В каких клетках человека содержится больше всего воды

В каких клетках человека содержится больше всего воды thumbnail

Организмы состоят из клеток. Клетки разных организмов обладают сходным химическим составом. В таблице 1 представлены основные химические элементы, обнаруженные в клетках живых организмов.

Таблица 1. Содержание химических элементов в клетке

ЭлементКоличество, %ЭлементКоличество, %
Кислород65-75Кальций0,04-2,00
Углерод15-18Магний0,02-0,03
Водород8-10Натрий0,02-0,03
Азот1,5-3,0Железо0,01-0,015
Фосфор0,2-1,0Цинк0,0003
Калий0,15-0,4Медь0,0002
Сера0,15-0,2Иод0,0001
Хлор0,05-0,10Фтор0,0001

По содержанию в клетке можно выделить три группы элементов. В первую группу входят кислород, углерод, водород и азот. На их долю приходится почти 98% всего состава клетки. Во вторую группу входят калий, натрий, кальций, сера, фосфор, магний, железо, хлор. Их содержание в клетке составляет десятые и сотые доли процента. Элементы этих двух групп относят к макроэлементам (от греч. макрос – большой).

Остальные элементы, представ ленные в клетке сотыми и тысячными долями процента, входят в третью группу. Это микроэлементы (от греч. микро – малый).

Каких-либо элементов, присущих только живой природе, в клетке не обнаружено. Все перечисленные химические элементы входят и в состав неживой природы. Это указывает на единство живой и неживой природы.

Недостаток какого-либо элемента может привести к заболеванию, и даже гибели организма, так как каждый элемент играет определенную роль. Макроэлементы первой группы составляют основу биополимеров – белков, углеводов, нуклеиновых кислот, а также липидов, без которых жизнь невозможна. Сера входит в состав некоторых белков, фосфор – в состав нуклеиновых кислот, железо – в состав гемоглобина, а магний – в состав хлорофилла. Кальций играет важную роль в обмене веществ.

Часть химических элементов, содержащихся в клетке, входит в со став неорганических веществ – минеральных солей и воды.

Минеральные соли находятся в клетке, как правило, в виде катионов (К+, Na+, Ca2+, Mg2+) и анионов ( HPO2-/4, H2PO-/4, СI-, НСО3), соотношение которых определяет важную для жизнедеятельности клеток кислотность среды.

(У многих клеток среда слабощелочная и ее рН почти не изменяется, так как в ней постоянно поддерживается определенное соотношение катионов и анионов.)

Из неорганических веществ в живой природе огромную роль играет вода.

Без воды жизнь невозможна. Она составляет значительную массу большинства клеток. Много воды содержится в клетках мозга и эмбрионов человека: воды более 80%; в клетках жировой ткани – всего 40.% К старости содержание воды в клетках снижается. Человек, потерявший 20% воды, погибает.

Уникальные свойства воды определяют ее роль в организме. Она участвует в теплорегуляции, которая обусловлена высокой теплоемкостью воды – потреблением большого количества энергии при нагревании. Чем же определяется высокая теплоемкость воды?

В молекуле воды атом кислорода ковалентно связан с двумя атомами водорода. Молекула воды полярна, так как атом кислорода имеет частично отрицательный заряд, а каждый из двух атомов водорода имеет

частично положительный заряд. Между атомом кислорода одной молекулы воды и атомом водорода другой молекулы образуется водородная связь. Водородные связи обеспечивают соединение большого числа молекул воды. При нагревании воды значительная часть энергии расходуется на разрыв водородных связей, что и определяет ее высокую теплоемкость.

Вода – хороший растворитель. Благодаря полярности ее молекулы взаимодействуют с положительно и отрицательно заряженными ионами, способствуя тем самым растворению вещества. По отношению к воде все вещества клетки делятся на гидрофильные и гидрофобные.

Гидрофильными (от греч. гидро – вода и филео – люблю) называют вещества, которые растворяются в воде. К ним относят ионные соединения (например, соли) и некоторые неионные соединения (например, сахара).

Гидрофобными (от греч. гидро – вода и фобос – страх) называют вещества, нерастворимые в воде. К ним относят, например, липиды.

Вода играет большую роль в химических реакциях, протекающих в клетке в водных растворах. Она растворяет ненужные организму продукты обмена веществ и тем самым способствует выводу их из организма. Большое содержание воды в клетке придает ей упругость. Вода способствует перемещению различных веществ внутри клетки или из клетки в клетку.

Тела живой и неживой природы состоят из одинаковых химических элементов. В состав живых организмов входят неорганические вещества – вода и минеральные соли. Жизненно важные многочисленные функции воды в клетке обусловлены особенностями ее молекул: их полярностью, способностью образовывать водородные связи.

НЕОРГАНИЧЕСКИЕ КОМПОНЕНТЫ КЛЕТКИ

В клетках живых организмов встречается около 90 элементов, причем примерно 25 из обнаружены практически во всех клетках. По содержанию в клетке химические элементы подразделяются на три большие группы: макроэлементы(99%), микроэлементы(1%), ультрамикроэлементы(менее 0,001%).

К макроэлементам относятся кислород, углерод, водород, фосфор, калий, сера, хлор, кальций, магний, натрий, железо.
К микроэлеметам относятся марганец, медь, цинк, йод, фтор.
К ультрамикроэлементам относятся серебро, золото, бром, селен.

ЭЛЕМЕНТЫСОДЕРЖАНИЕ В ОРГАНИЗМЕ (%)БИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ
Макроэлементы:
O.C.H.N62-3Входят в состав всех органических веществ клетки, воды
Фосфор Р1,0Входят в состав нуклеиновых кислот, АТФ (образует макроэргические связи), ферментов, костной ткани и эмали зубов
Кальций Са+22,5У растений входит в состав оболочки клетки, у животных – в состав костей и зубов, активизирует свертываемость крови
Микроэлементы:1-0,01
Сера S0,25Входит в состав белков, витаминов и ферментов
Калий К+0,25Обуславливает проведение нервных импульсов; активатор ферментов белкового синтеза, процессов фотосинтеза, роста растений
Хлор CI-0,2Является компонентом желудочного сока в виде соляной кислоты, активизирует ферменты
Натрий Na+0,1Обеспечивает проведение нервных импульсов, поддерживает осмотическое давление в клетке, стимулирует синтез гормонов
Магний Мg+20,07Входит в состав молекулы хлорофилла, содержится в костях и зубах, активизирует синтез ДНК, энергетический обмен
Йод I-0,1Входит в состав гормона щитовидной железы – тироксина, влияет на обмен веществ
Железо Fе+30,01Входит в состав гемоглобина, миоглобина, хрусталика и роговицы глаза, активатор ферментов, участвует в синтезе хлорофилла. Обеспечивает транспорт кислорода к тканям и органам
Ультрамикроэлементы:менее 0,01, следовые количества
Медь Си+2Участвует в процессах кроветворения, фотосинтеза, катализирует внутриклеточные окислительные процессы
Марганец МnПовышает урожайность растений, активизирует процесс фотосинтеза, влияет на процессы кроветворения
Бор ВВлияет на ростовые процессы растений
Фтор FВходит в состав эмали зубов, при недостатке развивается кариес, при избытке – флюороз
Вещества :
Н2060-98Составляет внутреннюю среду организма, участвует в процессах гидролиза, структурирует клетку. Универсальный растворитель, катализатор, участник химических реакций
Читайте также:  В каких фруктах овощах продуктах содержится витамин с

ОРГАНИЧЕСКИЕ КОМПОНЕНТЫ КЛЕТКИ

ВЕЩЕСТВАСТРОЕНИЕ И СВОЙСТВАФУНКЦИИ
Липиды
Сложные эфиры высших жирных кислот и глицерина. В состав фосфолипидов входит дополнительно остаток Н3РО4.Обладают гидрофобными или гидрофильно-гидрофобными свойствами, высокой энергоемкостью Строительная – образует билипидный слой всех мембранных.
Энергетическая.
Терморегуляторная.
Защитная.
Гормональная (кортикостероиды, половые гормоны).
Компоненты витаминов D,E. Источник воды в организме.Запасное питательное вещество
Углеводы
Моносахариды:
глюкоза,
фруктоза,
рибоза,
дезоксирибоза
Хорошо растворимы в водеЭнергетическая
Дисахариды:
сахароза,
мальтоза (солодовый сахар)
Растворимы в водеКомпоненты ДНК, РНК, АТФ
Полисахариды:
крахмал,
гликоген,
целлюлоза
Плохо растворимы или нерастворимы в водеЗапасное питательное вещество. Строительная – оболочка растительной клетки
БелкиПолимеры. Мономеры – 20 аминокислот.Ферменты – биокатализаторы.
I структура – последовательность аминокислот в полипептидной цепи. Связь – пептидная – СО- NH-Строительная – входят в состав мембранных структур, рибосом.
II структура – a -спираль, связь – водороднаяДвигательная (сократительные белки мышц).
III структура – пространственная конфигурация  a -спирали (глобула). Связи – ионные, ковалентные, гидрофобные, водородныеТранспортная (гемоглобин). Защитная (антитела).Регуляторная (гормоны, инсулин)
IV структура характерна не для всех белков. Соединение нескольких полипептидных цепей в единую суперструктуруВ воде плохо растворимы. Действие высоких температур, концентрированных кислот и щелочей, солей тяжелых металлов вызывает денатурацию
Нуклеиновые кислоты:Биополимеры. Состоят из нуклеотидов
ДНК – дезокси-рибонуклеино-вая кислота.Состав нуклеотида: дезоксирибоза, азотистые основания – аденин, гуанин, цитозин, тимин, остаток Н3РО4. Комплементарность азотистых оснований А = Т, Г = Ц. Двойная спираль. Способна к самоудвоениюОбразуют хромосомы. Хранение и передача наследственной информации, генетического кода. Биосинтез РНК, белков. Кодирует первичную структуру белка. Содержится в ядре, митохондриях, пластидах
РНК – рибонуклеиновая кислота.Состав нуклеотида: рибоза, азотистые основания – аденин, гуанин, цитозин, урацил, остаток Н3РО4 Комплементарность азотистых оснований А = У, Г = Ц. Одна цепь
Информационная РНКПередача информации о первичной структуре белка, участвует в биосинтезе белка
Рибосомальная РНКСтроит тело рибосомы
Транспортная РНККодирует и переносит аминокислоты к месту синтеза белка – рибосомам
Вирусная РНК и ДНКГенетический аппарат вирусов

Ферменты.

Важнейшая функция белков – каталитическая. Белковые молекулы, увеличивающие на несколько порядков скорость химических реакции в клетке, называют ферментами. Ни один биохимический процесс в организме не происходит без участия ферментов.

В настоящее время обнаружено свыше 2000 ферментов. Их эффективность во много раз выше, чем эффективность неорганических катализаторов, используемых в производстве. Так, 1 мг железа в составе фермента каталазы заменяет 10 т неорганического железа. Каталаза увеличивает скорость разложения пероксида водорода (Н2О2) в 1011 раз. Фермент, катализирующий реакцию образования угольной кислоты (СО2+Н2О = Н2СО3), ускоряет реакцию в 107 раз.
Важным свойством ферментов является специфичность их действия, каждый фермент катализирует только одну или небольшую группу сходных реакций.

Вещество, на которое воздействует фермент, называют субстратом. Структуры молекулы фермента и субстрата должны точно соответствовать друг другу. Этим объясняется специфичность действия ферментов. При соединении субстрата с ферментом пространственная структура фермента изменяется.

Последовательность взаимодействия фермента и субстрата можно изобразить схематично:

Субстрат+Фермент – Фермент-субстратный комплекс – Фермент+Продукт.

Из схемы видно, что субстрат соединяется с ферментом с образованием фермент-субстратного комплекса. При этом субстрат превращается в новое вещество – продукт. На конечном этапе фермент освобождается от продукта и вновь вступает во взаимодействие с очередной молекулой субстрата.

Ферменты функционируют лишь при определенной температуре, концентрации веществ, кислотности среды. Изменение условий приводит к изменению третичной и четвертичной структуры белковой молекулы, а, следовательно, и к подавлению активности фермента. Как это происходит? Каталитической активностью обладает лишь определенный участок молекулы фермента, называемый активным центром. Активный центр содержит от 3 до 12 аминокислотных остатков и формируется в результате изгиба полипептидной цепи.

Под влиянием разных факторов изменяется структура молекулы фермента. При этом нарушается пространственная конфигурация активного центра, и фермент теряет свою активность.

Ферменты – это белки, играющие роль биологических катализаторов. Благодаря ферментам на несколько порядков возрастает скорость химических реакций в клетках. Важное свойство ферментов – специфичность действия в определенных условиях.

Нуклеиновые кислоты.

Нуклеиновые кислоты были от крыты во второй половине XIX в. швейцарским биохимиком Ф. Мишером, который выделил из ядер клеток вещество с высоким содержанием азота и фосфора и назвал его “нуклеином” (от лат. нуклеус – ядро).

В нуклеиновых кислотах хранится наследственная информация о строении и функционировании каждой клетки и всех живых существ на Земле. Существует два типа нуклеиновых кислот – ДНК (дезоксирибонуклеиновая кислота) и РНК (рибонуклеиновая кислота). Нуклеиновые кислоты, как и белки, обладают видовой специфичностью, то есть организмам каждого вида присущ свой тип ДНК. Чтобы выяснить причины видовой специфичности, рассмотрим строение нуклеиновых кислот.

Молекулы нуклеиновых кислот представляют собой очень длинные цепи, состоящие из многих сотен и даже миллионов нуклеотидов. Любая нуклеиновая кислота содержит всего четыре типа нуклеотидов. Функции молекул нуклеиновых кислот зависят от их строения, входящих в их состав нуклеотидов, их числа в цепи и последовательности соединения в молекуле.

Каждый нуклеотид состоит из трех компонентов: азотистого основания, углевода и фосфорной кислоты. В состав каждого нуклеотида ДНК входит один из четырех типов азотистых оснований (аденин – А, тимин – Т, гуанин – Г или цитозин – Ц), а также угле вод дезоксирибоза и остаток фосфорной кислоты.

Таким образом, нуклеотиды ДНК различаются лишь типом азотистого основания.

Молекула ДНК состоит из огромного множества нуклеотидов, соединенных в цепочку в определенной последовательности. Каждый вид молекулы ДНК имеет свойственное ей число и последовательность нуклеотидов.

Молекулы ДНК очень длинные. Например, для буквенной записи последовательности нуклеотидов в молекулах ДНК из одной клетки человека (46 хромосом) потребовалась бы книга объемом около 820000 страниц. Чередование четырех типов нуклеотидов может образовать бесконечное множество вариантов молекул ДНК. Указанные особенности строения молекул ДНК позволяют им хранить огромный объем информации обо всех признаках организмов.

В 1953 г. американским биологом Дж. Уотсоном и английским физиком Ф. Криком была создана модель строения молекулы ДНК. Ученые установили, что каждая молекула ДНК состоит из двух цепей, связанных между собой и спирально закрученных. Она имеет вид двойной спирали. В каждой цепи четыре типа нуклеотидов чередуются в определенной последовательности.

Нуклеотидный состав ДНК различается у разных видов бактерий, грибов, растений, животных. Но он не меняется с возрастом, мало зависит от изменений окружающей среды. Нуклеотиды парные, то есть число адениновых нуклеотидов в любой молекуле ДНК равно числу тимидиновых нуклеотидов (А-Т), а число цитозиновых нуклеотидов равно числу гуаниновых нуклеотидов (Ц-Г). Это связано с тем, что соединение двух цепей между собой в молекуле ДНК подчиняется определенному правилу, а именно: аденин одной цепи всегда связан двумя водородными связями только с Тимином другой цепи, а гуанин – тремя водородными связями с цитозином, то есть нуклеотидные цепи одной молекулы ДНК комплементарны, дополняют друг друга.

Читайте также:  Какие витамины содержатся в моркови для роста

ДНК содержат все бактерии, подавляющее большинство вирусов. Она обнаружена в ядрах клеток животных, грибов и растений, а также в митохондриях и хлоропластах. В ядре каждой клетки человеческого организма содержится 6,6 х 10-12 г ДНК, а в ядре половых клеток – в два раза меньше – 3,3 х 10-12 г.

Молекулы нуклеиновых кислот – ДНК и РНК состоят из нуклеотидов. В состав нуклеотидов ДНК входит азотистое основание (А, Т, Г, Ц), углевод дезоксирибоза и остаток молекулы фосфорной кислоты. Молекула ДНК представляет собой двойную спираль, состоящую из двух цепей, соединенных водородными связями по принципу комплементарности. Функция ДНК – хранение наследственной информации.

АТФ.

В клетках всех организмов имеются молекулы АТФ – аденозинтрифосфорной кислоты. АТФ – универсальное вещество клетки, молекула которого имеет богатые энергией связи. Молекула АТФ – это один своеобразный нуклеотид, который, как и другие нуклеотиды, состоит из трех компонентов: азотистого основания – аденина, углевода – рибозы, но вместо одного содержит три остатка молекул фосфорной кислоты (рис. 12). Связи, обозначенные на рисунке значком, – богаты энергией и называются макроэргическими. Каждая молекула АТФ содержит две макроэргические связи.

При разрыве макроэргической связи и отщеплении с помощью ферментов одной молекулы фосфорной кислоты освобождается 40 кДж/моль энергии, а АТФ при этом превращается в АДФ – аденозиндифосфорную кислоту. При отщеплении еще одной молекулы фосфорной кислоты освобождается еще 40 кДж/моль; образуется АМФ – аденозинмонофосфорная кислота. Эти реакции обратимы, то есть АМФ может пре вращаться в АДФ, АДФ – в АТФ.

Молекулы АТФ не только расщепляются, но и синтезируются, по этому их содержание в клетке относительно постоянно. Значение АТФ в жизни клетки огромно. Эти молекулы играют ведущую роль в энергетическом обмене, необходимом для обеспечения жизнедеятельности клетки и организма в целом.

Рис. 12. Схема строения АТФ.

аденин –

Молекула РНК, как правило, одиночная цепь, состоящая из четырех типов нуклеотидов – А, У, Г, Ц. Известны три основных вида РНК: иРНК, рРНК, тРНК. Содержание молекул РНК в клетке непостоянно, они участвуют в биосинтезе белка. АТФ – универсальное энергетическое вещество клетки, в котором имеются богатые энергией связи. АТФ играет центральную роль в обмене энергии в клетке. РНК и АТФ содержатся как в ядре, так и в цитоплазме клетки.

Источник

Зачем нужна вода в клетке

Вода жизненно необходима живым организмам и растениям. На ее долю приходится большая часть содержимого всех тканей. Строение молекул воды и их свойства помогают поддерживать жизнедеятельность клеток, регулировать обменные процессы, доставлять питательные вещества и выводить отработанные. Форма и упругость клеток поддерживается благодаря свойствам молекул воды.  

Доминирующую роль в наполнении содержимого клетки играет вода, на долю которой приходится 80% массы клеточного вещества. Выступая в качестве компонента клетки, вода одновременно является средой обитания для микроорганизмов.

В каких клетках человека содержится больше всего воды

Благодаря физическим свойствам воды, клетка может сохранять форму, обладая упругостью. Сохранение тепла тоже происходит благодаря свойствам водного раствора. Химические реакции, протекающие внутри клетки, возможны благодаря водной составляющей. В жидкости растворяются полезные вещества и с нею же выводятся через мембрану отработанные. Интенсивность протекания обменных процессов напрямую зависит от количественного содержания воды. Установлено, что свойства воды при температуре близкой к нулю, помогают выжить многим микроорганизмам. Кроме того, вода используется организмом в качестве смазочного материала, например, в системе пищеварения.

Все эти особенности воды обусловлены ее молекулярным строением и способностью молекул создавать водородные связи. Вода вступает во взаимодействие с полярными молекулами многих веществ, растворяя их. К таким веществам относятся сахара, соли, аминокислоты, некоторые кислоты, спирты. Называются они гидрофильными, то есть обладают способностью вступать во взаимодействие с водой, образуя прочные связи.

Гидрофобные, которые не создают соединений с молекулами воды, растекаясь по поверхности, образуют тонкий слой. В нем формируется уникальная среда, в которой происходят химические реакции. К веществам, нерастворимым в воде, принадлежат жиры, отдельные белки, нуклеиновые кислоты.

Способность поддерживать теплообмен напрямую зависит от физического свойства воды – она обладает высокой удельной теплоемкостью и теплопроводностью. Поглощение тепла происходит быстро, при этом процесс нагревания протекает медленно. Чтобы началось испарение, требуется затратить много энергии. Чтобы начался процесс охлаждения, достаточно разорвать водородные связи.

Сколько воды содержится в клетке

Имея много общего, все живые организмы отличаются друг от друга. При этом и содержание воды у разных представителей флоры и фауны отличается. Разница зависит и от географической привязки, климатических особенностей, возраста и вида растения или животного. Даже принадлежность к одному виду, обитающему в разных условиях, не гарантирует одинаковое процентное соотношение жидкости в клетках.

Наличие воды в листьях, стебле и корнях одного растения тоже сильно отличается. Так, если в листьях содержится более 90% водного раствора, то на долю семян приходится чуть больше 10%. В некоторых случаях содержание жидкости не превышает 6%, но при этом жизненные процессы не прекращаются, а приостанавливаются на время. Наступление благоприятных климатических условий запускают процесс накопления воды.

Люди тоже подвержены зависимости от многих факторов. Возраст, образ жизни, состояние здоровья человека и местность проживания с климатическими особенностями определяют процентное содержание жидкости в тканях. Установлено, что больше всего воды находится в лимфе и крови, а меньше всего в клетках костной ткани зубов.

Вода в растениях находится в живых клетках, мертвых элементах, в межклетниках. Самое большое количество воды приходится на межклетники листьев, где она сохраняется в парообразном состоянии. В виде жидкости – в разных частях клеток, занимая более 95% составляющего. Содержание воды в оболочке не превышает 50%.

В различных частях растительной или животной клетки вода может создавать разные формы.

В каких клетках больше всего воды

В разных клетках животных или растительных разный процент содержания воды. Самое большое количество находится в жидких тканях – крови и лимфе. Недостаточное содержание воды в клетках лимфы и крови приводит к загустению, ломкости сосудов. Густая кровь неизбежно приводит к возникновению тромбов и местных кровоизлияний.

Читайте также:  Какое количество вещества содержится в 1 грамме воды

Самое большое содержание воды в клетках эмбриона, достигает 98%. Мозг человека содержит чуть меньше – 80%, а в жировых тканях всего 40%. Установлено, что 70% воды находится внутри клеток.

Старение организма ведет к потере жидкости, происходит постепенное обезвоживание. Если процесс происходит слишком быстро, то это может вызвать смерть, для этого достаточно потерять 20% воды.

Роль воды в клетке

Вода в клетках выполняет важнейшие функции, принимая участие в химических реакциях, благодаря которым сохраняется жизнеспособность и работоспособность клеток. Процессы, протекающие во внутриклеточном пространстве, возможны благодаря образованию водородных связей и обратимой ионизации.

Внутри клеток вода находится в двух формах: свободной и связной. Свободная занимает межклеточное пространство, сосуды, полости органов. Ей отводится роль перевозчика веществ в клетку и обратно. Связная вода это составная частью отдельных клеточных структур, расположена между молекулами белка, мембранами, волокнами, связана с молекулами белка.

  • Воды в клеточной структуре больше всего, это необходимо для протекания химических реакций. Молекулы воды идеально подходят на роль катализатора. Гидролиз жиров и белков при переваривании еды высвобождает энергию, которая тратится на поддержание работы клеток. Электроны и протоны высвобождаются при гидролизе солей.
  • Вода реализует потребность клетки в питательных веществах, выполняя роль своеобразного транспорта. Отработанные продукты выводятся за пределы оболочки, а взамен поставляются новые вещества. Проникающая способность молекул воды позволяет им беспрепятственно перемещаться внутри клеток и в межклеточном веществе.
  • Форма клетки, ее физические параметры удерживаются благодаря воде. Вода обладает упругостью, ее сложно сжать. Молекулы воды прочно удерживают форму, поддерживают постоянное давление внутри клетки. Благодаря этой особенности все ткани четко структурированы и имеют постоянную форму.
  • Поддержание постоянной температуры внутри клетки обусловлена физическими свойствами воды. Повышенная теплоемкость выступает в качестве регулятора постоянной температуры. Дополнительная энергия, которая тратится на согрев клеток высвобождается при расщеплении жиров.

Метаболическая роль воды в клетке

Вода в клетке служит средой для нормального протекания внутренних биохимических реакций. Молекулы воды принимают участие в химических реакциях: образование или гидролиз полимеров. Фотосинтез у растений возможен благодаря тому, что вода является донором электронов и источником атомов водорода. В воде содержится свободный кислород.

Транспортная роль воды в клетке

Особая структура молекул воды позволяет ей беспрепятственно проникать через оболочку клетки в межклеточное вещество. Вместе с водой осуществляют путешествие микроорганизмы и полезные вещества, необходимые для поддержания жизнедеятельности клетки. Молекулы воды, выполняя транспортную функцию, доставляют питание. Отработанные вещества необходимо захватить и переместить наружу, чтобы освободить место для новых. Происходит постоянная циркуляция воды, обогащенной полезными веществами внутрь клетки и выведение ненужных продуктов наружу. Это постоянный процесс, который продолжается на протяжении всей жизни организма.

В каких клетках человека содержится больше всего воды

Чем больше в клетке воды, тем интенсивнее происходит процесс обмена.

У растений транспортная функция осуществляется с использованием капиллярного способа водного раствора. Питательные вещества из почвы всасываются корнями, на которых расположены мельчайшие волоски, и дальше устремляются по стеблю к листьям и цветоносам.

Функции воды в клетке

Осуществляя поддержание процессов жизнедеятельности клетки, вода является еще и благотворной средой обитания для различных микроорганизмов. Важнейшие функции воды возможны благодаря ее особенному строению, маленьким размером молекул, способным вступать в реакцию со многими веществами. Полярность молекул и их соединение водородными связями решают важнейшие задачи в организме.

Самая важная задача, которую выполняет в клетке вода – поддержание и сохранение ее жизнедеятельности. Выделяют три функции воды: транспортную, метаболическую и структурную. Нарушение одной из них ведет к сбоям функционирования клетки, ее деформации или усыханию и гибели. Неизбежным итогом является болезнь организма и преждевременная смерть.

В каких клетках человека содержится больше всего воды

Транспортная функция поддерживает жизнедеятельность клетки благодаря своей проникающей способности. Мембрана и оболочка не являются препятствием для молекул воды, которые свободно совершают перемещение внутрь клетки и наружу. Своевременная доставка свежих полезных веществ и удаление отработанных, сохраняет баланс внутри клетки и позволяет ей выполнять свои функции.

Химические процессы, происходящие внутри клеточного пространства, невозможны без молекул воды. Гидролиз и образование полимеров происходит с их участием. Вода выступает в роли главного поставщика свободного кислорода. Электроны и атомы кислорода задействованы в процессе фотосинтеза.

Сохранение клеточной структуры выполняет именно вода, благодаря своему свойству: в жидком виде она достаточно упругая. Ее содержание в клетках у кольчатых червей, выполняет роль гидростатического скелета. У растений вода определяет тургор клеток. В цитоплазме содержание воды колеблется от 60 до 95%.

К чему приводит недостаток воды в клетках


Недостаточное потребление жидкости, обезвоживание организма опасно для любого организма независимо от возраста. В результате необдуманных действий начинается интенсивное использование скрытых резервов, добывание воды из организма. В качестве такого источника выступает клетка, межклеточное пространство и кровь. В первую очередь расходуется содержимое, находящееся во внутриклеточном пространстве. Если дефицит продолжается, то задействуются остальные запасы, постоянно истощая все водные резервы. Опасность заключается в том, что на состоянии здоровья это никак не сказывается, нет внешних симптомов или болевых ощущений. Они появляются только тогда, когда все внутренние резервы уже полностью исчерпаны и клетке нанесен непоправимый ущерб.

Недостаточное количество воды в клетке сказывается на нарушение ее жизнеспособности и функционировании. Сокращение жидкости приводит, в первую очередь, к снижению транспортной функции: внутрь клетки перестают своевременно поступать питательные вещества в необходимом количестве, отработанные продукты задерживаются внутри. Происходит постепенное изменение и усыхание клетки изнутри. Теряется эластичность и способность к удерживанию постоянного внутреннего давления жидкостью.

Происходит нарушение теплообмена, в результате которого клетка утрачивает способность поддерживать оптимальную температуру. После длительного обезвоживания организм все чаще испытывает озноб или происходит повышение температуры.

Обезвоживание в стареющем организме – это естественный процесс, который наглядно показывает постепенную потерю воды в клетках. Недостаток воды отражается на сосудах – они теряют эластичность, постепенно начинают разрушаться. Изменяется лимфа, густеет кровь. Возникновение тромбов и повышенное артериальное давление – наиболее яркие проявления нехватки воды в клетках в пожилом возрасте.

Неизбежными спутниками хронического обезвоживания являются болезни, например, ожирение, аллергия, артрит, астма и другие.

Источник