В каких органоидах клетки содержатся молекулы нуклеиновых кислот
ДНК
Нуклеиновые кислоты были открыты в 1868 г. швейцарским ученым Ф. Мишером.
В организмах существует несколько видов нуклеиновых кислот, которые встречаются в различных органоидах клетки – ядре, митохондриях, пластидах.
К нуклеиновым кислотам относятся ДНК, и-РНК, т-РНК, р-РНК.
Дезоксирибонуклеиновая кислота (ДНК)
– линейный полимер, имеющий вид двойной спирали, образованной парой антипараллельных комплементарных (соответствующих друг другу по конфигурации) цепей. Пространственная структура молекулы ДНК была смоделирована американскими учеными Джеймсом Уотсоном и Френсисом Криком в 1953 г.
Мономерами ДНК являются нуклеотиды.
Каждый нуклеотид ДНК состоит из пуринового (А – аденин или Г – гуанин) или пиримидинового (Т – тимин или Ц – цитозин) азотистого основания, пятиуглеродного сахара – дезоксирибозы и фосфатной группы.
Нуклеотиды в молекуле ДНК обращены друг к другу азотистыми основаниями и объединены парами в соответствии с правилами комплементарности: напротив аденина расположен тимин, напротив гуанина – цитозин. Пара А – Т соединена двумя водородными связями, а пара Г – Ц – тремя. При репликации (удвоении) молекулы ДНК водородные связи рвутся и цепи расходятся и на каждой из них синтезируется новая цепь ДНК. Остов цепей ДНК образован сахарофосфатными остатками.
Последовательность нуклеотидов в молекуле ДНК определяет ее специфичность, а также специфичность белков организма, которые кодируются этой последовательностью. Эти последовательности индивидуальны и для каждого вида организмов, и для отдельных особей.
Пример:
дана последовательность нуклеотидов ДНК: ЦГА – ТТА – ЦАА.
На информационной РНК (и-РНК) будет синтезирована цепь ГЦУ – ААУ – ГУУ, в результате чего выстроится цепочка аминокислот: аланин – аспарагин – валин.
При замене нуклеотидов в одном из триплетов или их перестановке этот триплет будет кодировать другую аминокислоту, а, следовательно изменится и белок, кодируемый данным геном. Изменения в составе нуклеотидов или их последовательности называются мутацией.
Рибонуклеиновая кислота (РНК)
РНК
– линейный полимер, состоящий из одной цепи нуклеотидов. В составе РНК тиминовый нуклеотид замещен на урациловый (У). Каждый нуклеотид РНК содержит пятиуглеродный сахар – рибозу, одно из четырех азотистых оснований и остаток фосфорной кислоты.
Синтезируются РНК в ядре. Процесс называется транскрипция — это биосинтез молекул РНК на соответствующих участках ДНК; первый этап реализации генетической информации в клетке, в процессе которого последовательность нуклеотидов ДНК «переписывается» в нуклеотидную последовательность РНК.
Молекулы РНК формируются на матрице, которой служит одна из цепей ДНК, последовательность нуклеотидов в которой определяет порядок включения рибонуклеотидов по принципу комплементарности. РНК-полимераза, продвигаясь вдоль одной из цепей ДНК, соединяет нуклеотиды в том порядке, который определен матрицей. Образовавшиеся молекулы РНК называют транскриптами.
Виды РНК.
Матричная или информационная РНК. Синтезируется в ядре при участии фермента РНК-полимеразы. Комплементарна участку ДНК, на котором происходит синтез. Ее функция – снятие информации с ДНК и передача ее к месту синтеза белка – на рибосомы. Составляет 5% РНК клетки.
Рибосомная РНК – синтезируется в ядрышке и входит в состав рибосом. Составляет 85% РНК клетки.
Транспортная РНК – транспортирует аминокислоты к месту синтеза белка. Имеет форму клеверного листа и состоит из 70—90 нуклеотидов.
Аденозинтрифосфорная кислота – АТФ
АТФ
– представляет собой нуклеотид, состоящий из азотистого основания аденина, углевода рибозы и трех остатков фосфорной кислоты, в двух из которых запасается большое количество энергии. При отщеплении одного остатка фосфорной кислоты освобождается 40 кДж/моль энергии. Способность запасать такое количество энергии делает АТФ ее универсальным источником. Синтез АТФ происходит в основном в митохондриях.
Источник
1. Определение ДНК
Нуклеиновые кислоты представляют собой высокомолекулярные линейные полимеры. Так как содержание нуклеиновых кислот больше всего в ядре, то они получили свое название от латинского слова nucleus («ядро», лат.). Впрочем, нуклеиновые кислоты содержатся не только в ядре, где, безусловно, их больше всего, но и в хлоропластах и митохондриях (рис. 1).
Рис. 1. Органеллы, в которых содержится ДНК
Нуклеиновые кислоты являются биополимерами, которые состоят из мономеров – нуклеотидов. Молекула нуклеотида состоит из трех составных частей: из пятиуглеродного сахара – пентозы, из азотистого основания и остатка фосфорной кислоты (рис. 2).
Рис. 2. Нуклеотиды
Сахар, входящий в состав нуклеотида, представляет собой пентозу, то есть он является пятиуглеродным сахаром. В зависимости от вида пентозы (дезоксирибоза или рибоза) различают молекулы ДНК и РНК (рис. 3).
Рис. 3. Химический состав нуклеотидов
Азотистые основания. Во всех типах нуклеиновых кислот: ДНК или РНК, содержатся основания четырех разных видов (рис. 4). В ДНК: аденин (А), гуанин (Г), цитозин (Ц) и тимин (Т). В РНК вместо тимина (Т) урацил (У).
Фосфорная кислота. Нуклеиновые кислоты являются кислотами, потому что в их состав входит остаток фосфорной кислоты. Обратите внимание на то, что остаток фосфорной кислоты присоединен к сахару по гидроксильной группе 3’ и 5’ углеродом атома (рис. 5).
Рис. 5 Фосфодиэфирная связь между отдельными нуклеотидами в цепочке нуклеиновой кислоты
Это очень важно для понимания того, каким образом нуклеотиды образуют нуклеиновую кислоту. Они соединяются друг с другом с помощью т. н. фосфодиэфирной связи.
2. Структура молекулы ДНК
Нуклеиновые кислоты, как и белки, имеют первичную, вторичную и третичную структуру. Первичная структура ДНК – это последовательность нуклеотидных остатков в полинуклеотидных цепях.
Вторичная структура – пространственная конфигурация полинуклеотидных цепей ДНК
В формировании вторичной структуры полинуклеотидной цепи важное значение имеют водородные связи, которые возникают на основе принципа комплементарности, то есть дополнительности или соответствия между парами оснований: аденином и тимином, гуанином и цитозином
Эти комплементарные пары способны образовывать между собой прочные водородные связи. Так, между аденином и тимином формируются две водородные связи, а между гуанином и цитозином – три водородные связи.
В 1953 году Джеймс Уотсон и Френсис Крик предложили пространственную модель структуры ДНК (рис. 9).
Рис. 9. Лауреаты Нобелевской премии «за создание пространственной модели ДНК»
Согласно этой модели, молекула ДНК представляет собой двухцепочечную правозакрученную спираль, состоящую из комплементарных друг другу антипараллельных цепей.
Эти цепи связаны друг с другом азотистыми основаниями. Если «раскрутить» молекулу ДНК, то она будет напоминать винтовую лестницу. Две цепочки – образованы остатками фосфорной кислоты и пентозы, а перекладины «лестницы» – азотистые основания, которые взаимодействуют друг с другом с помощью водородных связей.
Между аденином и тимином возникают две водородные связи, а между гуанином и цитозином – три.
3. Третичная структура ДНК
У всех живых организмов молекула ДНК плотно упакована с образованием сложных трехмерных структур. Нахождение ДНК в суперспирализованном состоянии дает возможность сделать молекулу более компактной (рис. 10).
Рис. 10. Третичная структура ДНК. Сверхплотная упаковка ДНК с белками-гистонами образует хромосому
У всех живых организмов двуспиральная молекула ДНК плотно упакована и образует сложные трехмерные структуры (рис. 11).
Рис. 11. Модели двухцепочечных ДНК
Двухцепочная ДНК бактерий имеет кольцевидную форму и образует суперспираль. Суперспирализация необходима для упаковки громадной по клеточным меркам ДНК в малом объеме клетки.
Например, ДНК кишечной палочки имеет длину более 1 мм, в то время как длина клетки не превышает 5 мкм (в 1 мм = 1000 мкм) (рис. 12).
Рис. 12. ДНК в нуклеоиде бактерий (слева) и в клетках тела человека (справа)
Хромосомы эукариот представляют собой суперспирализованные линейные молекулы ДНК (рис. 13).
Рис. 13. Хромосомы эукариот
В процессе упаковки эукариотическая ДНК обматывает белки – гистоны, располагающиеся вдоль ДНК через определенные интервалы. Эти белки образуют нуклеосомы (рис. 14). Вторым уровнем пространственной организации ДНК является образование хроматина – волокон, из которых состоят хромосомы.
Рис. 14. Третичная структура ДНК
В ядре каждой клетки тела человека, кроме половых клеток, содержится 23 пары хромосом (рис. 15). На каждую из них приходится по одной молекуле ДНК. Длина всех 46 молекул ДНК в одной клетке человека почти равна двум метрам, а число нуклеотидных пар в ней 3,2 млрд.
Рис. 15. Хромосомы человека. Кариотип мужчины
Так что, если бы молекула ДНК не была организована в плотную структуру, то наша жизнь была бы невозможна геометрически.
4. Функции молекулы ДНК
Функции ДНК – хранение и передача наследственной информации.
Хранение наследственной информации. Порядок расположения нуклеотидных остатков в молекуле ДНК определяет последовательность аминокислот в молекуле белка. В молекуле ДНК зашифрована вся информация о признаках и свойствах нашего организма.
Передача наследственной информации следующему поколению. Эта функция осуществляется, благодаря способности молекулы ДНК к самоудвоению – репликации. ДНК может распадаться на две комплементарные цепочки, и на каждой из них на основе того же принципа комплементарности восстановится исходная последовательность нуклеотидов.
5. История открытия нуклеиновых кислот
В научной литературе посвященной изучению строению молекулы ДНК, как правило, упоминается Джеймс Уотсон и Френсис Крик (рис. 9).
Но первооткрывателями нуклеиновых кислот был Фридрих Иоганн Мишер (рис. 16), швейцарский ученый, который работал в Германии.
Рис. 16. Первооткрыватель нуклеиновых кислот
В 1869 году Мишер занимался изучением животных клеток – лейкоцитов. Для получения лейкоцитов он использовал гнойные повязки, которые ему доставлялись из больниц. Он брал гной, отмывал лейкоциты и выделял из них белок.
В процессе исследований Мишеру удалось установить, что кроме белков, в лейкоцитах содержится ещё какое-то неизвестное вещество.
Оно выделялось в виде нитевидного или хлопьевидного осадка при создании кислой среды. При добавлении щелочи этот осадок растворялся.
Исследуя препарат лейкоцитов под микроскопом, Мишер обнаружил, что в процессе отмывания лейкоцитов соляной кислотой от них остаются ядра. Он сделал вывод, что в ядрах имеется неизведанное вещество, то есть новое вещество, которое он назвал нуклеином, от слова nucleus – ядро.
Кроме этого, по данным химического анализа Мишер установил, что это новое вещество состоит из углерода, водорода, кислорода и фосфора. Фосфорорганических соединений в то время было известно очень мало, поэтому Мишер пришел к выводу, что открыл новый класс соединений в ядре.
Так в XIX веке стало известно о существовании нуклеиновых кислот, но тогда никто не мог предположить, какая огромная роль принадлежит нуклеиновым кислотам в сохранении разнообразия наследственных признаков организмов.
6. Вещество наследственности
Первые доказательства того, что молекула ДНК заслуживает довольно серьёзного внимания, были получены 1944 году группой бактериологов во главе с Освальдом Эвери. Он много лет изучал пневмококки – микроорганизмы, вызывающие воспаления легких, или пневмонию. Эвери смешивал два вида пневмококков, один из которых вызывал заболевание, а другой – нет. Предварительно болезнетворные клетки убивали, и затем добавляли к ним пневмококки, которые не вызывали заболевание.
Рис. 17. Опыты Эвери и Гриффитса
Результаты опытов были удивительны. Некоторые живые клетки после контакта с убитыми научились вызывать болезнь. Эвери удалось выяснить природу вещества, участвующего в процессе передачи информации от мертвых клеток живым (рис. 17). Этим веществом оказалась молекула ДНК.
7.РНК. Строение РНК
Рибонуклеиновая кислота (РНК) – полимер, мономерами которой являются рибонуклеотиды. Образование полимера происходит так же, как и у ДНК, за счет фосфодиэфирной связи между остатком фосфорной кислоты и рибозой.
Мономеры РНК в составе нуклеотидов содержат пятиуглеродный сахар (пентоза), фосфорную кислоту (остаток фосфорной кислоты) и азотистое основание (см. Рис. 2).
Рис. 2. Строение нуклеотида РНК
Азотистые основания РНК – урацил, цитозин, аденин и гуанин. Моносахарид нуклеотида РНК представлен рибозой (см. Рис. 2).
РНК – одноцепочная молекула значительно меньших размеров, чем молекула ДНК.
Молекула РНК содержит от 75 до 10 000 нуклеотидов.
РНК-содержащие вирусы
Рис. 3. РНК-содержащий вирус
Многие вирусы, например вирус гриппа, содержат в качестве единственной нуклеиновой кислоты молекулу РНК (см. Рис. 3). РНК-содержащих вирусов, болезнетворных для человека, больше, чем ДНК-содержащих. Они вызывают полиомиелит, гепатит А, острые простудные заболевания.
Арбовирусы – вирусы, которые переносятся членистоногими. Являются возбудителями клещевого и японского энцефалита, а также желтой лихорадки.
Реовирусы (см. Рис. 4), редкие возбудители респираторных и кишечных заболеваний человека, стали предметом особого научного интереса из-за того, что их генетический материал представлен в виде двухцепочной молекулы РНК.
Рис. 4. Строение реовируса
Также существуют ретровирусы, которые вызывают ряд онкологических заболеваний.
8.Типы РНК
В зависимости от строения и выполняемой функции различают три основных типа РНК: рибосомную, транспортную и информационную (матричную).
1. Информационная РНК
Как показали исследования, информационная РНК составляет 3-5 % от общего содержания РНК в клетке. Это одноцепочная молекула, которая образовывается в процессе транскрипции на одной из цепей молекулы ДНК. Это связано с тем, что ДНК у ядерных организмов находятся в ядре, а синтез белка происходит на рибосомах в цитоплазме, поэтому возникла необходимость в «посреднике». Функцию «посредника» выполняет матричная РНК, она передает информацию о структуре белка из ядра клеток, где находится ДНК, к рибосомам, где эта информация реализуется (см. Рис. 5).
Рис. 5. Матричная РНК (мРНК)
В зависимости от объема копируемой информации, молекула матричной РНК может иметь различную длину.
Большинство матричных РНК существуют в клетке непродолжительное время. В бактериальных клетках существование таких РНК определяется минутами, а в клетках млекопитающих (в эритроцитах) синтез гемоглобина (белка) продолжается после утраты эритроцитами ядра в течение нескольких дней.
2. Рибосомная РНК
Рибосомные РНК (см. Рис. 6) составляют 80 % от всех рибосом, присутствующих в клетке. Эти РНК синтезируются в ядрышке, а в клетке они находятся в цитоплазме, где вместе с белками образуют рибосомы. На рибосомах происходит синтез белка. Здесь «код», заключенный в матричную РНК, транслируется в аминокислотную последовательность молекулы белка.
Рис. 6. Рибосомная РНК (рРНК)
3. Транспортная РНК
Транспортные РНК (см. Рис. 7) образуются в ядре на ДНК, а затем переходят в цитоплазму.
Рис. 7. Транспортная РНК (тРНК)
На долю таких РНК приходится около 10 % от общего содержания РНК в клетке. Они имеют самые короткие молекулы из 80-100 нуклеотидов.
Транспортные РНК присоединяют к себе аминокислоту и транспортируют ее к месту синтеза белка, к рибосомам.
Все известные транспортные РНК за счет комплементарного взаимодействия между азотистыми основаниями образовывают вторичную структуру, по форме напоминающую лист клевера (см. Рис. 8). В молекуле тРНК есть два активных участка – триплет антикодон на одном конце и акцепторный участок, присоединяющий аминокислоту, на другом.
Рис. 8. Строение тРНК («клеверный лист»)
Каждой аминокислоте соответствует комбинация из трех нуклеотидов, которая носит название триплет.
Рис. 9. Таблица генетического кода
Кодирующие аминокислоты триплеты – кодоны ДНК (см. Рис. 9) – передаются в виде информации триплетов (кодонов) мРНК. У верхушки клеверного листа тРНК располагается триплет нуклеотидов, который комплементарен соответствующему кодону мРНК (см. Рис. 10). Этот триплет различен для тРНК, переносящих разные аминокислоты, и кодирует именно ту аминокислоту, которая переносятся данной тРНК. Он получил название антикодон.
Рис. 10. тРНК
Акцепторный конец является «посадочной площадкой» для определенной аминокислоты.
Таким образом, различные типы РНК представляют собой единую функциональную систему, направленную на реализацию наследственной информации через синтез белка.
Гипотеза РНК мира
Концепция РНК мира заключается в том, что когда-то очень давно молекула РНК могла выполнять функцию как молекулы ДНК, так и белков.
В живых организмах практически все процессы происходят благодаря ферментам белковой природы. Белки, однако, не могут самореплицироваться и синтезируются в клетки на основании информации, заложенной в ДНК. Но и удвоение ДНК происходит только благодаря участию белков и РНК. Следовательно, образуется замкнутый круг, из-за которого в рамках теории возникновения жизни спонтанное возникновение такой сложной системы маловероятно.
В начале 1980-х годов в лаборатории ученых Чека и Олтмена (обладатели нобелевской премии по химии) в США была открыта каталитическая способность РНК. РНК-катализаторы были названырибозимами (см. Рис. 11).
Рис. 11. Структура рибозимомолекулы РНК, выполняющей функцию катализа
Оказалось, что активный центр рибосом тоже содержит большое количество рибосомных РНК. Также РНК способны создавать двойную цепочку и самореплицироваться. То есть РНК могли существовать полностью автономно, катализируя метаболические реакции, например синтеза новых рибонуклеатидов, и самовоспроизводясь, сохраняя из поколения в поколение каталитические свойства. Накопление случайных мутаций привело к появлению РНК, катализирующих синтез определенных белков, являющихся более эффективными катализаторами, в связи с чем эти мутации закреплялись в ходе естественного отбора. Также возникли специализированные хранилища генетической информации – молекула ДНК, а РНК стала посредником между ДНК и белками.
Источник
Для стабильной работы клетки нужно, чтобы в ней постоянно продуцировалось большое количество разнообразных белков. Информация о белках хранится в клетке, даже о тех из них, которые данный организм не унаследовал. «Банком сведений» являются нуклеиновые кислоты, их можно сравнить с дисками наших компьютеров, на которые мы складываем всё, что нужно запомнить. Все живые организмы способны сберегать наследственную информацию и передавать её потомкам при помощи нуклеиновых кислот.
Впервые нуклеиновые кислоты были открыты швейцарским биохимиком Ф. Мишером в 1868 г. Он выделил их из сперматозоидов лосося и ядер лейкоцитов человека. От слова «ядро» (лат. nucleus) и произошло название «нуклеиновые кислоты». Позже они были обнаружены вне ядер и в клетках всех живых организмов, в том числе безъядерных, но название так и сохранилось.
Фридрих Мишер
Существует две разновидности нуклеиновых кислот: ДНК (дезоксирибонуклеиновая кислота), которые обеспечивают сохранение информации и РНК (рибонуклеиновая кислота), принимающие участие в процессе генной эксперессии и биосинтеза белка.
Нуклеиновые кислоты обладают уникальным свойством, они способны служить шаблоном для получения точной копии самих себя. Именно это позволяет передавать генетическую информацию в процессе деления клеток во время размножения организмов.
Репликация ДНК
Нуклеиновые кислоты – полимерные молекулы
Нуклеиновые кислоты — самые крупные нерегулярные полимерные органические молекулы, носящие название полинуклеотидов. Обычно ДНК намного крупнее РНК. Их мономерами являются нуклеотиды (нуклеозиды, дезоксинуклеозиды и др.). Каждый из них состоит из трёх компонентов:
- пентозы, или пятиуглеродного сахара (рибоза в РНК и дезоксирибоза в ДНК);
- фосфатной группы – остатка фосфорной кислоты (—PO 4 -);
- азотистого основания.
Строение нуклеотида
Азотистые основания — это ароматические гетероциклические соединения, производные пиримидина или пурина. Нуклеотиды имеют пять основных типов азотистых оснований. Двухкольцевые пуриновые: аденин (Аde) и гуанин (Gua). Каждое из них содержится как в ДНК, так и в РНК. Остальные три основания представляют собой однокольцовые молекулы, производные пиримидина: цитозин (Cyt — есть как в ДНК, так и в РНК), тимин (Thy — только в ДНК), урацил (Ura — только в РНК).
Аденин и рибоза образуют нуклеозид аденозин (A), производные других азотистых оснований носят названия: гуанозин (G, Г), уридин (U, У), тимидин (Т), цитидин (C, Ц). При соединении азотистых оснований с дезоксирибозой образуются дезоксинуклеозиды. Все нуклеозидфосфаты объединяют под общим названием — нуклеотиды.
Строение пурина и пуриновых азотистых основанийСтроение пиримидина и пиримидиновых азотистых оснований
Нуклеиновые кислоты образуются путём реакции обезвоживания (конденсации, или дегидрации) между фосфатной группой одного нуклеотида и гидроксильной группой пентозы другого нуклеотида. Так получается фосфодиэфирная связь, объединяющая два углевода через фосфат.
В молекуле нуклеотида азотистое основание присоединено к первому атому углерода пентозы, а остаток фосфорной кислоты — к пятому. Получающаяся полинуклеотидная цепь полярна, она имеет два конца:
- 5′ (пять-штрих положение) — углеродный атом в пятичленном моносахариде — рибозе или дезоксирибозе;
- 3´ (три-штрих положение) — гидроксильная группа, взятая от углевода (ОН).
Эти концы в двойной спирали ДНК соединяются через фосфатную группу по типу голова-хвост (3′ к 5′) по принципу комплементарности, азотистыми основаниями внутрь спирали. Такая ориентация цепей называется антипараллельной.
ДНК – хранитель генетической информации
Организмы используют расстановку нуклеотидов ДНК для кодирования информации, указывающей аминокислотную последовательность первичной структуры их белков. Этот способ похож на то, как мы кодируем слова в предложении при помощи букв.
Предложение, написанное на русском языке, состоит из комбинации 33 букв алфавита в определённом порядке; код молекулы ДНК состоит из комбинации четырёх типов нуклеотидов в специфической последовательности: А, T, Г, Ц.
ДНК в организмах содержится в виде двух цепей, обёрнутых в виде спирали вокруг друг друга и вместе вокруг общей оси, либо в линейной форме, либо кольцевой у большинства прокариот, а также в хлоропластах и митохондриях эукариот. Исключение – одноцепочечная молекула ДНК некоторых фагов — вирусов, поражающих бактериальные клетки. Две нити ДНК соединены связями-перемычками, как винтовая лестница ступенями. Такая структура молекулы называется двойной спиралью. Каждый шаг винтовой лестницы ДНК состоит из пары оснований. Основание одной цепи притягивается водородной связью к основанию другой цепи.
Строение ДНК
Правила спаривания возникают из наиболее стабильной конфигурации водородного скрепления между двумя основаниями: пары аденина с тимином двумя водородными связями (в ДНК) или с урацилом (в РНК) и пары цитозина с гуанином — тремя водородными связями.
Основания, которые участвуют в сопряжении, дополняют друг друга, это свойство носит название комплементарности. Если известна последовательность оснований одной цепи ДНК, то благодаря специфичности их соединения, становится известна структура её партнёра — второй цепи.
Схема строения ДНК
В клетках эукариот ДНК дополнительно комплектуется с белками для формирования структур, называемых хромосомами. Это структуры более высокого порядка, которые влияют на функцию ДНК, поскольку участвуют в контроле за экспрессией генов.
Определение размеров молекул ДНК стало возможным только после изобретения методов электронной микроскопии, ультрацентрифугирования, электрофореза.
Расшифровка структуры ДНК имеет свою предысторию. В 1950 г. американский ученый Э. Чаргафф и его коллеги, исследуя состав молекулы ДНК, установили следующие закономерности, впоследствии названные правилами Чаргаффа.
- Количество адениловых нуклеотидов в молекуле ДНК равно количеству тимидиловых (А = Т), а количество гуаниловых — количеству цитидиловых (Г = Ц).
- Количество пуриновых азотистых оснований равно количеству пиримидиновых (А + Г = Т + Ц).
- Суммарное количество адениловых и цитидиловых нуклеотидов равно суммарному количеству тимидиловых и гуаниловых нуклеотидов (А + Ц = Т + Г), что следует из первого правила.
Это открытие способствовало установлению пространственной структуры ДНК и определению ее роли в передаче наследственной информации от одного поколения другому. В 1953 г. на основании правил Чаргаффа и данных о пространственной структуре молекулы ДНК, полученных английским биофизиком М. Уилкинсом, американский ученый Дж. Уотсон и англичанин Ф. Крик предложили трехмерную модель структуры ДНК, которая получила название «двойной спирали». За разработку модели молекулы ДНК Дж. Уотсон, Ф. Крик и М. Уилкинс в 1962 г. были удостоены Нобелевской премии.
Параметры двойной спирали ДНК
Роли РНК в клетке
Рибонуклетновые кислоты подобны ДНК, но имеет несколько основных химических различий.
- Она содержит дисахарид рибозу, связанный с гидроксильной группой (в ДНК гидроксильную группу заменяет атом водорода);
- В молекуле РНК используется урацил вместо тимина. Урацил имеет сходную с тимином структуру, за исключением того, что один из его углеродов не имеет метильной группы (- CH3 ).
- РНК производится путём транскрипции с участка ДНК, не образует двойной спирали, но содержит короткие участки со спаренными основаниями. Это приводит к тому, что при двумерном изображении она напоминает шпильки и петли, форму кленового листа (у тРНК).
Все виды РНК синтезируются на определенных участках одной из цепей ДНК. Такой синтез получил название матричного, так как молекула ДНК является матрицей (т. е. образцом, моделью) для синтеза молекул РНК.
Роль РНК в клетке разнообразна:
- она несёт информацию в виде матричной, или информационной РНК (мРНК, или иРНК). Матричные РНК наиболее разнообразны по структуре и размерам. Одна молекула содержит информацию об одном белке. В ходе синтеза белка на рибосомах она служит матрицей, поэтому биосинтез белка относится к матричным процессам. Содержание иРНК составляет 3-5% всех РНК клетки;
- входит в состав рибосомы в форме рибосомальной РНК (рРНК). рРНК составляет 80% всех РНК клетки. В соединении с белками они образуют одномембранные органоиды рибосомы, и участвуют в синтезе белков из аминокислот;
- переносит аминокислоты в виде трансферной, или транспортной РНК (тРНК) составляет около 15 % всех клеточных РНК. Молекулы тРНК сравнительно небольшие (в среднем состоят из 80 нуклеотидов). Благодаря формированию внутримолекулярных водородных связей молекула тРНК приобретает характерную пространственную структуру, называемую клеверным листом.
В последнее время у РНК были обнаружены ферментативные функции, а отдельная её форма включает регуляцию экспрессии генов.
Другие нуклеотиды
В дополнение к служению мономерами в ДНК и РНК нуклеотиды играют важные роли в жизни клетки. Они являются основой для синтеза целого ряда органических веществ. Два нуклеотида могут быть связаны через фосфатные группировки в динуклеотид. К этой группе соединений относятся коферменты:
- НАДФ+ (NADP+);
- КоА (CoA);
- флавин ФАД (FAD).
Также есть жизненно-важные нуклеотиды, являющиеся компонентами энергетических реакций. Например, аденин является ключевым компонентом молекулы аденозинтрифосфата (АТФ), энергетической валюты клетки. Клетки используют АТФ в качестве источника энергии во всех процессах: чтобы перенести вещества через мембрану, соединить или расщепить молекулы, передвигать мышцами, жгутиками и ресничками и т. д. АТФ – это универсальный (для всех живых организмов) источник и переносчик энергии клетки.
Структура аденозинтрифосфорной кислоты
Автор: Solon
Молекула АТФ состоит из азотистого основания аденина, пятиуглеродного сахара рибозы и трех остатков фосфорной кислоты. Остатки фосфорных кислот соединены между собой высокоэнергетическими связями (макроэргическими). Отрыв остатка фосфорной кислоты происходит в процессе гидролиза, при этом выделяется большое количество энергии – 40 кДж/моль. Процесс отсоединения фосфатной группы называется реакцией дефосфорелирования.
После гидролитического отщепления от АТФ одной фосфатной группы образуется аденизиндифосфатная кислота (АДФ):
АТФ + Н2О → АДФ + Н3РО4 + 40 кДж
АДФ может подвергаться дальнейшему гидролизу с отщеплением еще одной фосфатной группы и выделением второй «порции» энергии. При этом АДФ преобразуется в аденозинмонофосфорную кислоту (АМФ):
АДФ + Н2О → АМФ + Н3РО4 + 40 кДж
Обратный процесс — синтез АТФ — происходит в результате присоединения к молекуле АДФ остатка фосфорной кислоты (реакция фосфорилирования). Этот процесс осуществляется за счет энергии, высвобождающейся при окислении органических веществ (глюкозы, высших карбоновых кислот и др.). Для образования 1 моль АТФ из АДФ должно быть затрачено не менее 40 кДж энергии:
АДФ + Н3РО4 + 40 кДж → АТФ + Н2О.
АТФ чрезвычайно быстро обновляется. У человека, например, каждая молекула АТФ расщепляется и вновь синтезируется около 2400 раз в сутки, поэтому средняя продолжительность ее «жизни» — менее 1 мин. Синтез АТФ осуществляется главным образом в митохондриях и хлоропластах, частично в гиалоплазме.
Нуклеиновые кислоты: решение задач
Задача 1.
В молекуле ДНК содержится 17% аденина. Определите, сколько (в %) в этой молекуле содержится других оснований.
Решение:
По первому правилу Чаргаффа А=Т, Г=Ц. В задаче дано А=17%, значит и тимина 17%. Всего тимина и аденина 17+17=34%. Оставшиеся 66% делятся на гуанин и цитидин поровну. Г=33% и Ц=33%.
Ответ: в этой молекуле ДНК содержится:
Тимидина — 17%;
Гуанина — 33%;
Цитидина — 33%.
Задача 2.
Участок гена имеет следующее строение, состоящее из последовательности нуклеотидов: ЦГГ ЦГЦ ТЦА ААА ТЦГ …
Укажите строение соответствующего участка белка, информация