимании, объединилось огромное количество самых разных материалов. Примерно, как тысячи различных веществ с отличающимися физическими, химическими и техническими свойствами носят название «пластмасса». В случае с карбоном, общим для материалов стал углеволоконный наполнитель, но не связующее вещество, которое может быть разным. Даже полиэтиленовая пленка с впаянными в нее угольными нитями с полным правом может носить это гордое имя. Просто сложившейся классификации углепластиков еще нет.
Большинство современных материалов, применяемых в технике и, особенно, в автомобильной области, доходят до рядового потребителя по схожему сценарию. Новшества появляются в научных лабораториях обычно для нужд «оборонки». Затем, исполнив почетную обязанность по защите Отечества, они прокладывают себе дорогу через спорт и, как следствие, тюнинг к конвейеру. Так произошло и в случае с углеродными материалами.
Какое применение для карбона?
В последние годы проникновение карбона в конструкцию затюнингованных энтузиастами «аппаратов» приняло лавинообразный характер. Кроме того, углепластик все чаще и чаще упоминается в описаниях серийных машин. Этот материал, имеющий военно-космическую и спортивную предысторию, становится все популярнее. Прочность и легкость материалов ценятся конструкторами автомобилей уже давно, примерно с 50-х годов прошлого века. Сегодняшний прогресс технологий производства увеличивает соблазн применять больше композитов в новых разработках. Для владельца машины подобные детали ценны не только декоративностью рисунка углеродной ткани и завораживающей «переливчатостью» отраженного волокнами света, но и сохраняющейся аурой эксклюзивности. Со стороны производителя предложение карбоновых элементов в отделке — показатель технологической «продвинутости» фирмы.
Краткий курс истории.
Не нарушая сложившихся традиций, после «службы в армии» углепластик «занялся» спортом. Лыжники, велосипедисты, гребцы, хоккеисты и многие другие спортсмены по достоинству оценили легкий и прочный инвентарь. В автоспорте карбоновая эра началась в 1976 году. Сначала на машинах McLaren появились отдельные детали из диковинного черно-переливчатого материала, а в 1981 на трассу вышел McLaren MP4 с монококом, полностью изготовленным из углеволоконного композита. Так идея главного конструктора команды Lotus Колина Чепмена, создавшего в 1960-х несущую основу гоночного кузова, получила качественное развитие. Однако в то время новый материал был еще неведом технологам от автоспорта, потому неразрушаемую капсулу для McLaren изготовила американская компания Hercules Aerospace, обладающая опытом военно-космических разработок. Сейчас же в активе практически всех ведущих команд Формулы-1 есть собственное оборудование для выпуска карбоновых монококов, рычагов подвески, антикрыльев, спойлеров, сидений пилотов, рулей и даже тормозных дисков.
Что же такое КАРБОН или углеродное волокно?
Углеродное волокно состоит из множества тончайших нитей углерода. Прочность нитей на разрыв, сравнимая с прочностью легированной стали, при массе, меньшей, чем у алюминия, обуславливает высокие механические характеристики карбонов. Интересно, что наиболее распространенная технология получения столь прочного материала основана на методе «обугливания» волокон, по изначальным свойствам близким к шерсти. Исходный полимер белого цвета с мудреным названием полиакрилонитрил подвергается нескольким циклам нагрева в среде инертных газов. Сначала под воздействием высокой температуры (около 260 C) на молекулярном уровне изменяется внутренняя структура вещества. Затем при температурах повыше (около 700 C) атомы углерода «сбрасывают» водород. После нескольких «поджариваний» водород удаляется полностью. Теперь удерживавшие его силы направлены на упрочнение связей между оставшимися элементами. На шерсть материал уже не похож, однако его прочность еще далека от идеала. И процесс под названием графитизация продолжается. Повторяющиеся операции нагрева до 1300 C «очищают» почерневшее волокно уже от азота. Полностью избавиться от последнего не удается, однако его количество уменьшается. Каждый «шаг» делает содержание в веществе атомов углерода все больше, а их связь все крепче. Механизм упрочнения такой же, как и при «изгнании» водорода. Самая прочная продукция проходит несколько ступеней графитизации при температуре до 3000 C и обозначается аббревиатурой UHM.
Почему так дорого?
Большие затраты энергии — основная причина высокой себестоимости углеродного волокна. Впрочем, это с лихвой компенсируется впечатляющим результатом. Даже не верится, что все начиналось с «мягкого и пушистого» материала, содержащегося в довольно прозаических вещах и известных не только сотрудникам химических лабораторий. Белые волокна — так называемые сополимеры полиакрилонитрила — широко используются в текстильной промышленности. Они входят в состав плательных, костюмных и трикотажных тканей, ковров, брезента, обивочных и фильтрующих материалов. Иными словами, сополимеры полиакрилонитрила присутствуют везде, где на прилагающейся этикетке упомянуто акриловое волокно. Некоторые из них «несут службу» в качестве пластмасс. Наиболее распространенный среди таковых — АБС-пластик. Вот и получается, что «двоюродных родственников» у карбона полным-полно.
Угольная нить имеет впечатляющие показатели по усилию на разрыв, но ее способность «держать удар» на изгиб «подкачала». Поэтому, для равной прочности изделий, предпочтительнее использовать ткань. Организованные в определенном порядке волокна «помогают» друг другу справиться с нагрузкой. Однонаправленные ленты лишены такого преимущества. Однако, задавая различную ориентацию слоев, можно добиться искомой прочности в нужном направлении, значительно сэкономить на массе детали и излишне не усиливать непринципиальные места.
Что такое карбоновая ткань?
Сохранить в Альбом
plain
Для изготовления карбоновых деталей применяется как просто углеродное волокно с хаотично расположенными и заполняющими весь объем материала нитями, так и ткань (Carbon Fabric). Существуют десятки видов плетений. Наиболее распространены Plain, Twill, Satin. Иногда плетение условно — лента из продольно расположенных волокон «прихвачена» редкими поперечными стежками только для того, чтобы не рассыпаться.
Плотность ткани, или удельная масса, выраженная в г/м2, помимо типа плетения зависит от толщины волокна, которая определяется количеством угленитей. Данная характеристика кратна тысячи. Так, аббревиатура 1К означает тысячу нитей в волокне. Чаще всего в автоспорте и тюнинге применяются ткани плетения Plain и Twill плотностью 150–600 г/м2, с толщиной волокон 1K, 2.5K, 3К, 6K, 12K и 24К. Ткань 12К широко используется и в изделиях военного назначения (корпуса и головки баллистических ракет, лопасти винтов вертолетов и подводных лодок, и пр.), то есть там, где детали испытывают колоссальные нагрузки.
Сохранить в Альбом
satin
Бывает ли цветной карбон? Желтый карбон бывает?
Часто от производителей тюнинговых деталей и, как следствие, от заказчиков можно услышать про «серебристый» или «цветной» карбон. «Серебряный» или «алюминиевый» цвет — всего лишь краска или металлизированное покрытие на стеклоткани. И называть карбоном такой материал неуместно — это стеклопластик. Отрадно, что и в данной области продолжают появляться новые идеи, но по характеристикам стеклу с углем углеродным никак не сравниться. Цветные же ткани чаще всего выполнены из кевлара. Хотя некоторые производители и здесь применяют стекловолокно; встречается даже окрашенные вискоза и полиэтилен. При попытке сэкономить, заменив кевлар на упомянутые полимерные нити, ухудшается адгезия такого продукта со смолами. Ни о какой прочности изделий с такими тканями не может быть и речи.
Отметим, что «Кевлар», «Номекс» и «Тварон» — патентованные американские марки полимеров. Их научное название «арамиды». Это родственники нейлонов и капронов. В России есть собственные аналоги — СВМ, «Русар», «Терлон» СБ и «Армос». Но, как часто бывает, наиболее «раскрученное» название — «Кевлар» — стало именем нарицательным для всех материалов.
Сохранить в Альбом
twill2/2
Что такое кевлар и какие у него свойства?
По весовым, прочностным и температурным свойствам кевлар уступает углеволокну. Способность же кевлара воспринимать изгибающие нагрузки существенно выше. Именно с этим связано появление гибридных тканей, в которых карбон и кевлар содержатся примерно поровну. Детали с угольно-арамидными волокнами воспринимают упругую деформацию лучше, чем карбоновые изделия. Однако есть у них и минусы. Карбон-кевларовый композит менее прочен. Кроме того, он тяжелее и «боится» воды. Арамидные волокна склонны впитывать влагу, от которой страдают и они сами, и большинство смол. Дело не только в том, что «эпоксидка» постепенно разрушается водно-солевым раствором на химическом уровне. Нагреваясь и охлаждаясь, а зимой вообще замерзая, вода механически расшатывает материал детали изнутри. И еще два замечания. Кевлар разлагается под воздействием ультрафиолета, а формованный материал в смоле утрачивает часть своих замечательных качеств. Высокое сопротивление разрыву и порезам отличают кевларовую ткань только в «сухом» виде. Потому свои лучшие свойства арамиды проявляют в других областях. Маты, сшитые из нескольких слоев таких материалов, — основной компонент для производства легких бронежилетов и прочих средств безопасности. Из нитей кевлара плетут тонкие и прочные корабельные канаты, делают корд в шинах, используют в приводных ремнях механизмов и ремнях безопасности на автомобилях.
А можно обклеить деталь карбоном?
Непреодолимое желание иметь в своей машине детали в черно-черную или черно-цветную клетку привели к появлению диковинных суррогатов карбона. Тюнинговые салоны обклеивают деревянные и пластмассовые панели салонов углеродной тканью и заливают бесчисленными слоями лака, с промежуточной ошкуриванием. На каждую деталь уходят килограммы материалов и масса рабочего времени. Перед трудолюбием мастеров можно преклоняться, но такой путь никуда не ведет. Выполненные в подобной технике «украшения» порой не выдерживают температурных перепадов. Со временем появляется паутина трещин, детали расслаиваются. Новые же детали неохотно встают на штатные места из-за большой толщины лакового слоя.
Не принимайте это на свой счет, кто ищет тот найдет! Автор не претендует на истину в конечной инстанции.
Как производятся карбоновые и/или композитные изделия?
Технология производства НАСТОЯЩИХ карбоновых изделий основывается на особенностях применяемых смол. Компаундов, так правильно называют смолы, великое множество. Наиболее распространены среди изготовителей стеклопластиковых обвесов полиэфирная и эпоксидная смолы холодного отверждения, однако они не способны полностью выявить все преимущества углеволокна. Прежде всего, по причине слабой прочности этих связующих компаундов. Если же добавить к этому плохую стойкость к воздействию повышенных температур и ультрафиолетовых лучей, то перспектива применения большинства распространенных марок весьма сомнительна. Сделанный из таких материалов карбоновый капот в течение одного жаркого летнего месяца успеет пожелтеть и потерять форму. Кстати, ультрафиолет не любят и «горячие» смолы, поэтому, для сохранности, детали стоит покрывать хотя бы прозрачным автомобильным лаком.
Компаунды холодного твердения.
«Холодные» технологии мелкосерийного выпуска малоответственных деталей не позволяют развернуться, поскольку имеют и другие серьезные недостатки. Вакуумные способы изготовления композитов (смола подается в закрытую матрицу, из которой откачан воздух) требуют продолжительной подготовки оснастки. Добавим к этому и перемешивание компонентов смолы, «убивающее» массу времени, что тоже не способствует производительности. Это Россия, раслабся 😀 Метод же напыления рубленого волокна в матрицу не позволяет использовать ткани. Собственно, все идентично стеклопластиковому производству. Просто вместо стекла применяется уголь. Даже самый автоматизированный из процессов, который к тому же позволяет работать с высокотемпературными смолами (метод намотки), годится для узкого перечня деталей замкнутого сечения и требует оборудования.
Эпоксидные смолы горячего отверждения прочнее, что позволяет выявить качества карбонов в полной мере. У некоторых «горячих» смол механизм полимеризации при «комнатной» температуре запускается очень медленно. На чем, собственно, и основана так называемая технология препрегов, предполагающая нанесение готовой смолы на углеткань или углеволокно задолго до процесса формования. Приготовленные материалы просто ждут своего часа на складах.
В зависимости от марки смолы время жидкого состояния обычно длится от нескольких часов до нескольких недель. Для продления сроков жизнеспособности, приготовленные препреги, иногда хранят в холодильных камерах. Некоторые марки смол «живут» годами в готовом виде. Прежде чем добавить отвердитель, смолы разогревают до 50–60 C, после чего, перемешав, наносят посредством специального оборудования на ткань. Затем ткань прокладывают полиэтиленовой пленкой, сворачивают в рулоны и охлаждают до 20–25 C. В таком виде материал будет храниться очень долго. Причем остывшая смола высыхает и становится практически не заметной на поверхности ткани. Непосредственно при изготовлении детали нагретое связующее вещество становится жидким как вода, благодаря чему растекается, заполняя весь объем рабочей формы и процесс полимеризации ускоряется.
Компаунды горячего твердения.
«Горячих» компаундов великое множество, при этом у каждой собственные температурные и временные режимы отверждения. Обычно, чем выше требуемые показания термометра в процессе формовки, тем прочнее и устойчивее к нагреву готовое изделие. Исходя из возможностей имеющегося оборудования и требуемых характеристик конечного продукта, можно не только выбирать подходящие смолы, но делать их на заказ. Некоторые отечественные заводы-изготовители предлагают такую услугу. Естественно, не бесплатно.
Препреги как нельзя лучше подходят для производства карбона в автоклавах. Перед загрузкой в рабочую камеру нужное количество материала тщательно укладывается в матрице и накрывается вакуумным мешком на специальных распорках. Правильное расположение всех компонентов очень важно, иначе не избежать нежелательных складок, образующихся под давлением. Исправить ошибку впоследствии будет невозможно. Если бы подготовка велась с жидким связующим, то стала бы настоящим испытанием для нервной системы рабочих с неясными перспективами успеха операции.
Процессы, происходящие внутри установки, незатейливы. Высокая температура расплавляет связующее и «включает» полимеризацию, вакуумный мешок удаляет воздух и излишки смолы, а повышенное давление в камере прижимает все слои ткани к матрице. Причем происходит все одновременно.
С одной стороны, одни преимущества. Прочность такого углепластика практически максимальна, объекты самой затейливой формы делаются за один «присест». Сами матрицы не монументальны, поскольку давление распределено равномерно во всех направлениях и не нарушает геометрию оснастки. Что означает быструю подготовку новых проектов. С другой стороны, нагрев до нескольких сотен градусов и давление, порой доходящее до 20 атм., делают автоклав очень дорогостоящим сооружением. В зависимости от его габаритов цены на оборудование колеблются от нескольких сотен тысяч до нескольких миллионов долларов. Прибавим к этому нещадное потребление электроэнергии и трудоемкость производственного цикла. Результат — высокая себестоимость продукции. Есть, впрочем, технологии подороже и посложнее, чьи результаты впечатляют еще больше. Углерод-углеродные композиционные материалы (УУКМ) в тормозных дисках на болидах Формулы-1 и в соплах ракетных двигателей выдерживают чудовищные нагрузки при температурах эксплуатации, достигающих 3000 C. Эту разновидность карбона получают путем графитизации термореактивной смолы, которой пропитывают спрессованное углеродное волокно заготовки. Операция чем-то похожа на производство самого углеволокна, только происходит она при давлении 100 атмосфер. Да, большой спорт и военно-космическая сфера деятельности способны потреблять штучные вещи по «заоблачным» ценам. Для тюнинга и, тем более, для серийной продукции такое соотношение «цены-качества» неприемлемо.
Если решение найдено, оно выглядит настолько простым, что удивляешься: «Что же мешало додуматься раньше?». Тем не менее, идея разделить процессы, происходящие в автоклаве, возникла спустя годы поиска. Так появилась и стала набирать обороты технология, сделавшая горячее формование карбона похожим на штамповку. Препрег готовится в виде сэндвича. После нанесения смолы ткань с обеих сторон покрывается либо полиэтиленовой, либо более термостойкой пленкой. «Бутерброд» пропускается между двух валов, прижатых друг к другу. При этом лишняя смола и нежелательный воздух удаляются, примерно так же, как и при отжиме белья в стиральных машинах образца 1960-х годов. В матрицу препрег вдавливается пуансоном, который фиксируется резьбовыми соединениями. Далее вся конструкция помещается в термошкаф.
Сохранить в Альбом
twill4/4
Тюнинговые фирмы изготавливают матрицы из того же карбона и даже прочных марок алебастра. Гипсовые рабочие формы, правда, недолговечны, но пара-тройка изделий им вполне по силам. Более «продвинутые» матрицы делаются из металла и иногда оснащаются встроенными нагревательными элементами. В серийном производстве они оптимальны. Кстати, метод подходит и для некоторых деталей замкнутого сечения. В этом случае легкий пуансон из вспененного материала остается внутри готового изделия. Антикрыло Mitsubishi Evo — пример такого рода.
Автор статьи :Алексей Романов ( в редакции Rules26 :))
редактор журнала «ТЮНИНГ Автомобилей» имеет свой взгляд на мир карбона)))
И не изготовив пару тройку деталей судит о том что “знает” только по книжкам.
Пробуйте и дерзайте!
Источник