В каких клетках содержится больше рибосом

В каких клетках содержится больше рибосом thumbnail

Рибосомы — субмикроскопические немембранные органеллы, необходимые для синтеза белка. Они объединяют аминокислоты в пептидную цепь, образуя новые белковые молекулы. Биосинтез осуществляется по матричной РНК путем трансляции.

Особенности строения

Рибосомы находятся на гранулярном эндоплазматическом ретикулуме или свободно плавают в цитоплазме. Крепятся они к эндоплазматической сети своей большой субъединицей и синтезируют белок, который выводится за пределы клетки, используется всем организмом. Цитоплазменные рибосомы в основном обеспечивают внутренние потребности клетки.

Так выглядит рибосома

Форма шаровидная или овальная, в диаметре около 20нм.

На этапе трансляции к мРНК может прикрепляться несколько рибосом, образуя новую структуру – полисому. Сами же они образуются в ядрышке, внутри ядра.

Выделяют 2 вида рибосом:

  • Малые – находятся в прокариотических клетках, а также в хлоропластах и митохондриальном матриксе. Они не связаны с мембраной и имеют меньшие размеры (в диаметре до 15нм).
  • Большие – находятся в эукариотических клетках, могут достигать в диаметре до 23нм, связываются с эндоплазматической сетью или крепятся к мембране ядра.

Схема строения рибосомСхема строения

Строение обоих видов идентичное. В состав рибосомы входят две субъединицы — большая и малая, которые в сочетании напоминают гриб. Объединяются они при помощи ионов магния, сохраняя между соприкасающимися поверхностями небольшую щель. При дефиците магния субъединицы отдаляются, происходит дезагрегация и рибосомы уже не могут выполнять свои функции.

Химический состав

Рибосомы состоят из высокополимерной рибосомальной РНК и белка в соотношении 1:1. В них сосредоточено примерно 90% всей клеточной РНК. Малая и большая субъединицы содержат около четырех молекул рРНК, которая имеет вид нитей собранных в клубок. Окружены молекулы белками и формируют вместе рибонуклеопротеид.

Полирибосомы – это объединение информационной РНК и рибосом, которые нанизываются на нить иРНК. В период отсутствия синтезирующих процессов, рибосомы разъединяются и обмениваются субъединицами. При поступлении иРНК они снова собираются в полирибосомы.

Количество рибосом может изменяться в зависимости от функциональной нагрузки на клетку. Десятки тысяч находятся в клетках с высокой митотической активностью (меристема растений, стволовые клетки).

Образование в клетке

Субъединицы рибосом формируются в ядрышке. Матрицей для синтеза рибосомальной РНК является ДНК. Для полного созревания они проходят несколько этапов:

  • Эосома – первая фаза, при этом в ядрышке на ДНК синтезируется лишь рРНК;
  • неосома – структура включающая не только рРНК, но и белки, после ряда модификаций выходит в цитоплазму;
  • рибисома – зрелая органелла, состоящая из двух субъединиц.
Функции элементов рибосом
СтруктураСтроениеФункции
Большая субъединицаБольшая субъединица Треугольная, в диаметре 16нм, состоит из 3 молекул РНК и 33 белковых молекул Трансляция, декодирование генетической информацииТрансляция, декодирование генетической информации
Малая субъединицаВогнутая, овальная, в диметре 14нм, состоит из 1 молекулы РНК и 21 белковых молекулОбъединение аминокислот, создание пептидных связей, синтез новых молекул белка

Биосинтез белков на рибосомах

Трансляция или синтез белков на рибосомах с матрицы иРНК – конечный этап преобразования генетической информации в клетках. Во время трансляции информация, закодированная в нуклеиновых кислотах, переходит в белковые молекулы со строгой последовательностью аминокислот.

Трансляция – весьма непростой этап (в сравнении с репликацией и транскрипцией). Для проведения трансляции в процесс включаются все виды РНК, аминокислот, множество ферментов, которые могут исправлять погрешности друг друга. Самые важные участники трансляции – это рибосомы.

После транскрипции, новообразованная молекула иРНК, выходит из ядра в цитоплазму. Здесь после нескольких преобразований она соединяется с рибосомой. При этом аминокислоты приводятся в действие после взаимодействия с энергетическим субстратом – молекулой АТФ.

Аминокислоты и иРНК имеют разный химический состав и без постороннего участия не могут взаимодействовать между собой. Для преодоления этой несовместимости существует транспортная РНК. Под действием ферментов аминокислоты соединяются с тРНК. В таком виде они переносятся на рибосому и тРНК, с определенной аминокислотой, прикрепляется на иРНК в предназначенном месте. Далее рибосомальные ферменты формируют пептидную связь между присоединенной аминокислотой и строящимся полипептидом. После рибосома перемещается по цепи информационной РНК, оставляя участок для прикрепления следующей аминокислоты.

Рост полипептида идет до того момента, пока рибосома не встретит «стоп-кодон», который сигнализирует об окончании синтеза. Для освобождения новосинтезированного пептида от рибосомы включаются факторы терминации, окончательно завершающие биосинтез. К последней аминокислоте прикрепляется молекула воды, а рибосома распадается на две субъединицы.

Когда рибосома продвигается дальше по иРНК, она освобождает начальный отрезок цепи. К нему снова может присоединиться рибосома, которая начнет новый синтез. Таким образом, используя одну матрицу для биосинтеза, рибосомы создают одномоментно множество копий белка.

Роль рибосом в организме

  1. Рибосомы синтезируют белок для собственных нужд клетки и за ее пределы. Так в печени образуются плазменные факторы свертывания крови, плазмоциты продуцируют гамма-глобулины.
  2. Считывание закодированной информации с РНК, соединение аминокислот в запрограммированном порядке с образованием новых белковых молекул.
  3. Каталитическая функция – формирование пептидных связей, гидролиз ГТФ.
  4. Свои функции в клетке рибосомы выполняют более активно в виде полирибосом. Эти комплексы способны одновременно синтезировать несколько молекул белка.
Читайте также:  В каких продуктах содержится цинк и витамин в12

Источник

Ст. 88

Рассмотрите рис. 60 — 62. В чем сходство и отличия строения немембранных органоидов клетки? Предположите, каковы их функции.

Рибосомы: Округлый органоид, состоящий из двух субъединиц

Функция: Синтез белка

Клеточный центр: Два цилиндрика – центриоли, образованные микротрубочками

Функция: Образуют цитоскелет клетки, нити веретена деления, жгутики и реснички

Органоиды движения – реснички, жгутики: Микротрубочки (белковые)

Функция: Передвижение клеток в пространстве; Перемещение вдоль клеток окружающей их жидкости и частиц

Микротрубочки: состоят из множества субъединиц сократительного белка тубулина.

Функция: формируют внутреннюю структуру – цитоскелет клетки, который выполняет опорную функцию. Они обеспечивают движение цитоплазмы, перемещение в клетке некоторых органоидов, например митохондрий, лизосом и пузырьков аппарата Гольджи.

Ст. 91

Вопросы и задания

1. Каково внешнее строение рибосомы? Из чего она состоит?

Это очень мелкие тельца грибовидной формы, на которых идёт синтез белка. Рибосома состоит из двух субъединиц: большой и малой. Каждая субъединица состоит из рибосомальной РНК (рРНК) и белка.

2. Где в клетке встречаются рибосомы, с какими клеточными структурами связана их деятельность? Какие функции выполняют рибосомы?

Рибосомы обычно находятся в диссоциированном состоянии, т. е. большая и малая субъединицы не связаны друг с другом. Во время синтеза белка две субъединицы рибосомы соединяются с иРНК и образуют единый комплекс, в котором происходит биосинтез белка. Одни рибосомы находятся на гранулярной ЭПС, и синтезируемый ими белок поступает внутрь ЭПС и транспортируется дальше по отсекам клетки. Другие, так называемые свободные, рибосомы находятся в цитоплазме и участвуют в синтезе белков цитоплазмы. Несколько рибосом способны во время синтеза белка соединяться с иРНК и образовывать длинные цепи – полисомы. На полисоме одновременно идёт синтез нескольких молекул одного и того же белка.

3. В каких клетках содержится больше рибосом: в клетках жировой ткани, волосяного фолликула или железистого эпителия? Ответ поясните.

Больше рибосом содержится в клетках волосяных луковиц, поскольку им необходимо синтезировать большое количество кератина и других белков, входящих в состав волос. Клетки жировой ткани являются своеобразными хранилищами липидов и не специализируются на синтезе белков.

4. Объясните строение микротрубочек. Какие функции они выполняют?

В морфологическом отношении микротрубочки представляют собой длинные полые цилиндры с внешним диаметром 25 нм. Стенка микротрубочек состоит из полимеризованных молекул белка тубулина. При полимеризации молекулы тубулина образуют 13 продольных протофиламентов, которые скручиваются в полую трубку. Размен мономера тубулина составляет около 5 нм, равного толщине стенки микротрубочки, в поперечном сечении которой видны 13 глобулярных молекул.

Функции:

1. Поддержание формы и полярности клетки, распределение ее компонентов.

2. Обеспечение внутриклеточного транспорта.

3. Обеспечение движений ресничек, хромосом в митозе.

4. Образование основы других органелл (центриолей, ресничек).

5. Какие клеточные структуры являются производными микротрубочек? В чём их сходства и отличия? Какие функции они выполняют?

Реснички и жгутики являются производными микротрубочек в клетках эпителия воздуховодных путей, женского полового тракта, семявыносяших путей, сперматозоидах. Являются органоидами движения в основном одноклеточных организмов

Центриоль – небольшой цилиндрический органоид, представляющий собой полый цилиндр, стенки которого образованы девятью триплетами микротрубочек. Участвует в процессе деления клетки.

Базальное тельце представлено одним цилиндром, состоящим из девяти триплетов микротрубочек. Способны восстанавливать жгутики и реснички.

Общее: микротрубочки и клеточные структуры имеют общее строение.

Различия: выполняют разные функции.

6. Опишите строение и принцип действия органоидов движения.

Жгутики и реснички. Это органоиды движения, характерные как для одноклеточных организмов (жгутиковые и инфузории), так и для некоторых клеток многоклеточных организмов (клетки некоторых эпителиев, сперматозоиды). Жгутики и реснички представляют собой цилиндр, стенку которого образуют 9 пар микротрубочек; в центре расположены две осевые микротрубочки. Эта часть полностью или на большем протяжении покрыта участком наружной цитоплазматической мембраны. В основании органоида, в наружном слое цитоплазмы, расположено базальное (основное) тельце, в котором к каждой паре микротрубочек, образующих наружную часть жгутики или реснички, прибавляется еще одна короткая микротрубочка. Таким образом, базальное тельце оказывается образованным из девяти триад трубочек и имеет сходство с компонентом клеточного центра – центриолью. Движение жгутиков и ресничек обусловлено скольжением микротрубочек каждой пары друг относительно друга, при котором затрачивается большое количество энергии в виде АТФ.

7. Какие органоиды из перечисленных ниже обязательно присутствуют в эукариотной клетке: микротрубочки, клеточный центр, центриоли, базальное тельце, цитоскелет? Объясните почему.

Клеточный центр необходим клетке, так как он принимает участие в её делении. В состав клеточного центра входит центриоль. Центриоль – парное образование. Она содержит 2 удлиненные гранулы, состоящие из микротрубочек и расположенные перпендикулярно друг другу. Цитоскелет в свою очередь придает клетке прочность, придает клетке форму. Цитоскелет включает в себя и базальные тельца. Каждый из этих органоидов необходим клетке в равной мере. Все эти органоиды тесно связано между собой.

Читайте также:  Аспирин содержится какие продукты

Источник

Строение функция рибосома

Строение функция рибосома

Рибосомы — это важнейшие компоненты клеток как прокариот, так и эукариот. Строение и функции рибосом связаны с синтезом белка|белка в клетке, т. е. процессом трансляции.

По химическому составу рибосомы представляют собой рибонуклеопротеиды, т. е. состоят из РНК и белков. В рибосомы входит только один тип РНК – рРНК (рибосомальная РНК). Однако существует 4 разновидности её молекул.

По строению рибосомы — это мелкие, округлой формы, немембранные органоиды клетки. Их количество в разных клетках варьирует от тысяч до нескольких миллионов. Рибосома — это не монолитная структура, она состоит из двух частиц, которые называют большой и малой субъединицами.

В клетках эукариот большинство рибосом прикреплено к ЭПС, в результате чего последняя становится шероховатой.

Большая|Большая часть рРНК, составляющая рибосомы, синтезируется в ядрышке. Ядрышко образуют определённые участки разных хромосом, содержащие множество копий генов, на которых синтезируется предшественник молекул рРНК. После синтеза предшественника он видоизменяется и распадается на три части — разные молекулы рРНК.

Одна из четырёх типов молекул рРНК синтезируется не в ядрышке, а в ядре на других участках хромосом.

В ядре происходит сборка отдельных субъединиц рибосом, которые затем выходят в цитоплазму, где при синтезе белка|белка объединяются.

По строению обе субъединицы рибосом представляют собой молекулы рРНК, которые принимают определённые третичные структуры (сворачиваются) и инкрустируются десятками различных белков. При этом в состав большой субъединицы рибосом входит три молекулы рРНК (у прокариот — две), а в состав малой — только одна.

Единственная функция рибосом — это обеспечение возможности протекания химических реакций при биосинтезе белка|белка в клетке. Матричная РНК, транспортные РНК, множество белковых факторов в рибосоме занимают определённые положения, что даёт возможность эффективно протекать химическим реакциям.

При объединении субъединиц в рибосоме образуются «места|места» – сайты. Рибосома движется по мРНК и «считывает» кодон за кодоном. В один сайт поступает тРНК с присоединённой к ней аминокислотой, в другом – находится ранее прибывшая тРНК, к которой прикреплена ранее синтезированная полипептидная цепочка. В рибосоме между аминокислотой и полипептидом образуется пептидная связь. В результате полипептид оказывается на «новой» тРНК, а «старая» покидает рибосому. На её место смещается оставшаяся тРНК вместе со своим «хвостом» (полипептидом). Рибосома сдвигается по мРНК вперёд на один триплет, и к нему присоединяется комплементарная тРНК и т. д.

По одной цепи мРНК могут двигаться друг за другом|другом несколько рибосом, образуя полисому.

Видео по теме : Строение функция рибосома

Строение функция рибосома

Строение функция рибосома

Каждая клетка любого организма имеет сложную структуру, включающую в себя множество компонентов.

Вкратце о строении клетки

Она состоит из мембраны, цитоплазмы, органоидов, которые в них расположены, а также ядра|ядра (кроме прокариотов), в котором находятся молекулы ДНК. Кроме того, над мембраной имеется дополнительная защитная структура. В животных клетках это гликокаликс, во всех остальных — клеточная стенка. У растений она состоит из целлюлозы, у грибов — из хитина, у бактерий — из муреина. Мембрана состоит из трёх слоёв: двух фосфолипидных и белкового между ними. В ней есть поры|поры, благодаря которым осуществляется перенос веществ внутрь и наружу. Возле каждой поры|поры расположены специальные транспортные белки|белки, которые пропускают в клетку только определённые вещества. Органоидами животной клетки являются:

  • митохондрии, которые выполняют роль своеобразных «электростанций» (в них происходит процесс клеточного дыхания и синтез энергии);
  • лизосомы, которые содержат специальные ферменты для осуществления обмена веществ;
  • комплекс Гольджи, предназначенный для хранения и видоизменения некоторых веществ;
  • эндоплазматический ретикулум, который нужен для транспорта химических соединений;
  • центросома, состоящая из двух центриолей, которые участвуют в процессе деления;
  • ядрышко, которое регулирует обменные процессы и создаёт некоторые органоиды;
  • рибосомы, о которых мы детально поговорим в этой статье;
  • растительные клетки имеют дополнительные органоиды: вакуоль, которая нужна для накопления ненужных веществ в связи с невозможностью вывода их наружу из-за прочной клеточной стенки; пластиды, которые подразделяются на лейкопласты (отвечают за запасание питательных химических соединений); хромопласты, содержащие красочные пигменты; хлоропласты, в которых находится хлорофилл и где происходит процесс фотосинтеза.
  • Рибосома — это что?

    Раз уж мы говорим о ней в данной статье, то вполне логично задать такой вопрос. Рибосома — это органоид, который может быть расположен на внешней стороне стенок комплекса Гольджи. Нужно уточнить ещё, что рибосома — это органоид, который содержится в клетке в очень больших|больших количествах. В одной может находиться до десяти тысяч.

    Где находятся данные органоиды?

    Итак, как уже говорилось, рибосома — это структура, которая находится на стенках комплекса Гольджи. Также она может свободно передвигаться|передвигаться по цитоплазме. Третий вариант, где может располагаться рибосома — мембрана клетки. И те органоиды, которые находятся в этом месте, практически не покидают его и являются стационарными.

    Рибосома — строение

    Как же выглядит данная органелла? Она похожа на телефон с трубкой. Рибосома эукариот и прокариот состоит из двух частей, одна из которых больше, другая — меньше. Но эти две её составляющие не соединяются вместе, когда она находится в спокойном состоянии. Это происходит только тогда, когда рибосома клетки непосредственно начинает выполнять свои функции. О функциях мы поговорим позже. Рибосома, строение которой описывается в статье, также имеет в своём составе информационную РНК и транспортную РНК. Данные вещества необходимы для того, чтобы записывать на них информацию о нужных клетке белках|белках. Рибосома, строение которой мы рассматриваем, не имеет собственной мембраны. Её субъединицы (так называются две её половины) ничем не защищены.

    Какие функции выполняет в клетке данный органоид?

    То, за что отвечает рибосома, — синтез белка|белка. Он происходит на основе информации, которая записана на так называемой матричной РНК (рибонуклеиновой кислоте). Рибосома, строение которой мы рассмотрели выше, объединяет свои две субъединицы только на время синтеза белка|белка — процесса под названием трансляция. Во время данной процедуры синтезируемая полипептидная цепь находится между двумя субъединицами рибосомы.

    Где они формируются?

    Рибосома — органоид, который создаётся ядрышком. Данная процедура происходит в десять этапов, на протяжении которых постепенно формируются белки|белки малой и большой субъединиц.

    Каким образом происходит формирование белков?

    Биосинтез белков происходит в несколько этапов. Первый из них — это активация аминокислот. Всего их существует двадцать, при комбинировании их разными методами можно получить миллиарды различных белков. На протяжении данного этапа из аминокислот формируется аминоалиц-т-РНК. Данная процедура невозможна без участия АТФ (аденозинтрифосфорной кислоты|кислоты). Также для осуществления этого процесса необходимы катионы магния. Второй этап — это инициация полипептидной цепи, или процесс объединения двух субъединиц рибосомы и поставка к ней необходимых аминокислот. В данном процессе также принимают участие ионы магния и ГТФ (гуанозинтрифосфат). Третий этап называется элонгацией. Это непосредственно синтез полипептидной цепи. Происходит методом трансляции. Терминация — следующий этап — это процесс распада рибосомы на отдельные субъединицы и постепенное прекращение синтеза полипептидной цепочки. Далее идёт последний этап — пятый — это процессинг. На этой стадии из простой цепи аминокислот формируются сложные структуры, которые уже и представляют собой готовые белки|белки. В данном процессе участвуют специфические ферменты, а также кофакторы.

    Структура белка|белка

    Так как рибосома, строение и функции которой мы разобрали в этой статье, отвечает за синтез белков, то давайте рассмотрим подробнее их структуру. Она бывает первичной, вторичной, третичной и четвертичной. Первичная структура белка|белка — это определённая последовательность, в которой располагаются аминокислоты|аминокислоты, формирующие данное органическое соединение. Вторичная структура белка|белка представляет собой сформированные из полипептидных цепочек альфа-спирали и бета-складки. Третичная структура белка|белка предусматривает определённую комбинацию альфа-спиралей и бета-складок. Четвертичная же структура заключается в формировании единого макромолекулярного образования. То есть комбинации альфа-спиралей и бета-структур формируют глобулы либо фибриллы. По этому принципу можно выделить два типа белков — фибриллярные и глобулярные. К первым относятся такие, как актин и миозин, из которых сформированы мышцы. Примерами вторых могут служить гемоглобин, иммуноглобулин и другие. Фибриллярные белки|белки напоминают собой нить, волокно. Глобулярные больше похожи на клубок сплетённых между собой альфа-спиралей и бета-складок.

    Что такое денатурация?

    Каждый наверняка слышал это слово. Денатурация — это процесс разрушения структуры белка|белка — сначала четвертичной, затем третичной, а после — и вторичной. В некоторых случаях происходит и ликвидация первичной структуры белка|белка. Данный процесс может происходить вследствие воздействия на данное органическое вещество высокой температуры. Так, денатурацию белка|белка можно наблюдать при варке куриных яиц. В большинстве случаев этот процесс необратим. Так, при температуре выше сорока|сорока двух градусов начинается денатурация гемоглобина, поэтому сильная гипертермия опасна для жизни. Денатурацию белков до отдельных нуклеиновых кислот можно наблюдать в процессе пищеварения, когда с помощью ферментов организм расщепляет сложные органические соединения на более простые.

    Вывод

    Роль рибосом очень сложно переоценить. Именно они являются основой существования клетки. Благодаря данным органоидам она может создавать белки|белки, которые ей необходимы для самых разнообразных функций. Органические соединения, формирующиеся рибосомами, могут играть защитную роль, транспортную, роль катализатора, строительного материала для клетки, ферментативную, регуляторную (многие гормоны имеют белковую структуру). Поэтому можно сделать вывод, что рибосомы выполняют одну из самых важных функций в клетке. Поэтому их и так много — клетке всегда нужны продукты, синтезируемые данными органоидами.

Читайте также:  Какие витамины группы в содержатся в дрожжах

Источник