В каких клетках содержится хлоропласты

В каких клетках содержится хлоропласты thumbnail
Строение хлоропластов

  • Функции хлоропластов
  • Строение хлорофилла
  • Рекомендованная литература и полезные ссылки
  • Хлоропласты, видео
  • Хлоропласты – двухмембранные органоиды растительных клеток, именно они играют ключевую роль в одном из самых важных биологических процессов в природе – фотосинтезе. В частности именно хлоропласты в процессе фотосинтеза выделяют зеленый пигмент хлорофилл, благодаря которому листья деревьев приобретают зеленый цвет (впрочем, не только листья, но и многие другие представители растительного мира, например водоросли). Какое строение хлоропластов, какие функции и процессы они осуществляются в жизнедеятельности клетки, об этом читайте далее.

    Количество хлоропластов в растительной клетке может быть разным, у некоторых водорослей в клетке содержится лишь один большой хлоропласт, часто причудливой формы, в то время как в клетках некоторых высших растений находится множество хлоропластов. Особенно их много в так званных мезофильных тканях листьев, там одна клетка может иметь в себе до сотни хлоропластов.

    Строение хлоропластов

    Устройство хлоропласта включает в себя внутреннюю и внешнюю мембрану, (как и в клетке, они играют роль защитного барьера), межмембранное пространство, строму, тилакоиды, граны, ламеллы, люмен.

    Строение хлоропластов

    Вот так строение хлоропласта выглядит на картинке.

    Как видим с картинки внутри хлоропласта имеется полужидкое пространство, именуемое стромой и приплюснутые диски – это тилакоиды. Последние объединены в стопки, названные гранамы, и сами граны соединены друг с другом при помощи длинных тилакоид, которые называют ламеллами. Именно в тилакоидах находится важный зеленый пигмент – хлорофилл.

    В полужидкой строме хлоропласта находятся его молекулы ДНК и РНК, а также рибосомы, обеспечивающие этому важному органоиду некую автономность внутри клетки. Помимо этого в строме хлоропласта есть зерна крахмала, которые образуются при избытке углеводов, образованных при фотосинтетической активности.

    Функции хлоропластов

    Самая важная функция хлоропласта – это, конечно же, осуществление фотосинтеза. Об этом удивительном процессе на нашем сайте есть отдельная большая статья. Тем не менее, напомним, что при фотосинтезе хлоропластами растительных клеток при помощи солнечного света осуществляется синтез глюкозы из углекислого газа и воды. При этом в качестве важного «побочного продукта» выделяется кислород.

    Основным фотосинтезирующим пигментом в этом процессе является хлорофилл, локализированный в мембранах тилакоидов, именно здесь проходят световые реакции фотосинтеза. Кроме хлорофилла тут же присутствуют ферменты и переносчики электронов.

    Интересный факт: хлоропласты стараются расположиться в клетке таким образом, чтобы их тилакоидные мембраны находились под прямым углом к солнечному свету. Или говоря простым языком, хлоропласты в клетке всегда тянутся на свет.

    Строение хлорофилла

    Что же касается строения самого хлорофилла, то он состоит из длинного углеводного хвоста и порфириновой головки. Хвост его гидрофобен, то есть боится влаги, поэтому погружен в тилакоид, головка наоборот любит влагу и находится в жидкой субстанции хлоропласта – строме. Поглощение солнечного света осуществляется именно головкой хлорофилла.

    К слову биологами различается несколько разных видов хлорофилла: хлорофилл a, хлорофилл b, хлорофилл c1, хлорофилл c2 и так далее, все они обладают разным спектром поглощения солнечного света. Но больше всего в растениях именно хлорофилла а.

    Рекомендованная литература и полезные ссылки

    • Белякова Г. А. Водоросли и грибы // Ботаника: в 4 т. / Белякова Г. А., Дьяков Ю. Т., Тарасов К. Л. — М.: Издательский центр «Академия», 2006. — Т. 1. — 320 с. — 3000 экз. — ISBN 5-7695-2731-5.
    • Карпов С.А. Строение клетки протистов. — СПб.: ТЕССА, 2001. — 384 с. — 1000 экз. — ISBN 5-94086-010-9.
    • Lee, R. E. Phycology, 4th edition. — Cambridge: Cambridge University Press, 2008. — 547 с. — ISBN 9780521682770.

    Хлоропласты, видео

    И в завершение образовательное видео по теме нашей статьи.

    В каких клетках содержится хлоропласты

    Автор: Павел Чайка, главный редактор журнала Познавайка

    При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту pavelchaika1983@gmail.com или в Фейсбук, с уважением автор.

    Источник

    Пластиды — органоиды, специфичные для клеток растений (они имеются в клетках всех растений, за исключением большинства бактерий, грибов и некоторых водорослей).

    Читайте также:  Какой витамин содержится в коже

    В клетках высших растений находится обычно от 10 до 200 пластид размером 3-10мкм, чаще всего имеющих форму двояковыпуклой линзы. У водорослей зеленые пластиды, называемые хроматофорами, очень разнообразны по форме и величине. Они могут иметь звездчатую, лентовидную, сетчатую и другие формы.

    Различают 3 вида пластид:

    • Бесцветные пластиды — лейкопласты;
    • окрашенные — хлоропласты (зеленого цвета);
    • окрашенные — хромопласты (желтого, красного и других цветов).

    Эти виды пластид до известной степени способны превращаться друг в друга — лейкопласты при накоплении хлорофилла переходят в хлоропласты, а последние при появлении красных, бурых и других пигментов — в хромопласты.

    Виды пластид: хлоропласты, хромопласты, лейкопласты

    Строение и функции хлоропластов

    Хлоропласты — зеленые пластиды, содержащие зеленый пигмент — хлорофилл.

    Основная функция хлоропласт — фотосинтез.

    В хлоропластах есть свои рибосомы, ДНК, РНК, включения жира, зерна крахмала. Снаружи хлоропласта покрыты двумя белково-липидными мембранами, а в их полужидкую строму (основное вещество) погружены мелкие тельца — граны и мембранные каналы.

    Строение хлоропластаСтроение хлоропласта

    Граны (размером около 1мкм) — пакеты круглых плоских мешочков (тилакоидов), сложенных подобно столбику монет. Располагаются они перпендикулярно поверхности хлоропласта. Тилакоиды соседних гран соединены между собой мембранными каналами, образуя единую систему. Число гран в хлоропластах различно. Например, в клетках шпината каждый хлоропласт содержит 40-60 гран.

    Хлоропласты внутри клетки могут двигаться пассивно, увлекаемые током цитоплазмы, либо активно перемещаться с места на место.

    • Если свет очень интенсивен, они поворачиваются ребром к ярким лучам солнца и выстраиваются вдоль стенок, параллельных свету.
    • При слабом освещении, хлоропласты перемещаются на стенки клетки, обращенные к свету, и поворачиваются к нему своей большой поверхностью.
    • При средней освещенности они занимают среднее положение.

    Этим достигаются наиболее благоприятные для процесса фотосинтеза условия освещения.

    Хлорофилл

    В гранах пластид растительной клетки содержится хлорофилл, упакованный с белковыми и фосфолипидными молекулами так, чтобы обеспечить способность улавливать световую энергию.

    Молекула хлорофилла очень сходна с молекулой гемоглобина и отличается главным образом тем, что расположенный в центре молекулы гемоглобина атом железа заменен в хлорофилле на атом магния.

    Сходство молекулы хлорофилла и молекулы гемоглобинаСходство молекулы хлорофилла и молекулы гемоглобина

    В природе встречается четыре типа хлорофилла: a, b, c, d.

    Хлорофиллы a и b содержат высшие растения и зеленые водоросли, диатомовые водоросли содержат a и c, красные — a и d.

    Лучше других изучены хлорофиллы a и b (их впервые разделил русский ученый М.С.Цвет в начале XXв.). Кроме них существуют четыре вида бактериохлорофиллов — зеленых пигментов пурпурных и зеленых бактерий: a, b, c, d.

    Большинство фотосинтезирующих бактерий содержат бактериохлорофилл a, некоторые — бактериохлорофилл b, зеленые бактерии — c и d.

    Хлорофилл обладает способностью очень эффективно поглощать солнечную энергию и передавать ее другим молекулам, что является его главной функцией. Благодаря этой способности хлорофилл — единственная структура на Земле, которая обеспечивает процесс фотосинтеза.

    Главная функция хлорофилла в растениях — поглощение энергии света и передача ее другим клеткам.

    Пластидам, так же, как и митохондриям, свойственна до некоторой степени автономность внутри клетки. Они размножаются путем деления.

    Наряду с фотосинтезом, в пластидах происходит процесс биосинтеза белка. Благодаря содержанию ДНК пластиды играют определенную роль в передаче признаков по наследству (цитоплазматическая наследственность).

    Строение и функции хромопластов

    Хромопласты относятся к одному из трех видов пластид высших растений. Это небольших размеров, внутриклеточные органеллы.

    Хромопласты имеют различный окрас: желтый, красный, коричневый. Они придают характерный цвет созревшим плодам, цветкам, осенней листве. Это необходимо для привлечения насекомых-опылителей и животных, которые питаются плодами и разносят семена на дальние расстояния.

    Строение хромопластаСтроение хромопласта

    Структура хромопласта похожа на другие пластиды. Их двух оболочек внутренняя развита слабо, иногда вовсе отсутствует. В ограниченном пространстве расположена белковая строма, ДНК и пигментные вещества (каротиноиды).

    Каротиноиды – это жирорастворимые пигменты, которые накапливаются в виде кристаллов.

    Форма хромопластов очень разнообразна: овальная, многоугольная, игольчатая, серповидная.

    Роль хромопластов в жизни растительной клетки до конца не выяснена. Исследователи предполагают, что пигментные вещества играют важную роль в окислительно-восстановительных процессах, необходимы для размножения и физиологичного развития клетки.

    Читайте также:  Какие гормоны содержаться в ярине

    Строение и функции лейкопластов

    Лейкопласты — это органоиды клетки, в которых накапливаются питательные вещества. Органеллы имеют две оболочки: гладкую наружную и внутреннюю с несколькими выступами.

    Лейкопласты на свету превращаются в хлоропласты (к примеру зеленые клубни картофеля), в обычном состоянии они бесцветны.

    Форма лейкопластов шаровидная, правильная. Они находятся в запасающей ткани растений, которая заполняет мягкие части: сердцевину стебля, корня, луковиц, листьев.

    Строение лейкопластаСтроение лейкопласта

    Функции лейкопластов зависят от их вида (в зависимости от накапливаемого питательного вещества).

    Разновидности лейкопластов:

    1. Амилопласты накапливают крахмал, встречаются во всех растениях, так как углеводы основной продукт питания растительной клетки. Некоторые лейкопласты полностью наполнены крахмалом, их называют крахмальными зернами.
    2. Элайопласты продуцируют и запасают жиры.
    3. Протеинопласты содержат белковые вещества.

    Лейкопласты также служат ферментной субстанцией. Под действием ферментов быстрее протекают химические реакции. А в неблагоприятный жизненный период, когда процессы фотосинтеза не осуществляются, они расщепляют полисахариды до простых углеводов, которые необходимы растениям для выживания.

    В лейкопластах не может происходить фотосинтез, потому что они не содержат гран и пигментов.

    Луковицы растений, в которых содержится много лейкопластов, могут переносить длительные периоды засухи, низкую температуру, жару. Это связано с большими запасами воды и питательных веществ в органеллах.

    Предшественниками всех пластид является пропластиды, небольшие органоиды. Допускают, что лейко — и хлоропласты способны трансформироваться в другие виды. В конечном итоге после выполнения своих функций хлоропласты и лейкопласты становятся хромопластами — это последняя стадия развития пластид.

    Важно знать! Одновременно в клетке растения может находиться только один вид пластид.

    Сводная таблица строения и функций пластид

    СвойстваХлоропластыХромопластыЛейкопласты
    СтроениеДвухмембранная органелла, с гранами и мембранными канальцамиОрганелла с не развитой внутренней мембранной системойМелкие органеллы, находятся в частях растения, скрытых от света
    ОкрасЗеленыеРазноцветныеБесцветные
    ПигментХлорофиллКаротиноидОтсутствует
    ФормаОкруглаяМногоугольнаяШаровидная
    ФункцииФотосинтезПривлечение потенциальных распространителей растенийЗапас питательных веществ
    ЗаменимостьПереходят в хромопластыНе изменяются, это последняя стадия развития пластидПревращаются в хлоропласты и хромопласты

    Источник

    Пластиды являются основными цитоплазматическими органеллами клеток автотрофных растений. Название происходит от греческого слова «plastos», что в переводе означает «вылепленный».

    Строение

    Главная функция пластид – синтез органических веществ, благодаря наличию собственных ДНК и РНК и структур белкового синтеза. В пластидах также содержатся пигменты, обусловливающие их цвет. Все виды данных органелл имеют сложное внутреннее строение. Снаружи пластиду покрывают две элементарные мембраны, имеется система внутренних мембран, погруженных в строму или матрикс.

    Классификация пластид по окраске и выполняемой функции подразумевает деление этих органоидов на три типа: хлоропласты, лейкопласты и хромопласты. Пластиды водорослей именуются хроматофорами.

    Хлоропласты

    Хлоропласты – это зеленые пластиды высших растений, содержащие хлорофилл – фотосинтезирующий пигмент. Представляют собой тельца округлой формы размерами от 4 до 10 мкм.

    Химический состав хлоропласта: примерно 50% белка, 35% жиров, 7% пигментов, малое количество ДНК и РНК.

    У представителей разных групп растений комплекс пигментов, определяющих окраску и принимающих участие в фотосинтезе, отличается. Это подтипы хлорофилла и каротиноиды (ксантофилл и каротин). При рассматривании под световым микроскопом видна зернистая структура пластид – это граны.

    Под электронным микроскопом наблюдаются небольшие прозрачные уплощенные мешочки (цистерны, или граны), образованные белково-липидной мембраной и располагающиеся в непосредственно в строме. Причем некоторые из них сгруппированы в пачки, похожие на столбики монет (тилакоиды гран), другие, более крупные находятся между тилакоидами. Благодаря такому строению, увеличивается активная синтезирующая поверхность липидно-белково-пигментного комплекса гран, в котором на свету происходит фотосинтез.

    Хромопласты

    Хромопласты – пластиды, окраска которых бывает желтого, оранжевого или красного цвета, что обусловлено накоплением в них каротиноидов. Благодаря наличию хромопластов, характерную окраску имеют осенние листья, лепестки цветов, созревшие плоды (помидоры, яблоки). Данные органоиды могут быть различной формы – округлой, многоугольной, иногда игольчатой.

    Лейкопласты

    Лейкопласты представляют собой бесцветные пластиды, основная функция которых обычно запасающая. Размеры этих органелл относительно небольшие. Они округлой либо слегка продолговатой формы, характерны для всех живых клеток растений. В лейкопластах осуществляется синтез из простых соединений более сложных – крахмала, жиров, белков, которые сохраняются про запас в клубнях, корнях, семенах, плодах. Под электронным микроскопом заметно, что каждый лейкопласт покрыт двухслойной мембраной, в строме есть только один или небольшое число выростов мембраны, основное пространство заполнено органическими веществами. В зависимости от того, какие вещества накапливаются в строме, лейкопласты делят на амилопласты, протеинопласты и элеопласты.

    Читайте также:  В каких продуктах содержится клетчатка список продуктов для кормящей

    Все виды пластид имеют общее происхождение и способны переходить из одного вида в другой. Так, превращение лейкопластов в хлоропласты наблюдается при позеленении картофельных клубней на свету, а в осенний период в хлоропластах зеленых листьев разрушается хлорофилл, и они трансформируются в хромопласты, что проявляется пожелтением листьев. В каждой определенной клетке растения может быть только один вид пластид.

    Источник

    Фотосинтез происходит в эукариотических клеточных структурах, называемых хлоропластами. Хлоропласт – это тип органеллы растительных клеток, известный как зеленые пластиды. Пластиды помогают хранить и собирать необходимые вещества для производства энергии. Хлоропласт содержит зеленый пигмент, называемый хлорофиллом, который поглощает световую энергию для процесса фотосинтеза. Следовательно, название хлоропласт указывает на то, что эти органеллы представляют собой хлорофиллсодержащие пластиды.

    Подобно митохондриям, хлоропласты имеют свою собственную ДНК, ответственны за производство энергии и воспроизводятся независимо от остальной части клетки посредством процесса деления, подобного бактериальному бинарному делению. Они также ответственны за производство аминокислот и липидных компонентов, необходимых для производства хлоропластов. Хлоропласты также встречаются в клетках других фотосинтезирующих организмах, таких как водоросли.

    Хлоропласт: структура

    В каких клетках содержится хлоропласты

    Схема строения хлоропласт

    Хлоропласты обычно встречаются в охранных клетках, расположенных в листьях растений. Охранные клетки окружают крошечные поры, называемые устьицами, открывая и закрывая их, чтобы обеспечить необходимый для фотосинтеза газообмен. Хлоропласты и другие пластиды развиваются из клеток, называемых пропластидами, которые являются незрелыми, недифференцированными клетками, развивающимися в разные типы пластид. Пропластид, развивающийся в хлоропласт, осуществляет этот процесс только при свете. Хлоропласты содержат несколько различных структур, каждая из которых имеет специализированные функции. Основные структуры хлоропласта включают:

    • Мембрана – содержит внутренние и внешние липидные двухслойные оболочки, которые выступают в качестве защитных покрытий и сохраняют замкнутые структуры хлоропластов. Внутренняя мембрана отделяет строму от межмембранного пространства и регулирует прохождение молекул в/из хлоропласта.
    • Межмембранное пространство – пространство между внешней и внутренней мембранами.
    • Тилакоидная система – внутренняя система мембран, состоящая из сплющенных мешкообразных мембранных структур, называемых тилакоидами, которые служат местами преобразования энергии света в химическую энергию.
    • Тилакоид с просветом (люменом) – отсек в каждом тилакоиде.
    • Грана – плотные слоистые стопки тилакоидных мешков (10-20), которые служат местами преобразования энергии света в химическую энергию.
    • Строма – плотная жидкость внутри хлоропласта, содержащая внутри оболочки, но вне тилакоидной мембраны. Здесь происходит конверсия углекислого газа в углеводы (сахара).
    • Хлорофилл – зеленый фотосинтетический пигмент в хлоропласт-гране, поглощающий световую энергию.

    Хлоропласт: фотосинтез

    В каких клетках содержится хлоропласты

    При фотосинтезе энергия солнечного света преобразуется в химическую энергию. Химическая энергия хранится в виде глюкозы (сахара). Двуокись углерода, вода и солнечный свет используются для производства глюкозы, кислорода и воды. Фотосинтез происходит в два этапа: световая фаза и темновая фаза.

    Световая фаза фотосинтеза протекает только при наличии света и происходит внутри хлоропластовой граны. Первичным пигментом, используемым для преобразования световой энергии в химическую, является хлорофилл а. Другие пигменты, участвующие в поглощении света, включают хлорофилл b, ксантофилл и каротин. Во время световой фазы, солнечный свет преобразуется в химическую энергию в виде АТФ (молекулы, содержащей свободную энергию) и НАДФ (молекула, несущая электроны высокой энергии).

    И АТФ, и НАДФ используются во время темновой фазы для получения сахара. Темновая фаза фотосинтеза, также известная как этап фиксации углерода или цикл Кальвина. Реакции на этой стадии возникают в строме. Строма содержит ферменты, которые облегчают серию реакций, использующих АТФ, НАДФ и углекислый газ для получения сахара. Сахар может храниться в виде крахмала, используемого во время дыхания или при производстве целлюлозы.

    Не нашли, то что искали? Используйте форму поиска по сайту

    Источник