У какого элемента больше выражены металлические свойства у калия или натрия
Максим Бедер
21 мая · 640
Невское Оборудование поставщик металлообрабатывающего оборудования и станков · spbstanki.ru
Оба металла: калий и натрий относятся к щелочным активным металлам. Активность металлов заключается в ярко выраженных металлических свойствах, а именно взаимодействии с неметаллами, и другими веществами (например водой), в результате таких химических реакций металлы являются донорами, т.е. активно «отдают» электроны. Для проверки активности двух металлов можно провести химическую реакцию на взаимодействие с водой, при этом образуются оксиды соответствующих металлов и выделяется водород. При проведении этой реакции натрий горит жёлтым пламенем и происходит небольшой взрыв. Калий ещё более активен: в этом случае взрыв гораздо сильнее, а пламя окрашено в фиолетовый цвет, т.е. выделяется больше водорода, это косвенное свидетельство его большей активности в сравнении с натрием. Калий наиболее активный металл, т.к. есть правило: «активность Ме повышается в главных подгруппах сверху вниз»
В чем разница между кислотами и щелочами, если они оба содержат и кислород, и водород? Про цвет в индикаторах ответ НЕ устроит?
Во первых вопрос немного некорректен, как и теги вопроса, ибо бывают кислоты, а бывают карбоновые кислоты. Если мы говорим о кислотах неорганической химии, то они имеют строение Hx(Ac), где H – водород, x – количество атомов водорода (Ac) – кислотный остаток (Пример: HCl, H2SO4, HNO3, HBr и т.д.). Если мы говорим о карбоновых кислотах, что является органической химией, то они имеют строение R-COOH, где R – радикал (радикал это какой-либо гомолог), а -COOH – карбоксильная группа (Пример: CH3-COOH – уксусная кислота).
Щелочи-же это хорошо растворимые в воде основания. (Пример: NaOH, LiOH и т.д.). Основания имеют строение Me(OH)y, где y – число гидроксидных групп ( -OH), равное валентности металла “Me”.
Кислотами принято называть вещества, способные отдавать протоны (ионы водорода), а основаниями — вещества, способные принимать протоны. И карбоновые кислоты и кислоты реагируют с щелочами.
Советую посмотреть параграф 2.1 для более ясного ознакомления с этой темой. По карбоновым кислотам, если будет интерес, думаю сам сможешь найти нужный параграф.
https://www.explodder.info/book/chem/Химия%20-%20Пособие-репетитор%20(ред%20Егорова%202003).pdf
Ну еще можешь чекнуть вот это:
https://www.chem.msu.su/rus/teaching/kolman/36.htm
Прочитать ещё 3 ответа
Чем атом кальция отличается от иона кальция?
НЛО прилетело и опубликовало эту запись здесь.
Тем же, чем любой атом отличается от соответствующего иона, — зарядом.) И количеством электронов на внешней орбите, что в общем взаимосвязанные вещи. У атома заряд всегда нулевой, если не нулевой — это уже ион. Например, у иона кальция заряд +2, потому что два его электрона со внешней орбиты переходят к неметаллу, с которым он образует соединение. Атом неметалла при этом становится ионом с отрицательным зарядом.
Объясните гуманитарию, что означает понятие “энтропия”?
Филолог, мечтающий стать астрофизиком
Я понимаю так (если понимаю неправильно, пусть знающие люди меня поправят), что, в общем смысле, энтропия – это степень упорядоченности какой-либо системы, мера беспорядка, хаоса. И чем выше беспорядок, тем, соответственно, выше энтропия. И наоборот. Понятие энтропии используется во многих науках, но чаще, как правило, связывается со вторым законом термодинамики, который гласит, что в изолированной системе энтропия не может уменьшаться. Если говорить совсем простыми словами, то система – это нечто организованное, то, что имеет свою структуру, а изолированной можно назвать систему, на которую не оказывается воздействие извне (хотя совсем уж независимую систему найти трудно, так как все предметы и объекты друг с другом взаимодействуют, но это детали). Так вот, оставленное на солнце яблоко со временем сгниет, человек постареет. Энтропия всегда растет. Вселенная стремится к беспорядку. И именно из-за действия энтропии, как предполагается, время не может идти назад, хотя в физике не существует точного закона, постулирующего, что время обязательно должно идти только вперед. Если время пойдет назад, то все явления и вещи начнут сами по себе магическим образом упорядочиваться: разлетевшиеся бумаги сложатся ровной стопочкой, разбитый стакан соберется в целый без единой трещины, люди начнут молодеть. Повернуть время вспять значит упорядочить систему, то есть нарушить второй закон термодинамики. Нет, разбитый стакан, конечно, можно склеить в целый, и дома можно сделать уборку, однако при этом придется затратить какую-то часть энергии, и никакого нарушения в итоге не выйдет. Склеивание стакана и уборка дома – это только видимость уменьшения энтропии, так как даже аккуратно разложенные по местам вещи имеют свойство со временем разлагаться, так что от вездесущей энтропии нам не уйти.
Такие дела.
Прочитать ещё 5 ответов
Перечислите основные свойства металлов. Назовите чем эти свойства обусловлены?
Дипломированный специалист в прикладной математике и физике. Профессиональный химик -… · chemiday.com
Металлы хорошо проводят тепло и электричество – это обусловлено подвижностью электронов в кристаллической решётке металлов.
Металлы блестят (“металлический блеск”) – также обусловлено наличием подвижных, почти свободных электронов в решётке.
Большинство металлов химически активны и легко выступают в роли восстановителя – это обусловлено наличием слабо связанного 1 , 2 или 3-х электронов на внешнем электронном уровне.
Какие металлы принято называть активными?
Увлекаюсь всем на свете: от моды до путешествий. Работаю помощником главного…
Активные металлы отличаются мягкостью, легкостью и невысокой температурой плавления. Как правило, у активных металлов 1-2 валентных электрона, находящихся на достаточном удалении от ядра. Наиболее активными считаются литий, натрий, калий, цезий, рубидий.
Степень активности металла можно посмотреть в электрохимическому ряду напряжений металлов. Чем левее от водорода расположен элемент, тем более он активен.
Источник
Максим Бедер
21 мая · 640
Невское Оборудование поставщик металлообрабатывающего оборудования и станков · spbstanki.ru
Оба металла: калий и натрий относятся к щелочным активным металлам. Активность металлов заключается в ярко выраженных металлических свойствах, а именно взаимодействии с неметаллами, и другими веществами (например водой), в результате таких химических реакций металлы являются донорами, т.е. активно «отдают» электроны. Для проверки активности двух металлов можно провести химическую реакцию на взаимодействие с водой, при этом образуются оксиды соответствующих металлов и выделяется водород. При проведении этой реакции натрий горит жёлтым пламенем и происходит небольшой взрыв. Калий ещё более активен: в этом случае взрыв гораздо сильнее, а пламя окрашено в фиолетовый цвет, т.е. выделяется больше водорода, это косвенное свидетельство его большей активности в сравнении с натрием. Калий наиболее активный металл, т.к. есть правило: «активность Ме повышается в главных подгруппах сверху вниз»
В чем разница между кислотами и щелочами, если они оба содержат и кислород, и водород? Про цвет в индикаторах ответ НЕ устроит?
Во первых вопрос немного некорректен, как и теги вопроса, ибо бывают кислоты, а бывают карбоновые кислоты. Если мы говорим о кислотах неорганической химии, то они имеют строение Hx(Ac), где H – водород, x – количество атомов водорода (Ac) – кислотный остаток (Пример: HCl, H2SO4, HNO3, HBr и т.д.). Если мы говорим о карбоновых кислотах, что является органической химией, то они имеют строение R-COOH, где R – радикал (радикал это какой-либо гомолог), а -COOH – карбоксильная группа (Пример: CH3-COOH – уксусная кислота).
Щелочи-же это хорошо растворимые в воде основания. (Пример: NaOH, LiOH и т.д.). Основания имеют строение Me(OH)y, где y – число гидроксидных групп ( -OH), равное валентности металла “Me”.
Кислотами принято называть вещества, способные отдавать протоны (ионы водорода), а основаниями — вещества, способные принимать протоны. И карбоновые кислоты и кислоты реагируют с щелочами.
Советую посмотреть параграф 2.1 для более ясного ознакомления с этой темой. По карбоновым кислотам, если будет интерес, думаю сам сможешь найти нужный параграф.
https://www.explodder.info/book/chem/Химия%20-%20Пособие-репетитор%20(ред%20Егорова%202003).pdf
Ну еще можешь чекнуть вот это:
https://www.chem.msu.su/rus/teaching/kolman/36.htm
Прочитать ещё 3 ответа
Чем атом кальция отличается от иона кальция?
НЛО прилетело и опубликовало эту запись здесь.
Тем же, чем любой атом отличается от соответствующего иона, — зарядом.) И количеством электронов на внешней орбите, что в общем взаимосвязанные вещи. У атома заряд всегда нулевой, если не нулевой — это уже ион. Например, у иона кальция заряд +2, потому что два его электрона со внешней орбиты переходят к неметаллу, с которым он образует соединение. Атом неметалла при этом становится ионом с отрицательным зарядом.
Перечислите основные свойства металлов. Назовите чем эти свойства обусловлены?
Дипломированный специалист в прикладной математике и физике. Профессиональный химик -… · chemiday.com
Металлы хорошо проводят тепло и электричество – это обусловлено подвижностью электронов в кристаллической решётке металлов.
Металлы блестят (“металлический блеск”) – также обусловлено наличием подвижных, почти свободных электронов в решётке.
Большинство металлов химически активны и легко выступают в роли восстановителя – это обусловлено наличием слабо связанного 1 , 2 или 3-х электронов на внешнем электронном уровне.
Объясните гуманитарию, что означает понятие “энтропия”?
Филолог, мечтающий стать астрофизиком
Я понимаю так (если понимаю неправильно, пусть знающие люди меня поправят), что, в общем смысле, энтропия – это степень упорядоченности какой-либо системы, мера беспорядка, хаоса. И чем выше беспорядок, тем, соответственно, выше энтропия. И наоборот. Понятие энтропии используется во многих науках, но чаще, как правило, связывается со вторым законом термодинамики, который гласит, что в изолированной системе энтропия не может уменьшаться. Если говорить совсем простыми словами, то система – это нечто организованное, то, что имеет свою структуру, а изолированной можно назвать систему, на которую не оказывается воздействие извне (хотя совсем уж независимую систему найти трудно, так как все предметы и объекты друг с другом взаимодействуют, но это детали). Так вот, оставленное на солнце яблоко со временем сгниет, человек постареет. Энтропия всегда растет. Вселенная стремится к беспорядку. И именно из-за действия энтропии, как предполагается, время не может идти назад, хотя в физике не существует точного закона, постулирующего, что время обязательно должно идти только вперед. Если время пойдет назад, то все явления и вещи начнут сами по себе магическим образом упорядочиваться: разлетевшиеся бумаги сложатся ровной стопочкой, разбитый стакан соберется в целый без единой трещины, люди начнут молодеть. Повернуть время вспять значит упорядочить систему, то есть нарушить второй закон термодинамики. Нет, разбитый стакан, конечно, можно склеить в целый, и дома можно сделать уборку, однако при этом придется затратить какую-то часть энергии, и никакого нарушения в итоге не выйдет. Склеивание стакана и уборка дома – это только видимость уменьшения энтропии, так как даже аккуратно разложенные по местам вещи имеют свойство со временем разлагаться, так что от вездесущей энтропии нам не уйти.
Такие дела.
Прочитать ещё 5 ответов
Какие металлы принято называть активными?
Увлекаюсь всем на свете: от моды до путешествий. Работаю помощником главного…
Активные металлы отличаются мягкостью, легкостью и невысокой температурой плавления. Как правило, у активных металлов 1-2 валентных электрона, находящихся на достаточном удалении от ядра. Наиболее активными считаются литий, натрий, калий, цезий, рубидий.
Степень активности металла можно посмотреть в электрохимическому ряду напряжений металлов. Чем левее от водорода расположен элемент, тем более он активен.
Источник
А) Характеристика фосфора.
1. Фосфор— элемент пятой группы и третьего периода, Z = 15,
Аr(Р) = 31.
Соответственно, атом фосфора содержит в ядре 15 протонов,
16 нейтронов и 15 электронов. Строение его электронной оболочки
можно отразить с помощью следующей схемы:
Атомы фосфора проявляют как окислительные свойства (принима-
ют недостающие для завершения внешнего уровня три электрона, получая при этом степень окисления -3, например, в соединениях с менее электроотрицательными элементами— металлами, водородом и т.п.) так и восстановительные свойства (отдают 3 или 5 электронов более электроотрицательным элементам — кислороду, галогенам и т.п., приобретая при этом степени окисления +3 и +5.)
Фосфор менее сильный окислитель, чем азот, но более сильный, чем мышьяк, что связано с ростом радиусов атомов от азота к мышьяку. По этой же причине восстановительные свойства, наоборот, усиливаются.
2. Фосфор — простое вещество, типичный неметалл. Фосфору свойственно явление аллотропии. Например, существуют аллотропные модификации фосфора такие, как белый, красный и черный фосфор, которые обладают разными химическими и физическими свойствами.
3. Неметаллические свойства фосфора выражены слабее, чем у азота, но сильнее, чем у мышьяка (соседние элементы в группе).
4. Неметаллические свойства фосфора выражены сильнее, чем у
кремния, но слабее, чем у серы (соседние элементы в периоде).
5. Высший оксид фосфора имеет формулу Р2O5. Это кислотный оксид.
Он проявляет все типичные свойства кислотных оксидов. Так, например, при взаимодействии его с водой получается фосфорная кислота.
Р2O5 + 3Н2O => 2Н3РO4.
При взаимодействии его с основными оксидами и основаниями он
дает соли.
Р2O5 + 3MgO = Mg3(PO4)2; Р2O5 + 6КОН = 2К3РO4+ 3Н2O.
6. Высший гидроксид фосфора— фосфорная кислота Н3РO4, рас-
твор которой проявляет все типичные свойства кислот: взаимодействие с основаниями и основными оксидами:
Н3РO4 + 3NaOH = Na3PO4 + 3Н2O. 2Н3РO4 + 3СаО = Са,(РO4)2↓ + 3Н2O.
7. Фосфор образует летучее соединение Н3Р — фосфин.
Б) Характеристика калия.
1. Калий имеет порядковый номер 19, Z = 19 и относительную атомную массу Аr(К) = 39. Соответственно заряд ядра его атома +19 (равен числу протонов). Следовательно, число нейтронов в ядре равно 20. Так как атом электронейтрален, то число электронов, содержащихся в атоме калия, тоже равно 19. Элемент калий находится в четвертом периоде периодической системы, значит, все электроны располагаются на четырех энергетических уровнях. Таким образом, строение атома калия записывается так:
Исходя из строения атома, можно предсказать степень окисления
калия в его соединениях. Так как в химических реакциях атом калия отдает один внешний электрон, проявляя восстановительные свойства, следовательно, он приобретает степень окисления +1.
Восстановительные свойства у калия выражены сильнее, чем у на-
трия, но слабее, чем у рубидия, что связано с ростом радиусов от Na к Rb.
2. Калий— простое вещество, для него характерна металлическая
кристаллическая решетка и металлическая химическая связь, а отсюда — и все типичные для металлов свойства.
3. Металлические свойства у калия выражены сильнее, чем у на-
трия, но слабее, чем у рубидия, т.к. атом калия легче отдает электрон, чем атом натрия, но труднее, чем атом рубидия.
4. Металлические свойства у калия выражены сильнее, чем у кальция, т.к. один электрон атома калия легче оторвать, чем два электрона
атома кальция.
5. Оксид калия К2O является основным оксидом и проявляет все типичные свойства основных оксидов. Взаимодействие с кислотами и кислотными оксидами.
К2O + 2НСl = 2КСl +Н2O; К2O + SO3 = K2SO4.
6. В качестве гидроксида калию соответствует основание (щелочь) КОН, которое проявляет все характерные свойства оснований: взаимодействие с кислотами и кислотными оксидами.
KOH+HNO3 = KNO3+H2O; 2KOH+N2O5 = 2KNO3+H2O.
7. Летучего водородного соединения калий не образует, а образует гидрид калия КН.
Источник
Периодическая таблица Дмитрия Ивановича Менделеева очень удобна и универсальна в своём использовании. По ней можно определить некоторые характеристики элементов, и что самое удивительное, предсказать некоторые свойства ещё неоткрытых, не обнаруженных учёными, химических элементов (например, мы знаем некоторые свойства предполагаемого унбигексия, хотя его ещё не открыли и не синтезировали).
Что такое металлические и неметаллические свойства
Эти свойства зависят от способности элемента отдавать или притягивать к себе электроны. Важно запомнить одно правило, металлы – отдают электроны, а неметаллы – принимают. Соответственно металлические свойства – это способность определённого химического элемента отдавать свои электроны (с внешнего электронного облака) другому химическому элементу. Для неметаллов всё в точности наоборот. Чем легче неметалл принимает электроны, тем выше его неметаллические свойства.
Металлы никогда не примут электроны другого химического элемента. Такое характерно для следующих элементов;
- натрия;
- калия;
- лития;
- франция и так далее.
С неметаллами дела обстоят похожим образом. Фтор больше всех остальных неметаллов проявляет свои свойства, он может только притянуть к себе частицы другого элемента, но ни при каких условиях не отдаст свои. Он обладает наибольшими неметаллическими свойствами. Кислород (по своим характеристикам) идёт сразу же после фтора. Кислород может образовывать соединение с фтором, отдавая свои электроны, но у других элементов он забирает отрицательные частицы.
Список неметаллов с наиболее выраженными характеристиками:
- фтор;
- кислород;
- азот;
- хлор;
- бром.
Неметаллические и металлические свойства объясняются тем, что все химические вещества стремятся завершить свой энергетический уровень. Для этого на последнем электронном уровне должно быть 8 электронов. У атома фтора на последней электронной оболочке 7 электронов, стремясь завершить ее, он притягивает ещё один электрон. У атома натрия на внешней оболочке один электрон, чтобы получить 8, ему проще отдать 1, и на последнем уровне окажется 8 отрицательно заряженных частиц.
Благородные газы не взаимодействуют с другими веществами именно из-за того, что у них завершён энергетический уровень, им не нужно ни притягивать, ни отдавать электроны.
Как изменяются металлические свойства в периодической системе
Периодическая таблица Менделеева состоит из групп и периодов. Периоды располагаются по горизонтали таким образом, что первый период включает в себя: литий, бериллий, бор, углерод, азот, кислород и так далее. Химические элементы располагаются строго по увеличению порядкового номера.
Группы располагаются по вертикали таким образом, что первая группа включает в себя: литий, натрий, калий, медь, рубидий, серебро и так далее. Номер группы указывает на количество отрицательных частиц на внешнем уровне определённого химического элемента. В то время, как номер периода указывает на количество электронных облаков.
Металлические свойства усиливаются в ряду справа налево или, по-другому, ослабевают в периоде. То есть магний обладает большими металлическими свойствами, чем алюминий, но меньшими, нежели натрий. Это происходит потому, что в периоде количество электронов на внешней оболочке увеличивается, следовательно, химическому элементу сложнее отдавать свои электроны.
В группе все наоборот, металлические свойства усиливаются в ряду сверху вниз. Например, калий проявляется сильнее, чем медь, но слабее, нежели натрий. Объяснение этому очень простое, в группе увеличивается количество электронных оболочек, а чем дальше электрон находится от ядра, тем проще элементу его отдать. Сила притяжения между ядром атома и электроном в первой оболочке больше, чем между ядром и электроном в 4 оболочке.
Сравним два элемента – кальций и барий. Барий в периодической системе стоит ниже, чем кальций. А это значит, что электроны с внешней оболочки кальция расположены ближе к ядру, следовательно, они лучше притягиваются, чем у бария.
Сложнее сравнивать элементы, которые находятся в разных группах и периодах. Возьмём, к примеру, кальций и рубидий. Рубидий будет лучше отдавать отрицательные частицы, чем кальций. Так как он стоит ниже и левее. Но пользуясь только таблицей Менделеева нельзя однозначно ответить на этот вопрос сравнивая магний и скандий (так как один элемент ниже и правее, а другой выше и левее). Для сравнения этих элементов понадобятся специальные таблицы (например, электрохимический ряд напряжений металлов).
Как изменяются неметаллические свойства в периодической системе
Неметаллические свойства в периодической системе Менделеева изменяются с точностью до наоборот, нежели металлические. По сути, эти два признака являются антагонистами.
Неметаллические свойства усиливаются в периоде (в ряду справа налево). Например, сера способна меньше притягивать к себе электроны, чем хлор, но больше, нежели фосфор. Объяснение этому явлению такое же. Количество отрицательно заряженных частиц на внешнем слое увеличивается, и поэтому элементу легче закончить свой энергетический уровень.
Неметаллические свойства уменьшаются в ряду сверху вниз (в группе). Например, фосфор способен отдавать отрицательно заряженные частицы больше, чем азот, но при этом способен лучше притягивать, нежели мышьяк. Частицы фосфора притягиваются к ядру лучше, чем частицы мышьяка, что даёт ему преимущество окислителя в реакциях на понижение и повышение степени окисления (окислительно-восстановительные реакции).
Сравним, к примеру, серу и мышьяк. Сера находится выше и правее, а это значит, что ей легче завершить свой энергетический уровень. Как и металлы, неметаллы сложно сравнивать, если они находятся в разных группах и периодах. Например, хлор и кислород. Один из этих элементов выше и левее, а другой ниже и правее. Для ответа придётся обратиться к таблице электроотрицательности неметаллов, из которой мы видим, что кислород легче притягивает к себе отрицательные частицы, нежели хлор.
Периодическая таблица Менделеева помогает узнать не только количество протонов в атоме, атомную массу и порядковый номер, но и помогает определить свойства элементов.
Видео
Видео поможет вам разобраться в закономерности свойств химических элементов и их соединений по периодам и группам.
Источник