В цитоплазме каких клеток содержатся митохондрии

В цитоплазме каких клеток содержатся митохондрии thumbnail

Митохондрии — это микроскопические мембранные органоиды, которые обеспечивают клетку энергией. Поэтому их называют энергетическими станциями (аккумулятором) клеток.

Митохондрии отсутствуют в клетках простейших организмов, бактерий, энтамеб, которые живут без использования кислорода. Некоторые зеленые водоросли, трипаносомы содержат одну большую митохондрию, а клетки сердечной мышцы, мозга имеют от 100 до 1000 данных органелл.

Строение и функции митохондрий

Особенности строения

Митохондрии относятся к двухмембранным органеллам, имеют внешнюю и внутреннюю оболочки, межмембранное пространство между ними и матрикс.

Внешняя мембрана. Она гладкая, не имеет складок, отграничивает внутреннее содержимое от цитоплазмы. Ширина ее равна 7нм, в составе находятся липиды и белки. Важную роль выполняет порин — белок, образующий каналы во внешней мембране. Они обеспечивают ионный и молекулярный обмен.

Межмембранное пространство. Величина межмембранного пространства около 20нм. Вещество, заполняющее его по составу сходно с цитоплазмой, за исключением крупных молекул, которые могут сюда проникнуть только путем активного транспорта.

Строение митохондрии

Внутренняя мембрана. Построена в основном из белка, только треть отводится на липидные вещества. Большое количество белков являются транспортными, так как внутренняя мембрана лишена свободно проходимых пор. Она формирует много выростов – крист, которые выглядят, как приплюснутые гребни. Окисление органических соединений до CO2 в митохондриях происходит на мембранах крист. Этот процесс кислородзависимый и осуществляется под действием АТФ-синтетазы. Высвобожденная энергия сохраняется в виде молекул АТФ и используется по мере необходимости.

Матрикс – внутренняя среда митохондрий, имеет зернистую однородную структуру. В электронном микроскопе можно увидеть гранулы и нити в клубках, которые свободно лежат между кристами. В матриксе находится полуавтономная система синтеза белка – здесь расположены ДНК, все виды РНК, рибосомы. Но все же большая часть белков поставляется с ядра, поэтому митохондрии называют полуавтономными органеллами.

Расположение в клетке и деление

Хондриом – это группа митохондрий, которые сосредоточены в одной клетке. Они по-разному располагаются в цитоплазме, что зависит от специализации клеток. Размещение в цитоплазме также зависит от окружающих ее органелл и включений.  В клетках растений они занимают периферию, так как к оболочке митохондрии отодвигаются центральной вакуолью. В клетках почечного эпителия мембрана образует выпячивания, между которыми находятся митохондрии.

В стволовых клетках, где энергия используется равномерно всеми органоидами, митохондрии размещены хаотично. В специализированных клетках они, в основном, сосредоточены в местах наибольшего потребления энергии. К примеру, в поперечно-полосатой мускулатуре они расположены возле миофибрилл. В сперматозоидах они спирально охватывают ось жгутика, так как для приведения его в движение и перемещения сперматозоида нужно много энергии. Простейшие, которые передвигаются при помощи ресничек, также содержат большое количество митохондрий у их основания.

Деление. Митохондрии способны к самостоятельному размножению, имея собственный геном. Органеллы делятся с помощью перетяжки или перегородок. Формирование новых митохондрий в разных клетках отличается периодичностью, например, в печеночной ткани они сменяются каждые 10 дней.

Функции в клетке

  1. Основная функция митохондрий – образование молекул АТФ.
  2. Депонирование ионов Кальция.
  3. Участие в обмене воды.
  4. Синтез предшественников стероидных гормонов.

Молекулярная биология – это наука, изучающая роль митохондрий в метаболизме. В них также идет превращение пирувата в ацетил-коэнзим А, бета-окисление жирных кислот.

Таблица: строение и функции митохондрий (кратко)
Структурные элементыСтроениеФункции
Наружная мембранаГладкая оболочка, построена из липидов и белковОтграничивает внутреннее содержимое от цитоплазмы
Межмембранное пространствоНаходятся ионы водорода, белки, микромолекулыСоздает протонный градиент
Внутренняя мембранаОбразует выпячивания – кристы, содержит белковые транспортные системыПеренос макромолекул, поддержание протонного градиента
МатриксМесто расположения ферментов цикла Кребса, ДНК, РНК, рибосомАэробное окисление с высвобождением энергии, превращение пирувата в ацетил-коэнзим А.
РибосомыОбъединённые две субъединицыСинтез белка

Сходство митохондрий и хлоропластов

Общие свойства для митохондрий и хлоропластов обусловлены, прежде всего, наличием двойной мембраны.

Признаки сходства также заключаются в способности самостоятельно синтезировать белок. Эти органеллы имеют свое ДНК, РНК, рибосомы.

И митохондрии и хлоропласты могут делиться с помощью перетяжки.

Объединяет их также возможность продуцировать энергию, митохондрии более специализированы в этой функции, но хлоропласты во время фотосинтезирующих процессов тоже образуют молекулы АТФ. Так, растительные клетки имеют меньше митохондрий, чем животные, потому что частично функции за них выполняют хлоропласты.

Опишем кратко сходства и различия:

  • Являются двомембранными органеллами;
  • внутренняя мембрана образует выпячивания: для митохондрий характерны кристы, для хлоропластов – тиллакоиды;
  • обладают собственным геномом;
  • способны синтезировать белки и энергию.

Различаются данные органоиды своими функциями: митохондрии предназначены для синтеза энергии, здесь осуществляется клеточное дыхание, хлоропласты нужны растительным клеткам для фотосинтеза.

Источник

Именно такая аналогия приходит, когда познакомишься с этим органоидом. Он явно на особом положении в клетке. Почему? Будем разбираться.

Итак, чем митохондрии отличаются от прочих органоидов?

1. Граница

Граница-мембрана есть у многих органоидов клетки, но у митохондрий она ещё и двойная, состоящая изнаружнойивнутренней мембран. Усиленный белково-фосфолипидный слой вокруг этой структуры уже сам по себе кое на что намекает. Намекает как минимум на повышенное “стремление” к независимости и обособленности. Внутренняя мембрана митохондрии имеет особые впячиваяния – кристы, по которым этот органоид легко опознаётся, в том числе и школьниками на государственных итоговых экзаменах по биологии 😉

Микрофотография митохондрии, на которой хорошо видны впячивания внутренней мембраны – кристы. Источник фото: Свенсон К., Уэбстер П. Клетка. – М.: Мир, 1980.

Читайте также:  Какие сведения содержатся в выписке из егрп на земельный участок

2. Собственные органы власти

Как известно, главной молекулой клетки, которая руководит всеми процессами, является ДНК, расположенная в ядре. Как она приобрела могущество и власть? Да точно так же, как приобретают власть в принципе – с помощью информации. “Кто владеет информацией, тот владеет миром” (не мной сказано). Так вот, именно в ДНК записана информация о каждом белке клетки и даже всего организма. А белки – это: а) основа для построения любой биоконструкции, от органоида до Биосферы; б) активные вещества (ферменты и гормоны), регулирующие функционирование этих биологических конструкций. Таким образом, кто владеет информацией о белках клетки, тот владеет клеткой. Клеткой, да не всей…

Митохондрии дела нет до указаний ядерной ДНК. Она их попросту игнорирует. Может себе это позволить, потому как имеет собственную молекулу ДНК – митохондриальную ДНК, содержащую информацию обо всех белках, создающих данный органоид

Внутреннее строение митохондрии

3. Собственная логистика и инфраструктура

Усиленная граница есть, руководящий центр есть. Разве этого не достаточно для независимости? Судите сами – всё это есть и у клеточного ядра, но почему-то оно не может похвастаться автономностью и без органоидов цитоплазмы обречено на гибель, так как самостоятельно не получает энергию, не растёт и не размножается. А митохондрия вполне самодостаточна – в ней в полной мере протекают и пластический, и энергетический обмен, она способна к автономному росту и даже делению (именно так в клетке появляются новые митохондрии).

Как ей это удаётся? Да просто митохондрия имеет всё, что необходимо для существования даже и отдельной клетки, а не то, что её части. У неё есть свои собственные митохондриальные рибосомы, в которых производится собственный митохондриальный белок, а белок – это основа пластического обмена, ведь он – главный строительный материал. Вторая сторона обмена веществ – энергетический обмен – так же без проблем осуществляется в митохондрии. Ещё бы! Ведь она же и отвечает за него в клетке. Извлечение энергии из органических веществ и её запас в виде АТФ – функция митохондрии, и , как видим, сапожник без сапог не остаётся, не забывает и себя обеспечивать той же энергией!

Митохондрии абсолютно независимо от остальной клетки появляются на свет (путём деления материнской митохондрии), строят себя и растут, получают и пользуются энергией. Одним словом – живут и дают жизнь новым митохондриям. Очень похоже на государство в государстве, на организм в организме. И не просто похоже, это именно так и есть. Ведь по мнению учёных митохондрии когда-то действительно были самостоятельными одноклеточными организмами. Судя по форме ДНК (кольцевая) и наличию крист-впячиваний внутренней мембраны, они были прокариотами, то есть доядерными организмами, по сути – бактериями. На схеме ниже – строение бактерии и митохондрии. Сравните сами и, что называется, попробуйте найти отличия:

Чем не обыкновенная бактерия? Да, бактерия, только вот совсем не обыкновенная, а способная благодаря ей одной известному ноу-хау производить энергии в 19 раз больше (!), чем все прочие пионеры жизни, бултыхающиеся рядом в первичном бульоне. Но эта энергичная умница не избежала-таки участи быть поглощённой-съеденной более крупным существом – одноклеточным эукариотом (ядерным организмом). Бактерию-митохондрию ожидала печально-банальная участь быть расщеплённой на отдельные молекулы ферментами лизосомы(пищеварительной вакуоли) эукариота. Но эукариот оказался сообразителен эволюционно продвинут, а может быть не обошлось и без штучек самой митохондрии, которая продолжала что есть мочи синтезировать АТФ, да ещё и поделилась этим источником энергии с эукариотом. Так или иначе, но хозяин оценил преимущества от приобретения в штат своих органоидов высоко энергоэффективной структуры в обмен на однократный пропуск очередного приёма пищи, а митохондрия получила “крышу” и относительную гарантию спокойствия и стабильности. Удалось ей так же, как видим, сохранить и часть своей независимости. В общем, не прогадала!

Если вас заинтересовал этот органоид клетки, то заглядывайте на мой канал. В планах рассказ о том, от кого мы получаем свою митохондриальную ДНК, чем митохондриальная ДНК интересна генетикам, антропологам, эволюционистам, систематикам и кто такая митохондриальная Ева.

Использованные в тексте биологические термины:

Мембрана – оболочка на границе органоида или клетки

Кристы – впячивания мембраны

Митохондриальная ДНК – ДНК, содержащаяся в митохондрии, содержащая отличный от ядерной ДНК набор генов

Рибосома – органоид клетки, функция которого – синтез белков

Пластический обмен – одна из сторон обмена веществ, цель которой построение биологических систем

Энергетический обмен одна из сторон обмена веществ, цель которой получение энергии

Прокариоты = доядерные – самые первые на Земле организмы, у которых не было ядра, их ДНК свободно плавала в цитоплазме

Читайте также:  В каких растениях содержится ацетилсалициловая кислота

Эукариоты = ядерные – организмы, эволюционно образовавшиеся из прокариотов, имеющие оформленное ядро, защищающее ДНК

Лизосома – органоид клетки, функции которого пищеварение или уничтожение клеточного мусора

Источник

Что такое митохондрии и их роль

  • Происхождение митохондрии
  • Строение митохондрии
  • Функции митохондрии
  • Ферменты митохондрий
  • Митохондрии, видео
  • Еще в далеком XIX веке с интересом изучая посредством первых не совершенных еще тогда микроскопов, строение живой клетки, биологи заметили в ней некие продолговатые зигзагоподобные объекты, которые получили название «митохондрии». Сам термин «митохондрия» составлен из двух греческих слов: «митос» – нитка и «хондрос» – зернышко, крупинка.

    Что такое митохондрии и их роль

    Митохондрии представляют собой двумембранный органоид эукариотической клетки, основное задание которого – окисление органических соединений, синтез молекул АТФ, с последующим применением энергии, образованной после их распада. То есть по сути митохондрии это энергетическая база клеток, говоря образным языком, именно митохондрии являются своего рода станциями, которые вырабатывают необходимую для клеток энергию.

    Количество митохондрий в клетках может меняться от нескольких штук, до тысяч единиц. И больше их естественно именно в тех клетках, где интенсивно идут процессы синтеза молекул АТФ.

    Сами митохондрии также имеют разную форму и размеры, среди них встречаются округлые, вытянутые, спиральные и чашевидные представители. Чаще всего их форма округлая и вытянутая, с диаметром от одного микрометра и до 10 микрометров длинны.

    митохондрия

    Примерно так выглядит митохондрия.

    Также митохондрии могут, как перемещаться по клетке (делают они это благодаря току цитоплазмы), так и неподвижно оставаться на месте. Перемещаются они всегда в те места, где наиболее требуется выработка энергии.

    Происхождение митохондрии

    Еще в начале прошлого ХХ века была сформирована так званая гипотеза симбиогенеза, согласно которой митохондрии произошли от аэробных бактерий, внедренных в другую прокариотическую клетку. Бактерии эти стали снабжать клетку молекулами АТФ взамен получая необходимые им питательные вещества. И в процессе эволюции они постепенно потеряли свою автономность, передав часть своей генетической информации в ядро клетки, превратившись в клеточную органеллу.

    Строение митохондрии

    Митохондрии состоят из:

    • двух мембран, одна из них внутренняя, другая внешняя,
    • межмембранного пространства,
    • матрикса – внутреннего содержимого митохондрии,
    • криста – это часть мембраны, которая выросла в матриксе,
    • белок синтезирующей системы: ДНК, рибосом, РНК,
    • других белков и их комплексов, среди которых большое число всевозможных ферментов,
    • других молекул

    Строение митохондрии

    Так выглядит строение митохондрии.

    Внешняя и внутренняя мембраны митохондрии имеют разные функции, и по этой причине различается их состав. Внешняя мембрана своим строением схожа с мембраной плазменной, которая окружает саму клетку и выполняет в основном защитную барьерную роль. Тем не менее, мелкие молекулы могут проникать через нее, а вот проникновение молекул покрупнее уже избирательно.

    На внутренней мембране митохондрии, в том числе на ее выростах – кристах, располагаются ферменты, образуя мультиферментативные системы. По химическому составу тут преобладают белки. Количество крист зависит от интенсивности синтезирующих процессов, к примеру, в митохондриях клеток мышц их очень много.

    У митохондрий, как впрочем, и у хлоропластов, имеется своя белоксинтезирующая система – ДНК, РНК и рибосомы. Генетический аппарат имеет вид кольцевой молекулы – нуклеотида, точь в точь как у бактерий. Часть необходимых белков митохондрии синтезируют сами, а часть получают извне, из цитоплазмы, поскольку эти белки кодируются ядерными генами.

    Функции митохондрии

    Как мы уже написали выше, основная функция митохондрий – снабжение клетки энергией, которая путем многочисленных ферментативных реакций извлекается из органических соединений. Некоторые подобные реакции идут с участием кислорода, а после других выделяется углекислый газ. И реакции эти происходят, как внутри самой митохондрии, то есть в ее матриксе, так и на кристах.

    Если сказать иначе, то роль митохондрии в клетке заключается в активном участии в «клеточном дыхании», к которому относится множество химических реакций окисления органических веществ, переносов протонов водорода с последующим выделением энергии и т. д.

    Ферменты митохондрий

    Ферменты транслоказы внутренней мембраны митохондрий осуществляют транспортировку АДФ в АТФ. На головках, что состоят из ферментов АТФазы идет синтез АТФ. АТФаза обеспечивает сопряжение фосфорилирования АДФ с реакциями дыхательной цепи. В матриксе находится большая часть ферментов цикла Кребса и окисления жирных кислот

    Митохондрии, видео

    И в завершение интересное образовательное видео о митохондриях.

    В цитоплазме каких клеток содержатся митохондрии

    Автор: Павел Чайка, главный редактор журнала Познавайка

    При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту pavelchaika1983@gmail.com или в Фейсбук, с уважением автор.

    Эта статья доступна на английском языке – Mitochondria: Structure, Function and Role in the Cell.

    Источник

       
       

    Биология

    Учебник для 10-11 классов

    Митохондрии. В цитоплазме клеток животных и растений расположены так называемые энергетические органоиды — митохондрии (от греч. «митос» — нить, «хондрион» — зерно). Форма митохондрий различна, они могут быть овальными, палочковидными, нитевидными со средним диаметром 1 мкм и длиной 7 мкм. Число митохондрий зависит от функциональной активности клетки и может достигать десятка тысяч в летательных мышцах насекомых.

    Читайте также:  Какие витамины содержатся в ячневой крупе

    Внутреннее строение митохондрий (рис. 11, 12; 15) изучено с помощью электронного микроскопа. На электронных микрофотографиях видно, что митохондрии снаружи ограничены внешней мембраной, которая в основном имеет то же строение, что и плазматическая мембрана. Под наружной мембраной располагается внутренняя мембрана, образующая многочисленные складки — кристы. Внутри митохондрии находятся РНК, ДНК и рибосомы, отличающиеся от цитоплазматических. В ее мембраны встроены специфические ферменты, с помощью которых в митохондрии происходит преобразование энергии питательных веществ в энергию АТФ, необходимую для жизнедеятельности клетки и организма в целом.

    Схема строения митохондрии

    Рис. 15. Схема строения митохондрии

    Пластиды. Это органоиды, свойственные только клеткам растений. Существуют три вида пластид: зеленые хлоропласты, цветные (но не зеленые) хромопласты и бесцветные лейкопласты.

    Хлоропласт (рис. 16) по форме напоминает диск или шар диаметром 4—6 мкм с двойной мембраной — наружной и внутренней. Внутри хлоропласта имеются ДНК, рибосомы и особые мембранные структуры — граны, связанные между собой и с внутренней меморанои хлоропласта, ь каждом хлоропласте около 50 гран, расположенных в шахматном порядке для лучшего улавливания света. В мембранах гран находится зеленый пигмент хлорофилл. Благодаря хлорофиллу в хлоропластах происходит превращение энергии солнечного света в химическую энергию АТФ. Энергия АТФ используется в хлоропластах для синтеза органических соединений, в первую очередь углеводов.

    Схема строения хлоропласта

    Рис. 16. Схема строения хлоропласта

    Хромопласты. Пигменты красного и желтого цвета, находящиеся в хромопластах, придают различным частям растений красную и желтую окраску. Корень моркови, плоды томатов окрашены благодаря пигментам, содержащимся в хромопластах. Сочетание хромопластов, содержащих разные пигменты, создает большое разнообразие окрасок цветков и плодов растений.

    Лейкопласты являются местом накопления запасного питательного вещества — крахмала. Особенно много лейкопластов в клетках клубней картофеля. На свету лейкопласты могут превращаться в хлоропласта (в результате чего клубни картофеля зеленеют). Осенью хлоропласты превращаются в хромопласты и зеленые листья и плоды желтеют и краснеют.

    Постоянное движение клетки. Органоиды движения. Многие клетки одноклеточных и многоклеточных организмов обладают способностью к движению. Под этим понимается и движение клетки в пространстве, и внутриклеточное движение ее органоидов. В жидкой среде перемещение клеток осуществляется движением жгутиков и ресничек (рис. 10, 2, 8, 11). Так передвигаются многие одноклеточные, например эвглена зеленая, жгутиконосец, инфузория и др. Некоторые виды бактерий также движутся с помощью жгутиков, длинных и гибких, которые быстро вращаются, обеспечивая продвижение клетки. Амебы и некоторые другие простейшие организмы, а также специализированные клетки многоклеточных (например, лимфоциты) передвигаются с помощью выростов, образующихся на поверхности клеток.

    Клетка находится в постоянном движении. При фагоцитозе и пиноцитозе происходит впячивание плазматической мембраны внутрь клетки, передвигаются лизосомы, пузырьки комплекса Гольджи, митохондрии, наконец, движется сама цитоплазма.

    Клеточное движение обеспечивается цитоскелетом, состоящим из микротрубочек, микронитей и клеточного центра. Микротрубочки — это длинные полые цилиндры диаметром 25 нм, стенки которых состоят из белков. Из параллельно расположенных микротрубочек состоят жгутики и реснички клеток животных и растений. Жгутики отличаются от ресничек лишь длиной. Так, сперматозоиды млекопитающих имеют по одному жгутику длиной до 100 мкм. Реснички короче жгутиков более чем в 10 раз, на одну клетку приходится несколько тысяч ресничек. Микронити — очень тонкие структуры, состоящие из тысяч молекул белка актина, соединенных друг с другом. В мышечных клетках они входят вместе с другими белковыми нитями — миозиновыми в комплексы, обеспечивающие сократительную функцию этих клеток.

    В цитоплазме клеток всех организмов около ядра располагается клеточный центр, принимающий участие в делении клетки. В состав клеточного центра клеток животных и некоторых растений входит центриоль (рис. 11, 3). Центриоль — парное образование. Она содержит два цилиндра, состоящие из микротрубочек и расположенные перпендикулярно друг другу.

    Клеточные включения. Наконец, следует сказать о многочисленных включениях в цитоплазме. Включениями называют непостоянные структуры цитоплазмы, которые в отличие от органоидов то возникают, то исчезают в процессе жизнедеятельности клетки. Плотные в виде гранул включения содержат запасные питательные вещества (крахмал, белки, сахара, жиры) или продукты жизнедеятельности клетки, которые по той или иной причине не могут быть сразу удалены. Способностью синтезировать и накапливать запасные питательные вещества обладают все пластиды растительных клеток.

    В растительных клетках накопление запасных питательных веществ происходит и в вакуолях — мембранных мешках с водным раствором солей и органических соединений, которые часто занимают почти весь объем клетки, отодвигая ядро и цитоплазму к плазматической мембране.

    1. Почему митохондрии называют «силовыми станциями» клетки?
    2. Какие структуры клетки способствуют ее движению?
    3. Что относится к клеточным включениям? Какова их роль в клетке?
    4. Опишите особенности строения митохондрии и хлоропласта в связи с их функциями в клетке.

    Источник