В каких приборах используются свойства электронно дырочного перехода

В каких приборах используются свойства электронно дырочного перехода thumbnail

p-n-перехо́д или электронно-дырочный переход — область соприкосновения двух полупроводников с разными типами проводимости — дырочной (p, от англ. positive — положительная) и электронной (n, от англ. negative — отрицательная). Электрические процессы в p-n-переходах являются основой работы полупроводниковых приборов с нелинейной вольт-амперной характеристикой (диодов, транзисторов и других).

Энергетическая диаграмма p-n-перехода. a) Состояние равновесия; b) При приложенном прямом напряжении; c) При приложенном обратном напряжении.

Области пространственного заряда[править | править код]

В полупроводнике p-типа, который получается посредством акцепторной примеси, концентрация дырок намного превышает концентрацию электронов. В полупроводнике n-типа, который получается посредством донорной примеси, концентрация электронов намного превышает концентрацию дырок. Если между двумя такими полупроводниками установить контакт, то возникнет диффузионный ток — основные носители заряда (электроны и дырки) хаотично перетекают из той области, где их больше, в ту область, где их меньше, и рекомбинируют друг с другом. Как следствие, вблизи границы между областями практически не будет свободных (подвижных) основных носителей заряда, но останутся ионы примесей с некомпенсированными зарядами[1]. Область в полупроводнике p-типа, которая примыкает к границе, получает при этом отрицательный заряд, приносимый электронами, а пограничная область в полупроводнике n-типа получает положительный заряд, приносимый дырками (точнее, теряет уносимый электронами отрицательный заряд).

Таким образом, на границе полупроводников образуются два слоя с пространственными зарядами противоположного знака, порождающие в переходе электрическое поле. Это поле вызывает дрейфовый ток в направлении, противоположном диффузионному току. В конце концов, между диффузионным и дрейфовым токами устанавливается динамическое равновесие, и изменение пространственных зарядов прекращается. Обеднённые области с неподвижными пространственными зарядами и называют p-n-переходом[2].

Выпрямительные свойства[править | править код]

Устройство простейшего прибора, основанного на p-n-переходе — полупроводникового диода — и его символическое изображение на принципиальных схемах (треугольник обозначает p-область и указывает направление тока).

Если к слоям полупроводника приложено внешнее напряжение так, что создаваемое им электрическое поле направлено противоположно существующему в переходе полю, то динамическое равновесие нарушается, и диффузионный ток преобладает над дрейфовым током, быстро нарастая с повышением напряжения. Такое подключение напряжения к p-n-переходу называется прямым смещением (на область p-типа подан положительный потенциал относительно области n-типа).

Если внешнее напряжение приложить так, чтобы созданное им поле было одного направления с полем в переходе, то это приведёт лишь к увеличению толщины слоёв пространственного заряда. Диффузионный ток уменьшится настолько, что преобладающим станет малый дрейфовый ток. Такое подключение напряжения к p-n-переходу называется обратным смещением (или запорным смещением), а протекающий при этом через переход суммарный ток, который определяется в основном тепловой или фотонной генерацией пар электрон-дырка, называется обратным током.

Ёмкость[править | править код]

Ёмкость p-n-перехода — это ёмкости объёмных зарядов, накопленных в полупроводниках на p-n-переходе и за его пределами. Ёмкость p-n-перехода нелинейна — она зависит от полярности и значения внешнего напряжения, приложенного к переходу. Различают два вида ёмкостей p-n-перехода: барьерная и диффузионная[3].

Барьерная ёмкость[править | править код]

Барьерная (или зарядовая) ёмкость связана с изменением потенциального барьера в переходе и возникает при обратном смещении. Она эквивалентна ёмкости плоского конденсатора, в котором слоем диэлектрика служит запирающий слой, а обкладками — p и n-области перехода. Барьерная ёмкость зависит от площади перехода и относительной диэлектрической проницаемости полупроводника.

Диффузионная ёмкость[править | править код]

Диффузионная ёмкость обусловлена накоплением в области неосновных для неё носителей (электронов в p-области и дырок в n-области) при прямом смещении. Диффузионная ёмкость увеличивается с ростом прямого напряжения.

Воздействие радиации[править | править код]

Взаимодействие радиационного излучения с веществом — сложное явление. Условно принято рассматривать две стадии этого процесса: первичную и вторичную.

Первичные или прямые эффекты состоят в смещении электронов (ионизации), смещении атомов из узлов решётки, в возбуждении атомов или электронов без смещения и в ядерных превращениях вследствие непосредственного взаимодействия атомов вещества (мишени) с потоком частиц.

Вторичные эффекты состоят в дальнейшем возбуждении и нарушении структуры выбитыми электронами и атомами.

Наибольшего внимания заслуживают возбуждение электронов с образованием электронно-дырочных пар и процессы смещения атомов кристалла из узлов решетки, так как это приводит к образованию дефектов кристаллической структуры. Если электронно-дырочные пары образуются в области пространственного заряда, это приводит к возникновению тока, на противоположных контактах полупроводниковой структуры. Этот эффект используется для создания беттавольтаических источников питания со сверхдолгим сроком службы (десятки лет).

Облучение заряженными частицами большой энергии всегда приводит к первичной ионизации и, в зависимости от условий, к первичному смещению атомов. При передаче высоких энергий электронам решетки образуются дельта-излучение, высокоэнергетические электроны, которые рассеиваются от ионного трека, а также фотоны и рентгеновские кванты. При передаче атомам кристаллической решетки меньших энергий происходит возбуждение электронов и их переход в более высокоэнергетическую зону, в которой электроны термолизируют энергию путем испускания фотонов и фононов (нагрев) различных энергий. Наиболее общим эффектом рассеяния электронов и фотонов является эффект Комптона.

Читайте также:  Какими магнитными свойствами обладает молекула кислорода

Методы формирования[править | править код]

Вплавление примесей[править | править код]

При вплавлении монокристалл нагревают до температуры плавления примеси, после чего часть кристалла растворяется в расплаве примеси. При охлаждении происходит рекристаллизация монокристалла с материалом примеси. Такой переход называется сплавным.

Диффузия примесей[править | править код]

В основе технологии получения диффузионного перехода лежит метод фотолитографии. Для создания диффузного перехода на поверхность кристалла наносится фоторезист — фоточувствительное вещество, которое полимеризуется засвечиванием. Неполимеризованные области смываются, производится травление плёнки диоксида кремния, и в образовавшиеся окна производят диффузию примеси в пластину кремния. Такой переход называется планарным.

Эпитаксиальное наращивание[править | править код]

Сущность эпитаксиального наращивания состоит в разложении некоторых химических соединений с примесью легирующих веществ на кристалле. При этом образуется поверхностный слой, структура которого становится продолжением структуры исходного проводника. Такой переход называется эпитаксиальным[3].

Применение[править | править код]

  • Диод
  • Транзистор
  • Тиристор
  • Варикап
  • Стабилитрон (диод Зенера)
  • Светодиод
  • Фотодиод
  • Стабистор
  • pin диод
  • Бетавольтаические источники питания

Историческая справка[править | править код]

Официально признано, что p-n-переход открыл в 1939 году американский физик Рассел Ол в Лаборатории Белла[4]. В 1941 году Вадимом Лашкарёвым был открыт p-n-переход на основе и в селеновых фотоэлементах и выпрямителях[5].

См. также[править | править код]

  • Омический контакт
  • Зонная теория
  • Барьер Шоттки

Примечания[править | править код]

Литература[править | править код]

  • А. П. Лысенко, Л. С. Мироненко. Краткая теория p-n-перехода / Рецензент: проф. Ф. И. Григорьев. — М.: МИЭМ, 2002.
  • В. Г. Гусев, Ю. М. Гусев. Электроника. — 2-е изд. — М.: «Высшая школа», 1991. — 622 с.
  • К. И. Таперо, В. Н, Улимов, А. М. Членов. Радиационные эффекты в кремниевых интегральных схемах космического применения. — М.: 2009 г. — 246 с.

Источник

Общие сведения. Электронно-дырочным (p-n) называют такой переход, который образован двумя областями полупроводника с разными типами проводимости: электронной и дырочной. Электронно-дырочный переход нельзя создать простым соприкосновением полупроводниковых пластин n- и p-типа, так как в месте соединения невозможно обеспечить общую кристаллическую решетку без дефектов. На практике широко используется метод получения p-n перехода путем введения в примесный полупроводник примеси с противоположным типом проводимости, например с помощью диффузии, или эпитаксии.

Электронно-дырочные переходы используются в большинстве полупроводниковых приборов (в диодах и полевых транзисторах используются по одному p-n переходу, в биполярных транзисторах – два p-n перехода, в тиристорах – три p-n перехода). Поэтому очень важным является понимание физических явлений и электрических свойств p-n перехода.

Формирование p-n-перехода. Предположим, что p-n переход образован электрическим контактом полупроводников n- и p-типа с одинаковой концентрацией донорных и акцепторных примесей (рис. 1.5, a). На границе областей возникают градиенты концентраций электронов и дырок. Вследствие того, что концентрация электронов в n-области выше, чем в p-области, возникает диффузионный ток электронов из p-области в n-область. А из-за того, что концентрация дырок в p-области выше, чем в n-области, возникает диффузионный ток дырок из p-области в n-область. В результате диффузии основных носителей заряда в граничном слое происходит рекомбинация. Приграничная p-область приобретает нескомпенсированный отрицательный заряд, обусловленный отрицательными ионами. Приграничная n-область приобретает нескомпенсированный положительный заряд, обусловленный положительными ионами.

На рис. 1.5, б показано распределение концентраций дырок p(x) и электронов n(x) в полупроводнике. В граничном слое образуется электрическое поле, направленное от n-области к p-области, как показано на рис. 1.5, а.

В каких приборах используются свойства электронно дырочного переходаВ каких приборах используются свойства электронно дырочного перехода

Рисунок 1.5. Рисунок 1.6.

Это поле является тормозящим для основных носителей заряда. Теперь любой электрон, проходящий из n-области в p-область, попадает в электрическое поле, стремящееся возвратить его обратно в электронную область. Аналогично любая дырка, проходящая из p-области в n-область, также попадает в электрическое поле, стремящееся возвратить ее обратно в дырочную область.

Внутреннее поле является ускоряющим для неосновных носителей. Если электроны p-области вследствие, например, хаотического теплового движения попадут в зону p-n перехода, то внутреннее поле обеспечит их быстрый переход через приграничную область. Аналогично будут преодолевать p-n переход дырки n-области. Для них внутреннее поле также является ускоряющим.

Читайте также:  Какими свойствами обладает германий

Таким образом, внутреннее электрическое поле p-n перехода создает дрейфовый ток неосновных носителей заряда. Этот ток направлен встречно диффузионному току основных носителей заряда.

Если к полупроводнику не прикладывается внешнее напряжение, то результирующий ток через p-n переход отсутствует:

.

Это равенство устанавливается при определенной контактной разности потенциалов UK (рис. 1. 5, в). Эта разность потенциалов препятствует перемещению основных носителей заряда, т. е. создает потенциальный барьер. Для того чтобы преодолеть потенциальный барьер электрон должен обладать энергией W = qeUK. С увеличением потенциального барьера диффузионный ток должен убывать. Толщина слоя h, в котором действует внутреннее электрическое поле, мала и определяет толщину p-n перехода (обычно h < 10-6 м). Однако сопротивление этого слоя велико, поскольку он обеднен основными носителями заряда. Поэтому его часто называют запирающим. При одинаковых концентрациях носителей зарядов в p- и n-областях полупроводника толщина p-n перехода образуется из двух равных частей hp и hn (см. рис. 1.5, а).

В общем случае справедливо соотношение

Nаhp = Nдhn. (1.6.)

Контактная разность потенциалов и толщина р-n-перехода зависят от концентрации доноров и акцепторов:

; (1.7)

, (1.8.)

где с – диэлектрическая проницаемость.

Очевидно, что увеличение концентрации доноров и акцепторов приводит к увеличению контактной разности потенциалов и уменьшению толщины p-n перехода.

Вольт-амперная характеристика p-n-перехода. Вольт-амперной характеристикой p-n перехода называется зависимость тока, протекающего через p-n переход, от величины и полярности приложенного напряжения. Аналитическое выражение ВАХ p-n перехода имеет вид:

, (1.9)

где Iобр — обратный ток насыщения p-n перехода; U – напряжение, приложенное к p-n переходу.

Характеристика, построенная с использованием этого выражения, имеет два характерных участка (рис. 1.6): 1— соответствующий прямому управляющему напряжению Unp, 2 — соответствующий обратному напряжению Uобр.

При больших обратных напряжениях наблюдается пробой p-n перехода, при котором обратный ток резко увеличивается. Различают два вида пробоя: электрический (обратимый) и тепловой (необратимый).

Прямое включение p-n-перехода. Включение, при котором к p-n переходу прикладывается внешнее напряжение Uпр в противофазе с контактной разностью потенциалов, называется прямым. Прямое включение p-n перехода показано на рис. 1.7, а. Практически все внешнее напряжение прикладывается к запирающему слою, поскольку его сопротивление значительно больше сопротивления остальной части полупроводника. Как видно из потенциальной диаграммы (рис. 1.7, б), высота потенциального барьера уменьшается: Uб = Uк – Uпp. Ширина p-n перехода также уменьшается (h’ < h). Дрейфовый ток уменьшается, диффузионный ток резко возрастает. Динамическое равновесие нарушается и через p-n переход протекает прямой ток:

. (1.10.)

Как видно из формулы (16.10), при увеличении прямого напряжения ток может возрасти до больших значений, так как он обусловлен движением основных носителей, концентрация которых в обеих областях полупроводника велика.

При прямом включении дрейфовая составляющая тока пренебрежимо мала по сравнению с диффузионной. Это объясняется низкой концентрацией неосновных носителей заряда и уменьшением результирующей напряженности электрического поля, обусловливающих дрейфовый ток.

Процесс введения основных носителей заряда через p-n переход с пониженной высотой потенциального барьера в область полупроводника, где эти носители заряда являются неосновными, называется инжекцией. Инжектированные носители диффундируют вглубь полупроводника, рекомбинируя с основными носителями этой области. Дырки, проникшие из p-области в n-область, рекомбинируют с электронами, поэтому диффузионный дырочный ток Iр постепенно спадает в n-области до нуля.

Поступающие от внешнего источника в n-область электроны продвигаются к p-n переходу, создавая электронный ток In. По мере приближения к переходу, вследствие рекомбинации электронов с дырками, этот ток спадает до нуля. Суммарный же ток в n-области Iдиф = Ip + In во всех точках полупроводника n-типа остается неизменным. Одновременно с инжекцией дырок в n-область происходит инжекция электронов в p-область. Протекающие при этом процессы аналогичны описанным выше.

Обратное включение p-n-перехода. Включение, при котором к p-n переходу прикладывается внешнее напряжение Uобр в фазе с контактной разностью потенциалов, называется обратным. Этот случай иллюстрирует рис. 1.8, а.

Рисунок 1.7. Рисунок 1.8.

Под действием электрического поля, создаваемого внешним источником Uобр, основные носители оттягиваются от приконтактных слоев вглубь полупроводника. Как видно из рис. 1.8, б, это приводит к расширению p-n перехода (h’ > h). Потенциальный барьер возрастает и становится равным Uб = Uк + Uобр. Число основных носителей, способных преодолеть действие результирующего поля, уменьшается. Это приводит к уменьшению диффузионного тока, который может быть определен по формуле

. (1.11)

Для неосновных носителей (дырок в n-области и электронов в p-области) потенциальный барьер в электронно-дырочном переходе отсутствует. Неосновные носители втягиваются полем в переход и быстро преодолевают его. Это явление называется экстракцией.

Читайте также:  Какие свойства металлов и сплавов вы знаете

При обратном включении преобладающую роль играет дрейфовый ток. Он имеет небольшую величину, так как создается движением неосновных носителей. Этот ток называется обратным и может быть определен по формуле Iобр = Iдр — Iдиф. Величина обратного тока практически не зависит от напряжения Uобр. Это объясняется тем, что в единицу времени количество генерируемых пар «электрон — дырка» при неизменной температуре остается неизменным. Поскольку концентрация неосновных носителей значительно меньше концентрации основных носителей заряда, обратный ток p-n перехода существенно меньше прямого (обычно на несколько порядков). Это определяет выпрямительные свойства p-n перехода: способность пропускать ток только в одном направлении.

Для получения хороших выпрямительных свойств желательно уменьшить обратный ток, что достигается очисткой исходного полупроводникового материала с целью снижения концентрации неосновных носителей заряда. Высокая степень чистоты полупроводниковых материалов обеспечивается специальной дорогостоящей технологией.

Электрический пробой происходит в результате внутренней электростатической эмиссии и под действием ударной ионизации атомов. Внутренняя электростатическая эмиссия в полупроводниках аналогична электростатической эмиссии электронов из металла. Под действием сильного электрического поля часть электронов освобождается из ковалентных связей и получает энергию, достаточную для преодоления высокого потенциального барьера p-n перехода. Двигаясь с большой скоростью, электроны сталкиваются с нейтральными атомами и ионизируют их. В результате ударной ионизации появляются новые свободные электроны и дырки. Они, в свою очередь, разгоняются полем и создают дополнительные носители тока. Описанный процесс носит лавинообразный характер и приводит к значительному увеличению обратного тока через p-n переход. Электрическому пробою соответствует участок 3 на рис. 1.6. Если чрезмерно увеличивать обратное напряжение (до значений, превышающих максимально допустимое напряжение Uo6p max, указанное на рис. 1.6), то произойдет тепловой пробой p-n перехода, и он потеряет свойство односторонней проводимости. Обратная ветвь характеристики при тепловом пробое имеет вид участка 4.

Тепловой пробой p-n перехода происходит вследствие вырывания валентных электронов из связей в атомах при тепловых колебаниях кристаллической решетки. Тепловая генерация пар «электрон — дырка» приводит к увеличению концентрации неосновных носителей заряда и росту обратного тока. Увеличение тока сопровождается дальнейшим повышением температуры. Процесс нарастает лавинообразно, происходит изменение структуры кристалла, и переход необратимо выходит из строя. Если же при возникновении пробоя ток через p-n переход ограничен сопротивлением внешней цепи и мощность, выделяемая на переходе, невелика, то пробой обратим.

Анализ ВАХ p-n перехода позволяет рассматривать его как нелинейный элемент, сопротивление которого Rд изменяется в зависимости от величины и полярности приложенного напряжения. Нелинейные свойства p-n перехода лежат в основе работы полупроводниковых диодов, транзисторов и других приборов.

Рисунок 1.9 Рисунок 1.10

На рис. 1.9 приведена модель реального p-n перехода. Здесь помимо управляемого сопротивления Rд показаны неуправляемые сопротивления контактов R и емкости p-n перехода: барьерная Сб и диффузионная Сдиф. Наличие у реальных p-n переходов сопротивлений контактов R сказывается на виде ВАХ в области прямых управляющих напряжений: характеристика располагается ниже по сравнению с идеализированным p-n переходом (область 5 на рис. 1.6).

Потенциальный барьер образован неподвижными зарядами: положительными и отрицательными ионами. Емкость, обусловленная этими зарядами, называется барьерной. При изменении запирающего напряжения меняется толщина p-n перехода, а следовательно, и его емкость. Величина барьерной емкости пропорциональна площади p-n перехода, концентрации носителей заряда и диэлектрической проницаемости материала полупроводника. При малом обратном напряжении толщина p-n перехода мала, носители зарядов противоположных знаков находятся на небольшом расстоянии друг от друга. При этом собственная емкость p-n перехода велика. В случае увеличения обратного напряжения толщина p-n перехода растет и емкость p-n перехода уменьшается. Таким образом, p-n переход можно использовать как емкость, управляемую обратным напряжением: Сб = qб/Uобр, где qб — объемный заряд равновесных носителей.

При прямом напряжении p-n переход, кроме барьерной емкости, обладает диффузионной емкостью Сдиф. Эта емкость обусловлена накоплением подвижных носителей заряда в n- и p-областях. При прямом напряжении основные носители заряда в большом количестве диффундируют через пониженный потенциальный барьер и, не успев рекомбинировать, накапливаются в n- и p-областях.

Каждому значению прямого напряжения соответствует определенный накопленный неравновесный заряд qдиф:

.

Диффузионная емкость не оказывает существенного влияния на работу p-n перехода, так как она всегда зашунгирована малым прямым сопротивлением Rд. Зависимости емкостей p-n перехода от управляющего напряжения имеют вид, изображенный на рис. 1.10.

Источник