В каких клеточных органоидах содержится днк
Из чего состоит ДНК? Кому и когда удалось найти эту молекулу в клетках людей, и прочих живых существ? В чём уникальность открытия механизма наследования и чем это обернулось для всего человечества, читайте далее в этой статье.
История
Открытие дезоксирибонуклеиновой кислоты произошло в 1869 году. И принадлежит открытие Иоганну Фридриху Мишеру. Он был биологом из Швейцарии и занимался изучением гноя. По большому счёту открытие можно назвать случайным, и сам Мишер не понял, что именно он открыл. Он назвал своё открытие нуклеином. А позже нуклеиновой кислотой, когда у неё обнаружились кислотные свойства.
Назначение этой кислоты было загадочно и неизвестно, хотя некоторые учёные уже поднимали вопрос о наследственности и существовании механизмов наследования. Современное представление о том из чего состоит цепь ДНК, было сформировано Д. Уотсоном и Ф. Криком в 1953 году. Несколько ранее, в середине тридцатых годов советские ученые А.Р. Кезеля и А.Н. Белозерский доказали, что ДНК встречается у всех живых видов. До их работы считалось, что эта молекула присутствует только в организме животных видов, а в растениях присутствует только РНК.
Тот факт, что дезоксирибонуклеиновая кислота является механизмом сохранения наследственной информации, был открыт только в 1944 году группой исследователей из Освальда. Так, совокупными усильями разных учёных мира была приоткрыта тайна эволюционного процесса и механизмов в его основе.
Использование в медицине
Открытие того из чего состоит молекула ДНК дало толчок к развитию множества новых услуг и направлений экспериментальной медицины. Благодаря новым технологиям, которые стали возможны вследствие исследования генома, сегодня почти любому доступны:
- Диагностика заболеваний на сверхранней стадии. Анализ позволяет выявить инфекцию, даже если заболевание находится в инкубационном периоде, и нет ни каких симптомов.
- Определение отцовства. Так же материнства и прочих родственных связей. При этом различные тесты можно проводить, как с участием потенциальных родителей, так и без них.
- Тестирование на непереносимость пищевых продуктов. Какие вещества хорошо усваиваются организмом, какие плохо или не усваиваются вовсе, что вызывает аллергические реакции – всё это расскажут результаты индивидуального исследования.
- Анализ этнической принадлежности – с какими народами перекрещивались далекие предки, и какие национальности формируют вас сегодня.
- Исследование на наличие наследственных заболеваний, в том числе и спящих, которые передаются через поколение и более.
И это только самые востребованные тесты, имеющие коммерческий интерес и полезные для простого обывателя. Если говорить о перспективах лабораторных научных исследований, то многие учёные-генетики не без энтузиазма готовятся совершить самое великое открытие за всю человеческую историю – победить болезни и саму смерть.
Строение молекулы ДНК
Дезоксирибонуклеиновая кислота состоит из двух цепочек нуклеотидов, которые объединены меж собой водородными связями и закручиваются в двойную спираль. Нуклеотиды в каждой цепи – это кирпичики, из которых складываются гены, биологическая их кодировка. Для каждого гена его место положения в цепочке и порядок нуклеотидов условно одинаков. Условно поскольку у одного гена возможны вариации, различное расположение некоторых нуклеотидов в составе гена. Но, в таком случае вместе со сменой структуры меняется и функциональность самого гена.
Путь от цепочки к хромосоме
У всех живых организмов клеточная структура и эти клетки содержат внутри себя ядро – такие клетки называются эукариоты. У бактерий и архей (древних одноклеточных организмов) такого ядра нет. Так же ядра в клетке нет у вирусов и вироидов ( инфекционных агентов, вызывающих болезни растений), но считать ли их живыми до сих пор вопрос дискуссионный.
Ядра клеток содержат в себе структуры, хранящие наследственную информацию – хромосомы. А вот сама хромосома и содержит внутри себя спиральную молекулу дезоксирибонуклеиновой кислоты, которая осуществляет функцию хранения наследственной информации.
Процесс упаковки ДНК спиралей
Спираль генов, как не казалась бы она мала, всё же очень большая для микромира. Вероятно отсюда и её спиральная форма, которая позволяет ей быть более компактной. Помимо обычной спиральности ДНК может закручиваться и в форму суперспирали. Суперспирализация – это явление, когда двойная спираль накручивается на гистоновый белок, и получается, что-то вроде биокатушки. Если закручивание в двойную спираль укорачивает цепочку генов в 5 или 6 раз, то суперспирализация доводит это сокращение до 30 раз.
Как гены связаны с ДНК
Гены это самая изученная и расшифрованная на сегодня часть ДНК. Так, каково строение генов ДНК? Фактически цепочки нуклеотидов из генов и состоят. Именно гены определяют цвет глаз, волос, форму черепа, рост, группу крови и прочие физиологические качества.
Остаётся ещё много областей генома, функциональность которых не известна. Всё, что пока о них могут сказать генетики, это то, что данные области генома не участвую (по крайней мере, напрямую) в формировании организма и его функционировании.
Хромосома: определение и описание
Считается, что хромосомы это нуклеотидные биомеханизмы, которые находятся в ядре клетки. Эти биомеханизмы являются носителями и передатчиками наследственной информации, и в свою очередь содержат в себе двойную спираль дезоксирибонуклеиновой кислоты.
Чем отличаются хромосомы друг от друга
На примере Х хромосомы, цепи нуклеотидов могут пересекаться внутри хромосомы различно:
- В перекрестии хромосомы, пересекаясь точно посередине друг друга.
- Там же, но пересекаясь не точно.
Во втором случае одни концы получившегося перекрестия будут длиннее, а другие короче. Называют такие концы длинным и коротким плечом хромосомы. Отсюда и форма Y хромосомы, у которой ярко выражены длинные плечи, а короткие настолько не велики, что схематически не указываются.
Науке известных хромосомы трёх основных форм:
- Х хромосома, которая встречается у женщин и у мужчин.
- Y хромосома, встречающаяся только у мужчин.
- В хромосома изредка встречается у растений, и считается отмирающей, поскольку редко наследуется. Обычно её наличие в растении связывают с его слабостью и болезненностью.
Всего в клетке человеческого организма находится 46 парных хромосом: 22 пары «обычных» и одна пара половых (ХХ у женщин и XY у мужчин). Интересный факт – если добавить или отнять всего одну пару хромосом, человек может стать помидором или орангутангом.
Наследственные болезни
Генетический код это очень многофункциональная и противоречивая структура. С одной стороны он должен хранить информацию в неизменном эталонном виде, и эта функция проявляется возможностью ДНК восстанавливать искусственные повреждения в следующем поколении. С другой же стороны, геном может быть либо поврежден, либо измениться сам, что называют мутацией.
Мутации естественное свойство генов, и последствия этих мутация бывают, как отрицательные, так и положительные. Хоть мутации и называют поломками, но это определение спорно. Некоторые мутации в чём-то ослабляют организм – именно эти мутации и ищут во время тестирования на непереносимость пищевых продуктов.
Такие мутации создают повышенные риски возникновения, какого либо заболевания при соблюдении некоторых факторов. Соответственно, если исключить эти факторы из своей жизни, то с ними будут исключены и вероятности возникновения заболевания.
Существуют и более сложные повреждения ДНК человека, которые вызывают врождённые наследственные заболевания. Например, одна лишняя хромосома в 21 паре вызывает у человека болезнь Дауна с самого рождения.
Расшифровка ДНК
Расшифровка ДНК клетки это большое и дорогостоящее исследование всех известных человеческих генов. А после завершения исследовательского проекта «Геном человека» это порядка 25 тысяч генов. И хоть расшифровка значительно подешевела, и за прошедший десяток лет упала со ста тысяч долларов до двух тысяч на одного человека, далеко не каждому это покажется приемлемой ценой.
Для удешевления медицинских и генетических исследований всю расшифровку генома разделили тематически. Так стали появляться различные тестирования, по этому принципу они и планируются – выборка генов отвечающих за интересующие тематику исследования процессы.
Синтез РНК
Нуклеотиды (из которых формируются гены) подразделяются на 4 образующих элемента: аденин, тимин, гуанин и цитозин, которые содержат остатки фосфора, пептозы и азотистого основания. В цепочках ДНК эти нуклеотиды располагаются параллельно друг другу строгими парами: аденин только с тимином, а гуанин только с цитозином.
Необходимо подчеркнуть, что молекула дезоксирибонуклеиновой кислоты ни целиком, ни частично не может (или не должна) покинуть пределов ядра. РНК выступает в роли копии участка цепи генома, которая способна покинуть ядро, попасть в саму клетку и воздействовать на идущие в ней процессы. И происходит это удивительным образом:
- Спираль генов раскручивается на одном из своих участков и формирует развернутые нити обоих цепочек генов.
- К развернутому участку подходит специальный фермент-строитель и поверх этого участка синтезирует копию.
- У копии есть одно ключевое отличие от оригинальной структуры нуклеотидов: тимин во всех парах ней заменён на урацил. Это и позволяет ей покидать пространство ядра клетки.
Синтез белка при помощи генов
Основное взаимодействие, которое происходит между генами и клеткой заключается в том, что разные гены могут заставлять клетку синтезировать различные белки с самыми неожиданными свойствами. Так группа генов участвующих в процессе старения клетки может, как заставить её стареть быстрее, так и омолаживаться. Тоесть, генов не только много, каждый из них может спровоцировать синтез нескольких видов белка.
Факты о ДНК
- Редко, но бывают случаи, когда при беременности сначала развиваются близнецы, но потом они сливаются в единого человека. У таких людей двойное ДНК.
- Иногда и генная криминалистика даёт сбои. Так, после пересадки костного мозга в теле пациента присутствует некоторое количество ДНК донора, и это может привести к ошибке тестирования.
- Самым похожим на человеческий геном ДНК обладают земляные черви.
- Вся цифровая информация в мире могла бы поместиться в двух граммах дезоксирибонуклеиновой кислоты.
Источник
Органоиды (органеллы) клетки – специализированные структуры клетки, выполняющие различные жизненно необходимые
функции. Особенно сложно устроены клетки простейших, где одна клетка составляет весь организм и выполняет функции
дыхания, выделения, пищеварения и многие другие.
Органоиды клетки подразделяются на:
- Немембранные – рибосомы, клеточный центр, микротрубочки, органоиды движения (жгутики, реснички)
- Одномембранные – ЭПС, комплекс (аппарат) Гольджи, лизосомы и вакуоли
- Двумембранные – ядро, пластиды, митохондрии
Прежде чем говорить об органоидах клетки, без которых невозможна ее жизнедеятельность, необходимо
упомянуть о том, без чего вообще не существует клетки – о клеточной мембране. Клеточная мембрана ограничивает клетку
от окружающего мира и формирует ее внутреннюю среду.
Клеточная мембрана (оболочка)
Запомните, что в отличие от клеточной стенки, которая есть только у растительных клеток и у клеток грибов (она придает им плотную,
жесткую форму) клеточная мембрана есть у всех клеток без исключения! Этот важный момент объясню еще раз 🙂 У клеток животных имеется
только клеточная мембрана, а у клеток растений и грибов есть и клеточная стенка, и клеточная мембрана.
Клеточная мембрана представляет собой билипидный слой (лат. bi – двойной + греч. lipos – жир), который пронизывают молекулы
белков.
Билипидный слой представлен двумя слоями фосфолипидов. Обратите внимание, что их гидрофобные концы обращены внутрь мембраны, а
гидрофильные “головки” смотрят наружу. Билипидный слой насквозь пронизывают интегральные белки, частично – погруженные белки,
имеются также поверхностно лежащие белки – периферические.
Белки принимают участие в:
- Поддержании постоянства структуры мембраны
- Рецепции сигналов из окружающей среды (химического раздражения)
- Транспорте веществ через мембрану
- Ускорении (катализе) реакций, которые ассоциированы с мембраной
Интегральные (пронизывающие) белки образуют каналы, по которым молекулы различных веществ могут поступать в клетку или удаляться из нее.
“Заякоренные” молекулы олигосахаридов на поверхности клетки образуют гликокаликс, который выполняет рецепторную функцию, участвует
в избирательном транспорте веществ через мембрану.
Теперь вы знаете, что гликокаликс – надмембранный комплекс, совокупность клеточных рецепторов, которые нужны клетке для восприятия регуляторных
сигналов биологически активных веществ (гормонов, гормоноподобных веществ). Гормон избирателен, специфичен и присоединяется
только к своему рецептору: меняется конформация молекулы рецептора и обмен веществ в клетке. Так гормоны
регулируют жизнедеятельность клеток.
Вирусы и бактерии не являются исключением: они взаимодействуют только с теми клетками, на которых есть подходящие к
ним рецепторы. Так вирус гриппа поражает преимущественно клетки слизистой верхних дыхательных путей. Однако если рецепторов
нет, то вирус не может проникнуть в клетку, и организм приобретает невосприимчивость к инфекции. Вспомните врожденный
иммунитет: именно по причине отсутствия рецепторов человек не восприимчив ко многим болезням животных.
Итак, вернемся к клеточной мембране. Ее можно сравнить со стенами помещения, в котором, вероятно, вы находитесь. Стены дома защищают
его от ветра, дождя, снега и прочих факторов внешней среды. Рискну предположить, что в вашем доме есть окна и двери, которые
по мере необходимости открываются и закрываются 🙂 Так и клеточная мембрана может сообщать внутреннюю среду клетки с внешней средой:
через мембрану вещества поступают в клетку и удаляются из нее.
Подведем итоги. Клеточная мембрана выполняет ряд важнейших функций:
- Разделительная (барьерная) – образует барьер между внешней средой и внутренней средой клетки (цитоплазмой с органоидами)
- Поддержание обмена веществ между внешней средой и цитоплазмой
- Транспортная
- Пассивный – часто идет по градиенту концентрации, без затрат АТФ (энергии). Возможен путем осмоса, простой диффузии
или облегченной (с участием белка-переносчика) диффузии. - Активный
Через мембрану по каналам кислород и питательные вещества поступают в клетку, а продукты жизнедеятельности – мочевина
– удаляются из клетки во внешнюю среду.
Тесно связана с обменом веществ, однако здесь мне особенно хочется подчеркнуть варианты транспорта веществ через клетку.
Выделяется два вида транспорта:
Внутрь клетки с помощью осмоса поступает вода. Путем простой диффузии в клетку попадают O2, H2O,
CO2, мочевина. Облегченная диффузия характерна для транспорта глюкозы, аминокислот.
Активный транспорт чаще происходит против градиента концентрации, в ходе него используются белки-переносчики и
энергия АТФ. Ярким примером является натрий-калиевый насос, который накачивает ионы калия внутрь клетки, а ионы
натрия выводит наружу. Это происходит против градиента концентрации, поэтому без затрат энергии (АТФ) не обойтись.
Внутрь клетки крупные молекулы попадают путем эндоцитоза (греч. endo — внутрь) двумя путями:
- Фагоцитоз (греч. phago – ем + cytos – клетка) – поглощение твердых пищевых частиц и бактерий фагоцитами
- Пиноцитоз (греч. pino – пью) – поглощение клеткой жидкости, захват жидкости клеточной поверхностью
Фагоцитоз был открыт И.И. Мечниковым, который создал фагоцитарную теорию иммунитета. Это теория гласит, что в основе иммунной системы
нашего организма лежит явление фагоцитоза: попавшие в организм бактерии уничтожаются фагоцитами (T-лимфоцитами), которые переваривают их.
В ходе эндоцитоза мембрана сильно прогибается внутрь клетки, ее края смыкаются, захватывая бактерию, пищевые частицы или жидкость внутрь
клетки. Образуется везикула (пузырек), который движется к пищеварительной вакуоли или лизосоме, где происходит внутриклеточное
пищеварение.
Клетки многих органов, к частности эндокринных желез, которые выделяют в кровь гормоны, транспортируют синтезированные вещества к
мембране и удаляют их из клетки с помощью экзоцитоза (от др.-греч. ἔξω – вне, снаружи). Таким образом, процессы экзоцитоза и
эндоцитоза противоположны.
Клеточная стенка
Расположена снаружи клеточной мембраны. Присутствует только в клетках бактерий, растений и грибов, у животных отсутствует.
Придает клетке определенную форму, направляет ее рост, придавая характерное строение всему организму.
Клеточная стенка бактерий состоит из полимера муреина, у грибов – из хитина, у растений – из целлюлозы.
Цитоплазма
Органоиды клетки расположены в цитоплазме, которая состоит из воды, питательных веществ и продуктов обмена. В цитоплазме
происходит постоянный ток веществ: поступившие в клетку вещества для расщепления необходимо доставить к органоидам, а побочные продукты – удалить из клетки.
Постоянное движение цитоплазмы поддерживает связь между органоидами клетки и обеспечивает ее целостность.
Прокариоты и эукариоты
Прокариоты (греч. πρό – перед и κάρυον – ядро) или доядерные – одноклеточные организмы, не обладающие в отличие от
эукариот оформленным ядром и мембранными органоидами. У прокариот могут обнаруживаться только немембранные органоиды.
Их генетический материал представлен в виде кольцевой молекулы ДНК – нуклеоида. К прокариотам относятся бактерии
(в их числе цианобактерии), археи.
Эукариоты (греч. εὖ – хорошо + κάρυον – ядро) или ядерные – домен живых организмов, клетки которых содержат оформленное
ядро. Растения, животные, грибы – относятся к эукариотам.
Немембранные органоиды
- Рибосома
- Микротрубочки и микрофиламенты
- Клеточный центр (центросома, от греч. soma – тело)
- Реснички и жгутики
Очень мелкая органелла (около 20 нм), которая была открыта после появления электронного микроскопа.
Состоит из двух субъединиц: большой и малой, в состав которых входят белки и рРНК (рибосомальная РНК), синтезируемая
в ядрышке.
Запомните ассоциацию: “Рибосома – фабрика белка”. Именно здесь в ходе матричного биосинтеза – трансляции, с которой
подробнее мы познакомимся в следующих статьях, на базе иРНК (информационной РНК) синтезируется белок – последовательность
соединенных аминокислот в заданном иРНК порядке.
Микротрубочки являются внутриклеточными белковыми производными, входящими в состав цитоскелета. Они поддерживают
определенную форму клетки, участвуют в процессе деления путем образования нитей веретена деления. Микротрубочки
также образуют основу органоидов движения: жгутиков и ресничек.
Микрофиламенты – тонкие длинные нитевидные структуры, состоящие из белка актина. Встречаются во всей цитоплазме,
служат для создания тока цитоплазмы, принимают участие в движении клетки, в процессах эндо- и экзоцитоза.
Этот органоид характерен только для животной клетки, в клетках грибов и высших растений отсутствует. Клеточный
центр состоит из 9 триплетов микротрубочек (триплет – три соединенных вместе). Участвует в образовании нитей веретена деления,
располагается на полюсах клетки.
Это органоиды движения, которые выступают над поверхностью клетки и имеют в основе пучок микротрубочек.
Реснички встречаются только в клетках животных, жгутики можно обнаружить у животных, растений и бактерий.
Одномембранные органоиды
- Эндоплазматическая сеть (ЭПС), эндоплазматический ретикулум (лат. reticulum – сеть)
- Комплекс (аппарат) Гольджи
- Лизосома (греч. lisis – растворение + soma – тело)
- Пероксисомы (лат. per — сверх, греч. oxys — кислый и soma — тело)
- Вакуоли
ЭПС представляет собой систему мембран, пронизывающих всю клетку и разделяющих ее на отдельные изолированные части
(компартменты). Это крайне важно, так как в разных частях клетки идут реакции, которые могут помешать друг другу,
что нарушит процессы жизнедеятельности.
Выделяют гладкую ЭПС и шероховатую ЭПС. Обе они выполняют функцию внутриклеточного транспорта веществ, однако между ними
имеются различия. На мембранах гладкой ЭПС происходит синтез липидов, обезвреживаются вредные вещества. Шероховатая
ЭПС синтезирует белок, так как имеет на мембранах многочисленные рибосомы (потому и называется шероховатой).
Комплекс Гольджи состоит из трубочек, сети уплощенных канальцев (цистерн) и связанных с ними пузырьков. Располагается
вокруг ядра клетки, внешне напоминает стопку блинов. Это – “клеточный склад”. В нем запасаются жиры и углеводы, с
которыми здесь происходят химические видоизменения.
Модифицированные вещества упаковываются в пузырьки и могут перемещаться к мембране клетки, соединяясь с ней, они
изливают свое содержимое во внешнюю среду. Можно догадаться, что комплекс Гольджи хорошо развит в клетках
эндокринных желез, которые в большом количестве синтезируют и выделяют в кровь гормоны.
В комплексе Гольджи появляются первичные лизосомы, которые содержат ферменты в неактивном состоянии.
Представляет собой мембранный пузырек, содержащий внутри ферменты (энзимы) – липазы, протеазы, фосфатазы.
Лизосому можно ассоциировать с “клеточным желудком”.
Лизосома участвует во внутриклеточном пищеварении поступивших в клетку веществ. Сливаясь с фагосомой, первичная лизосома превращается во вторичную, ферменты активируются. После расщепления веществ образуется остаточное тельце – вторичная лизосома с непереваренными остатками, которые удаляются из клетки.
Лизосома может переварить содержимое фагосомы (самое безобидное), переварить часть клетки или всю клетку целиком.
В норме у каждой клетки жизненный цикл заканчивается апоптозом – запрограммированным процессом клеточной гибели.
В ходе апоптоза ферменты лизосомы изливаются внутрь клетки, ее содержимое переваривается. Предполагают, что
нарушение апоптоза в раковых клетках ведет к бесконтрольному росту опухоли.
Пероксисомы (микротельца) содержат окислительно-восстановительные ферменты, которые разлагают H2O2
(пероксид водорода) на воду и кислород. Если бы пероксид водорода оставался неразрушенными, это приводило бы
к серьезным повреждениям клетки.
Вакуоли характерны для растительных клеток, однако встречаются и у животных (у одноклеточных – сократительные
вакуоли). У растений вакуоли выполняют другие функции и имеют иное строение: они заполняются клеточным соком, в котором
содержится запас питательных веществ. Снаружи вакуоль окружена тонопластом.
Трудно переоценить значение вакуолей в жизнедеятельности растительной клетки. Вакуоли создают осмотическое давление,
придают клетке форму.
Примечательно, что по размеру вакуолей можно судить о возрасте клетки: молодые клетки имеют
вакуоли небольшого размера, а в старых клетках вакуоли могут настолько увеличиваться, что оттесняют ядро и остальные
органоиды на периферию.
Двумембранные органоиды
- Ядро (“ядро” по лат. – nucleus, по греч. – karyon)
- Митохондрия
- Пластиды (др.-греч. πλαστός – вылепленный)
- Хлоропласт (греч. chlōros – зелёный)
- Хромопласты (греч. chromos – краска)
- Лейкопласты (др.-греч. λευκός — белый )
Важнейший компонент эукариотической клетки – оформленное ядро, которое у прокариот отсутствует. Внутренняя часть
ядра представлена кариоплазмой, в которой расположен хроматин – комплекс ДНК, РНК и белков, и одно или несколько
ядрышек.
Ядрышко – место в ядре, где активно идет процесс матричного биосинтеза – транскрипция, с которым мы познакомимся
подробнее в следующих статьях. В течение дня, наблюдая за одной и той же клеткой, можно увидеть разное количество
ядрышек или не найти ни одного.
Оболочка ядра состоит из двух мембран и пронизана большим количеством ядерных пор, через которые происходит сообщение
между кариоплазмой и цитоплазмой. Главными функциями ядра является хранение, защита и передача наследственного материала
дочерним клеткам.
Замечу, что хромосомы видны только в момент деления клетки. Хромосомы представляют собой сильно спирализованные молекулы
ДНК, связанные с белками.
Я всегда рекомендую ученикам ассоциировать хромосому с мотком ниток: если все нитки обмотать
вокруг одной оси, то они становятся мотком и хорошо видны (хромосомы – во время деления, спирализованное ДНК), если же клетка не
делится, то нитки размотаны и разбросаны в один слой, хромосом не видно (хроматин – деспирализованное ДНК).
Хромосомы отличаются друг от друга по строению, форме, размерам. Совокупность всех признаков (форма, число, размер) хромосом
называется кариотип. Кариотип может быть представлен по-разному: существует кариотип вида, особи, клетки.
Изучая кариотип человека, врач-генетик может обнаружить различные наследственные заболевания, к примеру, синдром Дауна – трисомия по 21-ой паре хромосом (должно быть 2 хромосомы, однако при синдроме Дауна их три).
Органоид палочковидной формы. Митохондрию можно сравнить с “энергетической станцией”. Если в цитоплазме происходит
анаэробный этап дыхания (бескислородный), то в митохондрии идет более совершенный – аэробный этап (кислородный). В
результате кислородного этапа (цикла Кребса) из двух молекул пировиноградной кислоты (образовавшихся из 1 глюкозы)
получаются 36 молекул АТФ.
Митохондрия окружена двумя мембранами. Внутренняя ее мембрана образует выпячивания внутрь – кристы, на которых имеется
большое скопление окислительных ферментов, участвующих в кислородном этапе дыхания. Внутри митохондрия заполнена
матриксом.
Запомните, что особенностью этого органоида является наличие кольцевой молекулы ДНК – нуклеоида, и рибосом. То есть
митохондрия обладает собственным генетическим материалом и возможностью синтеза белка, почти как отдельный организм.
В связи с этим, митохондрия считается полуавтономным органоидом. Вероятнее всего, изначально митохондрии были
самостоятельными организмами, однако со временем вступили в симбиоз с эукариотами и стали частью клетки.
Митохондрий особенно много в клетках мышц, в том числе – в сердечной мышечной ткани. Эти клетки выполняют активную работу и
нуждаются в большом количестве энергии.
Двумембранные органоиды, встречающиеся только в клетках высших растений, водорослей и некоторых простейших. У
подавляющего большинства животных пластиды отсутствуют. Подразделяются на три типа:
Получил свое название за счет содержащегося в нем зеленого пигмента – хлорофилла (греч. chloros – зеленый
и phyllon – лист). Под двойной мембраной расположены тилакоиды, которые собраны в стопки – граны. Внутреннее
пространство между тилакоидами и мембраной называется стромой.
Запомните, что светозависимая (световая) фаза фотосинтеза происходит на мембранах тилакоидов, а темновая
(светонезависимая) фаза – в строме хлоропласта за счет цикла Кальвина. Это очень пригодится при изучении
фотосинтеза в дальнейшем.
Так же, как и митохондрии, пластиды относятся к полуавтономным органоидам: в них имеется кольцевидная ДНК –
нуклеоид, рибосомы.
Пластиды, которые содержат пигменты каратиноиды в различных сочетаниях. Сочетание пигментов обуславливает
красную, оранжевую или желтую окраску. Находятся в плодах, листьях, лепестках цветков.
Хромопласты могут развиваться из хлоропластов: во время созревания плодов хлоропласты теряют хлорофилл и крахмал,
в них активируется биосинтез каротиноидов.
Не содержат пигментов, образуются в запасающих частях растения (клубни, корневища). В лейкопластах накапливается
крахмал, липиды (жиры), пептиды (белки). На свету лейкопласты могут превращаться в хлоропласты и запускать
процесс фотосинтеза.
© Беллевич Юрий Сергеевич 2018-2020
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.
Источник