В каких клетках содержится больше атф
Аденозинтрифосфат | |
---|---|
Сокращения | АТФ (англ. ATP) |
Хим. формула | C10H16N5O13P3 |
Молярная масса | 507,18 г/моль |
Температура | |
• разложения | 144 °C[1] |
Растворимость | |
• в воде | растворимость в воде (20 °C) – 5 г/100 мл |
Рег. номер CAS | 56-65-5 |
PubChem | 5957 |
Рег. номер EINECS | 200-283-2 |
SMILES | Nc1ncnc2c1ncn2C3OC(OP(=O)(O)OP(=O)(O)OP(=O)(O)O)C(O)C3O |
InChI | InChI=1S/C10H16N5O13P3/c11-8-5-9(13-2-12-8)15(3-14-5)10-7(17)6(16)4(26-10)1-25-30(21,22)28-31(23,24)27-29(18,19)20/h2-4,6-7,10,16-17H,1H2,(H,21,22)(H,23,24)(H2,11,12,13)(H2,18,19,20)/t4-,6-,7-,10-/m1/s1 ZKHQWZAMYRWXGA-KQYNXXCUSA-N |
ChEBI | 15422 |
ChemSpider | 5742 |
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное. | |
Медиафайлы на Викискладе |
3D-молекула аденозинтрифосфорной кислоты (GIF)
Аденозинтрифосфа́т или Аденозинтрифосфорная кислота (сокр. АТФ, англ. АТР) — нуклеозидтрифосфат, имеющий большое значение в обмене энергии и веществ в организмах. АТФ — универсальный источник энергии для всех биохимических процессов, протекающих в живых системах, в частности для образования ферментов. Открытие вещества произошло в 1929 году группой учёных Гарвардской медицинской школы — Карлом Ломаном, Сайрусом Фиске и Йеллапрагадой Суббарао[2], а в 1941 году Фриц Липман показал, что АТФ является основным переносчиком энергии в клетке[3].
Химические свойства[править | править код]
Структура аденозинтрифосфорной кислоты
Систематическое наименование АТФ:
9-β-D-рибофуранозиладенин-5′-трифосфат, или
9-β-D-рибофуранозил-6-амино-пурин-5′-трифосфат.
Химически АТФ представляет собой трифосфорный эфир аденозина, который является производным аденина и рибозы.
Пуриновое азотистое основание — аденин — соединяется β-N-гликозидной связью с 1′-углеродом рибозы. К 5′-углероду рибозы последовательно присоединяются три молекулы фосфорной кислоты, обозначаемые соответственно буквами: α, β и γ.
АТФ относится к так называемым макроэргическим соединениям, то есть к химическим соединениям, содержащим связи, при гидролизе которых происходит освобождение значительного количества энергии. Гидролиз макроэргических связей молекулы АТФ, сопровождаемый отщеплением 1 или 2 остатков фосфорной кислоты, приводит к выделению, по различным данным, от 40 до 60 кДж/моль.
АТФ + H2O → АДФ + H3PO4 + энергия
АТФ + H2O → АМФ + H4P2O7 + энергия
Высвобождённая энергия используется в разнообразных процессах, протекающих с затратой энергии.
Роль в организме[править | править код]
Главная роль АТФ в организме связана с обеспечением энергией многочисленных биохимических реакций. Являясь носителем двух высокоэнергетических связей, АТФ служит непосредственным источником энергии для множества энергозатратных биохимических и физиологических процессов. Всё это реакции синтеза сложных веществ в организме: осуществление активного переноса молекул через биологические мембраны, в том числе и для создания трансмембранного электрического потенциала; осуществления мышечного сокращения.
Помимо энергетической, АТФ выполняет в организме ещё ряд других не менее важных функций:
- Вместе с другими нуклеозидтрифосфатами АТФ является исходным продуктом при синтезе нуклеиновых кислот.
- Кроме того, АТФ отводится важное место в регуляции множества биохимических процессов. Являясь аллостерическим эффектором ряда ферментов, АТФ, присоединяясь к их регуляторным центрам, усиливает или подавляет их активность.
- АТФ является также непосредственным предшественником синтеза циклического аденозинмонофосфата — вторичного посредника передачи в клетку гормонального сигнала.
- Также известна роль АТФ в качестве медиатора в синапсах и сигнального вещества в других межклеточных взаимодействиях (пуринергическая передача сигнала).
Пути синтеза[править | править код]
В организме АТФ синтезируется путём фосфорилирования АДФ:
АДФ + H3PO4 + энергия → АТФ + H2O.
Фосфорилирование АДФ возможно тремя способами:
- субстратное фосфорилирование,
- окислительное фосфорилирование,
- фотофосфорилирование в процессе фотосинтеза у растений.
В первых двух способах используется энергия окисляющихся веществ. Основная масса АТФ образуется на мембранах митохондрий в ходе окислительного фосфорилирования H-зависимой АТФ-синтазой. Субстратное фосфорилирование АДФ не требует участия мембранных ферментов, оно происходит в цитоплазме в процессе гликолиза или путём переноса фосфатной группы с других макроэргических соединений.
Реакции фосфорилирования АДФ и последующего использования АТФ в качестве источника энергии образуют циклический процесс, составляющий суть энергетического обмена.
В организме АТФ является одним из самых часто обновляемых веществ; так, у человека продолжительность жизни одной молекулы АТФ менее 1 мин. В течение суток одна молекула АТФ проходит в среднем 2000—3000 циклов ресинтеза (человеческий организм синтезирует около 40 кг АТФ в день, но содержит в каждый конкретный момент примерно 250 г), то есть запаса АТФ в организме практически не создаётся, и для нормальной жизнедеятельности необходимо постоянно синтезировать новые молекулы АТФ.
См. также[править | править код]
- Фосфорилирование
- Гликолиз
- Цикл Кребса
Примечания[править | править код]
Литература[править | править код]
- Voet D, Voet JG. Biochemistry Vol 1 3rd ed (неопр.). — Wiley: Hoboken, NJ., 2004. — ISBN 978-0-471-19350-0.
- Lodish, H, Berk A, Matsudaira P, Kaiser CA, Krieger M, Scott MP, Zipursky SL, Darnell J. Molecular Cell Biology, 5th ed (неопр.). — New York: WH Freeman, 2004. — ISBN 9780716743668.
Источник
Сегодня внедряемся в научные изыскания . Статья будет сложной для прочтения . Я максимально упрощала материал , но проще – некуда. На написание меня как всегда “вдохновила” всеобщая
бесконечная жалоба
– “слабость , ничего не помогает, ваших капельниц, таблеток хватило на 2 недели ….”. Сегодня рассмотрим самый сложный случай дефицита Энергии –дисфункция Митохондрий.Это еще малоизученная и сложная часть медицинской науки. Дисфункция митохонодрий может быть врожденная и в нашем ( рассматриваемом случае ) – приобретенная.
Энергия в нашем организме представлена в следующем виде – молекула АТФ.
АТФ- аденозинтрифосфат, является основным источником энергии для клеток в частности и организма в целом. Представляет собой – эфир аденозина (пурин). Кроме того, является источником синтеза нуклеиновых кислот , для образования структуры ДНК!(наш генетический код)и
посредником передачи в клетку гормонально сигнала
! Вывод : нехватка АТФ- чревата извращение/недостатоком гормонального ответа и не только . АТФ образуется в
митохондриях
(это маленькие стуктурные компоненты любой клетки, митохондрия имеет собственную ДНК!, как и ядро клетки!!,это высокоорганизованная структура ).Вот почему заболевания с нарушением синтеза АТФ – называются митохондриальные дисфункции.
В сутки в организме образуется 40кг АТФ. Органы с максимальной выработкой АТФ : мозг 22%,печень 22%,мышцы 22 %, сердце 9%,жировая ткань всего- 4%, заметьте -ЩЖ с в этот перечень даже не вошла …Мозг и печень лидеры !
Теперь о самом процессе образования энергии. Смотрим на картинку.
Процесс образования энергии можно разделить на 3 этапа.
1 этап – это получение более простых молекул( в цикл образования энергии) из углеводов(У), жиров(Ж) и белков пищи(Б). Углеводы расщепляются до моносахаров(глюкоза,фруктоза), жиры до жирных кислот, белки до аминокислот. “Расщепление” Б,Ж,У происходит как к кислородной среде(аэробной), так и в бескислородной(анаэробной) среде. Это крайне важно ! Так как
из анаэроного гликолиза 1 молекулы глюкозы
образуется –
2 молекулы АТФ
,
из аэробного (кислородного) гликолиза
1 молекулы глюкозы –
образуются 36 молекул АТФ, из аэробного окисления 1 молекулы жирной кислоты – 146 молекул АТФ
, ( жиры и белки в бескислородной среде вообще не расщепляются!, вывод- например, при нелеченной анемии(дефицитО2) снижение веса почти невозможно). Так, и усвоение 1 молекулы глюкозы требует 6 молекул О2, а 1 молекулы жирных кислот -23 молекулы О2. Вывод –
жиры основной источник энергии, и всем нужен О2!!!
2 этапом -образуется из всех молекул У,Ж,Б- АцетилКоА- промежуточный метаболит.Суть этого этапа , что кол-во выработанного АцетилКоА зависит от
уровня многих витаминов и микроэлементов
(витамина С , группы В, цинка, меди , железа и др).Почему так важно для образования энергии -восполнение дефицита этих элементов!
3 этап– этот самый АцетилКоА поступает в
2 основных биохимических пути выработки АТФ
– это цикл Кребса( лимонной кислоты) и цикл окислительного фосфорилирования ( передачи электронов,”дыхательная цепь”;), происходит образование НАД- и НАДН+. Связь между этими двумя б/х циклами – и “есть узкое горлышко” , “слабое место” в образовании АТФ. И зависит от рН среды клетки – при развитии в/клеточной гипоксии = в/клеточного ацидоза и ухудшается процесс образования АТФ – организм захлебывается в избытке НАДН , а НАДН сопряжен с “утечкой кислорода из клетки”( механизм не буду расшифровывать) и образованием активных(агрессивных) форм кислорода ( свободных радикалов)- а это повреждающие агенты для клетки при образовании в избыточном количестве .
Метаболический ацидоз – это следствие первичного дефицита О2 в организме (сам ацидоз становится причиной вторичного дефицита О2-утечки кислорода) .Ацидоз выражается накоплением промежуточного продукта обмена -лактата , избытоком Н+(иона водорода) , митохондрии
“начинают задыхаться и стареть и гибнуть “!
А в месте со старением митохондрий – стареет организм, вот почему так молодеют некоторые заболевания – раньше развиваются атеросклероз, б-нь Альцгеймера, сахарный диабет ( да-да , это митохондриальное заболевание), рак , артериальная гипертензия, АИТ, синдром хр усталости, даже НЯК и болезнь Крона( как одна из теорий) и др.
Как цикл лимонной кислоты (цикл Кребса) , например, связан с ожирением ?- активное поступления с пищей жирных кислот- приводят к истощению транспортных карнитиновых (всем известен для сравнения Карнитин для спорт -питания) систем( переносчиков жирных кислот, их и так немного) и снижения активности работы “дыхательной цепи” , снижается чувствительность тканей к инсулину- развивается многим известная инсулинорезистентость! Исход –метаболическая печалька -метаболический синдром.
Соотвественно : причинами снижения синтеза АТФ
прежде всего
являются дефицит О2 !(как бывает в больших городах, где мало зелени!!, загазованность – продукт сгорания бензина это не О2-а СО2 !!!!, люди не выходят из помещений, мало двигаются – “мелкие сосуды закрыты для доступа О2”, причинами могут быть болезни органов дыхания и сердечно-сосудистые патологии), ацидоз = “закисление организма” (накопление лактата, изыток Н+), полидефицит витаминов и микроэлементов для улучшения усвоения Ж,Б,У. Для лечение дефицита О2 даже был придуман аппарат- в основе которого интервальная гипоксическая тренировка.Это новая эра в лечении многих патологий.
Как же заподозрить митохондриальные проблемы? Они сложны как для понятия , так и для диагностики.
ИЗ “простых анализов” , которые можно набрать любой лаборатории– снижение рН крови,О2, повышение :
лактата, СРБ ,фибриногена, холестерина, ЛПНП, триглицеридов, гомоцистеина, мочевой кислоты
, (клинически – повышение Ад, учащение ЧСС в покое, одышка в покое),
снижение
ферритина, из редких- снижение глутатиона, витаминов крови, снижение Q10, нарушение в системе антикосидантов( по крови)
.
Из более редких , но все же доступных анализов (более специфических) – органические кислоты мочи ( благодаря этому анализу можно определить примерно
на каком уровне идет нарушение и чем его скорректировать
).
Если патология так сложно выявляемая –
“как это лечить?”
,- спросите вы
Лечить можно.
Прежде всего меняем образ жизни – улучшаем доставку О2!, бросаем курить!чаще дышим в парке и не только .. Лечим и приводим в ремиссию хронические дыхательные заболевания , восполняем дефицит витаминов и минералов!,добавляем антиоксиданты, сосудистые препараты(!) очень важно улучшить коровок(слабость всегда сопровождается рассеянностью, снижением памяти и внимания, – правильно, максимальная сосудистая сеть в головном мозге!!) ,реже добавляем “энергетики”-янтарная кислота,Q10,карнитин,НАДН и др.Я не говорю здесь про врожденные митохондриальные дисфункции -это следствие генетической поломки,а мы говорим сейчас больше о приобретенных причинах. Будем ждать новых научных материалов по этой теме …
Источник
Аденозинтрифосфорная кислота — АТФ
Нуклеотиды являются структурной основой для целого ряда важных для жизнедеятельности органических веществ, например макроэргических соединений.
Универсальным источником энергии во всех клетках служит АТФ — аденозинтрифосфорная кислота, или аденозинтрифосфат.
АТФ содержится в цитоплазме, митохондриях, пластидах и ядрах клеток и является наиболее распространённым и универсальным источником энергии для большинства биохимических реакций, протекающих в клетке.
АТФ обеспечивает энергией все функции клетки: механическую работу, биосинтез веществ, деление и т. д. В среднем содержание АТФ в клетке составляет около (0,05) % её массы, но в тех клетках, где затраты АТФ велики (например, в клетках печени, поперечнополосатых мышц), её содержание может доходить до (0,5) %.
Строение АТФ
АТФ представляет собой нуклеотид, состоящий из азотистого основания — аденина, углевода рибозы и трёх остатков фосфорной кислоты, в двух из которых запасается большое количество энергии.
Связь между остатками фосфорной кислоты называют макроэргической (она обозначается символом ~), так как при её разрыве выделяется почти в (4) раза больше энергии, чем при расщеплении других химических связей.
АТФ — неустойчивая структура, и при отделении одного остатка фосфорной кислоты АТФ переходит в аденозиндифосфат (АДФ), высвобождая (40) кДж энергии.
Другие производные нуклеотидов
Особую группу производных нуклеотидов составляют переносчики водорода. Молекулярный и атомарный водород обладает большой химической активностью и выделяется или поглощается в ходе различных биохимических процессов. Одним из наиболее широко распространённых переносчиков водорода является никотинамиддинуклеотидфосфат (НАДФ).
Молекула НАДФ способна присоединять два атома или одну молекулу свободного водорода, переходя в восстановленную форму НАДФ·H2. В таком виде водород может быть использован в различных биохимических реакциях.
Нуклеотиды могут также принимать участие в регуляции окислительных процессов в клетке.
Витамины
Витамины (от лат. vita — «жизнь») — сложные биоорганические соединения, совершенно необходимые в малых количествах для нормальной жизнедеятельности живых организмов. От других органических веществ витамины отличаются тем, что не используются в качестве источника энергии или строительного материала. Некоторые витамины организмы могут синтезировать сами (например, бактерии способны синтезировать практически все витамины), другие витамины поступают в организм с пищей.
Витамины принято обозначать буквами латинского алфавита. В основу современной классификации витаминов положена их способность растворяться в воде и жирах (они делятся на две группы: водорастворимые (B1, B2, B5, B6, B12, PP, C) и жирорастворимые (A, D, E, K)).
Витамины участвуют практически во всех биохимических и физиологических процессах, составляющих в совокупности обмен веществ. Как недостаток, так и избыток витаминов может привести к серьёзным нарушениям многих физиологических функций в организме.
Источники:
Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. 9 класс // ДРОФА.
Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. Общая биология (базовый уровень) 10–11 класс // ДРОФА.
Лернер Г. И. Биология: Полный справочник для подготовки к ЕГЭ: АСТ, Астрель.
https://biouroki.ru/test/114.html
https://dic.academic.ru/dic.nsf/%20ruwiki/208102
Источник
Метаболизм, энергетический обмен, обмен веществ…вы наверняка слышали эти слова раньше!
Что же это такое?
Энергетический обмен – процесс разрушения сложных веществ до более простых с выделением АТФ, в отличие от пластического обмена, при котором происходит синтез этих сложных веществ.
К таким обменам относят брожение и дыхание. Значит, энергетический обмен постоянно происходит в нашем организме.
ПРОЦЕСС
Существует 3 этапа энергетического обмена: подготовительный, анаэробный (гликолиз) и аэробный (окислительное фосфорилирование).
Подготовительный
Этот этап происходит в лизосомах (на клеточном уровне) и в пищеварительной системе (на уровне организма). Таким образом, это питание. Вещества, которые мы получаем из пищи, а именно белки, жиры и углеводы расщепляются до мономеров – более простых веществ:
1. Белки – до аминокислот;
2. Жиры – до жирных кислот и глицерина;
3. Углеводы – до глюкозы.
Этот этап не помогает нам в получении той самой АТФ, вся она уходит на создание тепла, таким образом, АТФ не запасается в нашем организме.
Гликолиз
Протекает в цитоплазме клеток. Та глюкоза, которая образовалась в предыдущем этапе, расщепляется до 2 молекул пировиноградной кислоты (ПВК) и 2 молекул АТФ.
Аэробный
В отличие от предыдущих, данный этап свойственен не всем организмам. Ему необходимо наличие кислорода. Если же его нет, например, у бактерий и дрожжевых грибов происходит спиртовое брожение (образуется углекислый газ (а также спирт и вода – это продукты расщепления ПВК) и поднимает тесто – отличный пример брожения), а у некоторых животных и бактерий – молочнокислое брожение.
Если же кислород есть, этапу быть! Он протекает исключительно на кристах митохондрий – “энергетических станциях” клетки. ПВК окончательно расщепляется до углекислого газа и воды, образуется 36 (!!!) молекул АТФ из одной молекулы пировиноградной кислоты.
Мы рассмотрели процессы энергетического обмена.
В конечном итоге образуется именно энергия АТФ.
Почему она так нужна организмам?
АТФ – Аденозин Три-Фосфорная кислота или Аденозинтрифосфат. Ее уникальность в том, что она участвует во всех биохимических процессах организма! Она дает энергию всему, что происходит в организме, даже движению!
Открыта эта молекула была в 1929 году учёным Карлом Ломаном.
А ее роль подтверждена в 1941г. ученым Фрицем Липманом.
Вот так выглядит наша спасительная молекула:
Состав АТФ: 1. Рибоза – сахар, который также можно найти в молекуле ДНК! 2. Аденин – азотистое основание (атомы азота и углерода), которое также есть в ДНК (и даже РНК)! 3. Трифосфат – три фосфата – фосфор.
И даже в 3D!
ИНТЕРЕСНЫЕ ФАКТЫ
В отдельно взятый момент АТФ в нашем организме не более 250 грамм – этого едва хватит на 5 минут жизни, поэтому энергия должна непрерывно вырабатываться.
За день мы вырабатываем около 40кг АТФ!
Некоторые яды действуют по следующему принципу: блокируют производство АТФ в митохондриях (а именно аэробный этап – самый эффективный из этапов), что приводит к остановке синтеза энергии в организме.
ВЫВОДЫ
Мы не можем прожить без АТФ. Эта кислота лежит в основе всех процессов организма, каждому стоит знать, что это и для чего она нужна. Хорошо питайтесь и исправно дышите 🙂
Вы узнали что-то новое из этой статьи? Поделитесь в комментариях! Если вам понравилась статья – поддержите канал лайком и подпиской. До скорых встреч!
Источник