У каких элементов химические свойства одинаковы
Каждый элемент имеет свое строго уникальное строение, в соответствии с которым он и занимает свое постоянное, четко определенное место в периодической системе.
При рассмотрении периодической таблицы элементов, зная химические и физические свойства каждого элемента, можно сделать выводы о закономерностях изменения этих свойств.
Повторение свойств элементов
С увеличением атомной массы происходит периодическое повторение свойств элементов.
Так, одиннадцатый элемент ряда – натрий – имеет общие свойства с третьим химическим элементом – литием. В рамках ряда от лития до фтора металлические свойства соединений постепенно уменьшаются и при этом возрастают неметаллические свойства. И действительно, после активного щелочного металлического элемента лития четвертым размещен тоже металлический элемент бериллий, но уже с амфотерными свойствами соединений. Пятый, шестой, седьмой, восьмой, девятый и десятый элементы – неметаллические. Активность простых веществ и соединений этих элементов с увеличением порядкового номера возрастает и достигает максимума у фтора.
Причиной периодической повторяемости свойств химических элементов и образованных ими соединений является образование у элементов одинакового строения внешнего энергетического уровня (для элементов главных подгрупп) и предпоследнего энергетического уровня (для элементов побочных подгрупп).
Закономерности изменений свойств
Таким образом, рассмотрев свойства каждого из соединений и их изменения в группах и периодах можно составить определенные закономерности.
В рамках одного периода с увеличением порядковых номеров элементов (при движении вниз по периоду) прослеживаются закономерные изменения, характерные для всей таблицы.
При движении вниз по периоду металлические и основные свойства у простых веществ ослабляются, а неметаллические и кислотные – усиливаются.
Кроме размещения в горизонтальных рядах — периодах, элементы входят в состав вертикальных столбиков — групп. Рассмотренные свойства природных семей щелочных элементов, галогенов и инертных элементов дают возможность сделать вывод, что наиболее активные металлы размещены в группе под номером 1, то есть в начале периодов, а самые активные неметаллы — в группе под номером 7, то есть в конце периодов.
Инертным элементом 18 группы заканчивается каждый период.
Если провести воображаемую линию через элементы алюминий, германий, олово, стибий, свинец, полоний, которая разделит периодическую систему на две не равных части, то верхняя правая часть будет содержать неметаллы, нижняя левая — металлы, а элементы, образующие линию разделения, — это металлы с амфотерными свойствами оксидов и гидроксидов.
Зависимость от строения электронных оболочек атомов
На основе современной теории строения атома ученые объясняют, что характер химических свойств и его изменение в периодах находятся в зависимости от изменения строения электронных оболочек атомов. Чтобы понять, какие различия в строении электронных оболочек вызывают ослабление металлических и усиление неметаллических свойств, сравним электронные формулы атомов пары элементов — алюминия и фосфора.
Как видим, количество энергетических уровней у атомов алюминия и фосфора одинаково — их 3. Однако у каждого из них разное число электронов на внешнем (крайнем) энергетическом уровне, которое с увеличением порядкового номера элемента (13 у алюминия и 15 у фосфора) растет. Делаем вывод, что причиной ослабления металлических и усиления неметаллических свойств элементов одного периода является рост числа электронов на внешнем энергетическом уровне.
Итак, в зависимости от собственно строения атома элемента и, соответственно, в какой части периодической системы размещен этот элемент, его соединения проявляют или основные, или кислотные, или амфотерные химические свойства.
Рассмотренные зависимости еще раз подтверждают универсальный характер периодического закона и доказывают, что он является фундаментальным законом природы.
Источник
Теперь установим более точно, в какой зависимости от строения электронных оболочек находятся химические свойства атомов. При этом необходимо учитывать не только число электронов в атомах и их распределение по слоям, но и относительные размеры атомов, о которых дает представление рис. 48.
Рассмотрим вначале изменение свойств в периодах. В пределах каждого периода (кроме первого) металлические свойства, наиболее резко выраженные у первого члена периода, при переходе к последующим членам постепенно ослабевают и уступают место металлоидным свойствам: в начале периода стоит типичный металл, в конце—типичный металлоид и за ним инертный газ.
Закономерное изменение свойств элементов в периодах может быть объяснено следующим образом. Как уже указывалось, наиболее характерным свойством металлов с химической точки зрения является способность их атомов легко отдавать внешние электроны и превращаться в положительно заряженные ионы, тогда как металлоиды, наоборот, характеризуются способностью присоединять электроны с образованием отрицательных ионов.
Рис. 48. Относительные размеры атомов.
Для отрыва электрона от атома с превращением последнего в положительный ион нужно затратить некоторую энергию, которая называется энергией ионизации и выражается обычно в килограммкалориях на грамматом элемента.
Энергию ионизации определяют путем бомбардировки атомов, находящихся в электрическом поле, быстро летящими электронами. То наименьшее напряжение поля, при котором скорость электронов становится достаточной для ионизации атомов, называется потенциалом ионизации атомов данного элемента и выражается в вольтах.
Энергия ионизации связана с потенциалом ионизации простым соотношением, что позволяет выражать легкость потери электронов атомами как в килограммкалориях на грамматом, так и в вольтах.
Потенциал ионизации имеет наименьшее значение у элементов, начинающих период, т. е. у водорода и щелочных металлов, и наибольшее — у элементов, заканчивающих период, т. е. инертных газов. Величина его может служить мерой большей или меньшей «металличности» элемента: чем меньше потенциал ионизации, чем легче оторвать электрон от атома, тем сильнее должны быть выражены металлические свойства элемента.
Величина потенциала ионизации зависит от трех причин: от величины заряда ядра, от радиуса атома и от особого рода взаимодействия между электронами в электрическом поле ядра, вызванного их волновыми свойствами. Очевидно, что чем больше заряд ядра и чем меньше радиус атома, тем сильнее притягивается электрон к- ядру, тем больше потенциал ионизации.
У элементов одного и того же периода при переходе от щелочного металла к инертному газу заряд ядра постепенно возрастает, а радиус атома уменьшается. Следствием этого и является постепенное увеличение потенциала ионизации и ослабление металлических свойств. У инертных газов, хотя радиусы их атомов больше, чем радиусы атомов галогенов, стоящих в том же периоде, потенциалы ионизации больше, чем у галогенов. В этом случае сильно сказывается действие третьего из вышеупомянутых факторов — взаимодействия между электронами, вследствие чего внешняя электронная оболочка атома инертного газа имеет особую энергетическую устойчивость и удаление из нее электрона требует значительно большей затраты энергии.
Присоединение электрона к атому металлоида, превращающее его электронную оболочку в устойчивую оболочку атома инертного газа, сопровождается выделением энергии. Величина этой энергии при расчете на 1грамматом элемента служит мерой так называемого сродства к электрону. Чем больше сродство к электрону, тем легче атом присоединяет электрон. Сродство атомов металлов к электрону равно нулю, — атомы металлов неспособны присоединять электроны. У атомов же металлоидов сродство к электрону тем больше, чем ближе к инертному газу стоит металлоид в периодической системе. Поэтому в пределах периода металлоидные свойства усиливаются по мере приближения к концу периода.
Переход от металлических свойств к металлоидным у элементов малых периодов связан также с изменением числа наружных электронов в их атомах, которое равномерно растет, начиная с одного в первом члене периода и доходя до восьми в последнем. В то же время понижается способность атомов отдавать электроны (проявление металлических свойств) и появляется способность к присоединению электронов (металлоидные свойства).
Опыт показывает, что, начиная с лития, атомы, имеющие в наружном слое небольшое число электронов (меньше четырех), могут только отдавать электроны, но никогда не присоединяют их. Таковы атомы элементов, которые мы называем металлами. Наоборот, атомы с большим числом наружных электронов, хотя и могут отдавать электроны, но гораздо легче присоединяют их, и тем легче, чем больше электронов уже имеется в наружном слое. Этим свойством обладают атомы металлоидов.
В больших периодах изменение свойств в общем происходит так же, как и в малых, только металлические свойства ослабевают гораздо медленнее. Причина этого лежит в неравномерном росте наружного электронного слоя, так как, начиная с третьего члена периода и вплоть до конца первой его половины, идет пополнение электронами предпоследнего недостроенного слоя, а в атомах редкоземельных элементов, находящихся в шестом периоде, заполняется даже не предпоследний, а третий снаружи слой. Поэтому все элементы первой половины периода имеют в наружной оболочке атома не больше двух электронов и характеризуются преобладанием металлических свойств (сродство к электрону равно нулю). Радиусы атомов этих элементов уменьшаются на небольшую величину, а потенциалы ионизации почти не возрастают, вследствие чего и ослабление металлических свойств происходит медленно. Только во второй половине периода число наружных электронов растет так же последовательно, как и в малых периодах, и металлические свойства постепенно сменяются металлоидными. Период заканчивается инертным газом.
Указанные выше соотношения между строением атомов и их химическими свойствами представляют глубокий интерес. Мы видим, что на химические свойства атома оказывают влияние главным образом электроны наружного слоя. Строение предпоследнего слоя влияет на химические свойства значительно меньше. Так, например, элементы больших периодов, в атомах которых идет достройка предпоследнего электронного слоя, сравнительно
мало отличаются друг от друга по своему химическому характеру (например, Cr, Mn, Fe, Со, Ni). Ho все же по мере заполнения электронами предпоследнего слоя свойства элементов изменяются в определенном направлении. Наконец, почти полное сходство свойств редкоземельных элементов показывает, что изменение числа электронов в третьем снаружи слое атома оказывает лишь ничтожное влияние на его химические свойства. Однако и здесь увеличение числа электронов вызывает постепенное, хотя и небольшое изменение свойств, проявляющееся, например, в понижении силы оснований от элемента № 58 (церия) к элементу № 71 (лютецию).
Как известно, все элементы расположены в таблице так, что они образуют девять вертикальных столбцов (групп). Номер группы соответствует наибольшей положительной валентности (или так называемой валентности по кислороду), которую могут проявлять элементы данной группы. Сопоставляя эту величину с расположением электронов в атомах, нетрудно убедиться, что у всех элементов, стоящих в малых периодах (кроме кислорода и фтора), наибольшая валентность как раз равна числу электронов в наружном слое атома.
Несколько иначе обстоит дело в больших периодах. В атомах элементов, находящихся в малых периодах, число электронов в предпоследнем слое равно двум или восьми. Отдавая наружные электроны, эти атомы превращаются в ионы с устойчивой структурой инертных газов и, естественно, не могут больше терять электроны. В больших же периодах только первые два члена имеют по восемь электронов в предпоследнем слое. В атомах следующих за ними элементов число электронов в предпоследнем слое постепенно растет, пока не достигнет 18 (у первого члена второй половины периода). Но слой из 18 электронов оказывается почти таким же устойчивым, как и слой из восьми электронов. Поэтому атомы, имеющие восемнадцать электронов в предпоследнем слое (например, Сu, Zn, Ga и др.), потеряв наружные электроны, тоже превращаются в ионы с устойчивой оболочкой. Таким образом, максимальная валентность атомов второй половины каждого большого периода, имеющих в предпоследнем слое 18 электронов (так же как и валентность атомов с двумя или восьмью электронами в предпоследнем слое), равна числу электронов наружного слоя .
Что же касается остальных элементов больших периодов, содержащих в предпоследнем слое больше восьми, но меньше 18 электронов, то они могут отдавать, кроме наружных электро-нов еще и часть электронов предыдущего слоя, а именно столько,
Исключение составляют медь, серебро и золото, максимальная валентность которых равна двум и трем, хотя наружный слой содержит только один электрон.
чтобы остающиеся электроны образовали устойчивую восьми-электронную оболочку. Например, элемент скандий (№ 21)может отдать всего три электрона, титан — четыре, ванадий — пять и т. д. Общее число отдаваемых электронов и определяет максимальную валентность этих элементов, указываемую номером соответствующей группы .
Еще задолго до возникновения учения о строении атома было установлено, что между максимальной валентностью элемента по кислороду и его валентностью по водороду существует определенная зависимость: сумма валентностей по кислороду и по водороду всегда оказывается равной восьми.
Эта зависимость очень просто объясняется с точки зрения электронны представлений о валентности. Так как в соединениях с кислородом атомы всех элементов (за исключением фтора) заряжены положительно, а в соединениях с водородом — отрицательно, то валентность по кислороду есть не что иное, как положительная валентность, обусловленная потерей или смеще; нием валентных электронов; наоборот, валентность по водороду есть отрицательная валентность, которую атом проявляет, присоединяя к наружному слою недостающее до восьми число электронов. Понятно, что сумма этих двух валентностей должна равняться восьми.
Нужно, однако, заметить, что это правило распространяется только на металлоиды, образующие газообразные соединения с водородом.
Некоторые металлы тоже образуют соединения с водородом, но не газообразные, а твердые. Всоединениях такого типа металл заряжен положительно, а водород отрицательно. Вэтом случае валентность по водороду является положительной валентностью и, конечно, одинакова с валентностью того же металла по кисло-
Как уже указывалось , элементы каждой, группы периодической системы, начиная с четвертого горизонтального ряда, делятся на две подгруппы: четную, составленную из элементов, у которых преобладают металлические свойства, и нечетную, образованную элементами, у которых металлические свойства ослаблены или преобладают металлоидные свойства.
Различие в свойствах элементов четных и нечетных подгрупп непосредственно вытекает из строения их атомов. Вто время как в наружном слое атомов элементов четных подгрупп никогда не бывает больше двух электронов, в атомах элементов нечетных подгрупп число наружных электронов может доходить до семи. Поэтому элементы четных подгрупп не присоединяют электроны, что характеризует их как металлы.
Нечетные подгруппы тоже содержат металлы, но главным образом состоят из элементов, легко присоединяющих электроны, т. е. металлоидов.
Усиление металлических свойств с увеличением порядкового номера у элементов главных подгрупп тоже легко объясняется строением их атомов. Хотя с увеличением порядкового номера заряд ядра и увеличивается, но одновременно возрастает число электронных слоев в атоме и их отталкивающее действие на наружные электроны. Значительно увеличиваются также радиусы атомов, вследствие чего потенциалы ионизации, а следовательно, и металлоидные свойства элементов уменьшаются.
55 56 57
Вы читаете, статья на тему Свойства элементов от строения атомов
Источник
Элементы главных и побочных подгрупп
Свойства элементов главной и побочной подгрупп существенно различаются. В то же время благодаря периодической системе мы находим много общего в свойствах всех элементов, образующих данную группу.
Так, в VII группе имеются два элемента — хлор (VIIA группа) и марганец (VIIB группа). Хлор образует простое вещество — неметалл, газообразный при обычных условиях, очень ядовитый. Марганец — типичный металл со всеми свойствами металлов (твердый, пластичный, электропроводный). Что же объединяет эти несхожие элементы? Почему они находятся в одной группе периодической системы? Все дело в том, что и атомы хлора, и атомы марганца содержат по 7 валентных электронов:
Cl $1s^22s^22p^6 underline{3s^23p^5}$;
Mn 1s$^2$2s$^2$2p$^6$3s$^2$3p$^6$ $underline{4s^2 3d^5}$.
Поэтому высшая степень окисления для этих элементов одна и та же, а именно +7.
Хлор и марганец образуют высшие оксиды одного состава: $Cl_2O_7$ и $Mn_2O_7$. Оба эти оксида кислотные, энергично взаимодействуют с водой с образованием кислот одного и того же состава:
Cl$_2$O$_7$ + Н$_2$О → 2HClO$_4$ хлорная кислота,
Mn$_2$O$_7$ + Н$_2$О → 2HMnO$_4$ марганцевая кислота.
Оба оксида (и отвечающие им кислоты) очень неустойчивы и являются сильнейшими окислителями.
И хлорная, и марганцевая кислота относятся к наиболее сильным кислотам. При нейтрализации кислот получаются однотипные соли — перхлораты и перманганаты, например KClO$_4$ и KMnO$_4$. При небольшом нагревании обе соли легко разлагаются с выделением кислорода. Все это и позволяет рассматривать элементы хлор и марганец в одной группе периодической системы элементов Д. И. Менделеева.
Следует подчеркнуть, что закономерности изменения свойств по группам, описанные ниже, относятся только к элементам главных подгрупп.
Атомный радиус
Атомный радиус увеличивается с увеличением количества энергетических уровней, то есть сверху вниз по группе. У элементов, стоящих в одном периоде и обладающих равным количеством энергетических уровней, атомный радиус, на первый взгляд, меняться не должен. Однако вследствие взаимодействие ядра и электронов усиливается при движении по периоду слева направо, что приводит к незначительному сжатию атома — уменьшению его радиуса.
Электроотрицательность
Определение
Способность атома элемента притягивать к себе электроны химической связи называют электроотрицательностью (ЭО).
Элементы-металлы легче отдают электроны, чем притягивают их, иными словами, они имеют низкую электроотрицательность — меньше 1,8. Элементы-неметаллы, наоборот, легче притягивают электроны и имеют высокие значения ЭО.
Окислительно-восстановительные свойства соединений элементов. Металличность и неметалличность
Слова «металл» и «неметалл» применимы не только к химическим элементам, но и к простым веществам. Например, говоря, что простое вещество является металлом, мы подразумеваем не только что оно состоит из атомов элемента-металла, но и определенную общность физических (металлический блеск, пластичность) и химических (восстановитель) свойств.
Напомним, что из известных на данный момент 116 химических элементов 98 являются металлами. Металлы расположены в главных подгруппах в левом нижем углу (относительно диагонали бор-астат) таблицы Менделеева и в побочных подгруппах.
Атомы металлов на внешнем уровне содержат не более четырех электронов, как правило, от одного до трех. Отдавая эти электроны, они приобретают устойчивую оболочку ближайшего инертного газа.
Таки образом, металлы в химических реакциях являются восстановителями — они легко отдают электроны и приобретают положительную степень окисления. В этом заключается их принципиальное отличие от элементов-неметаллов.
Поэтому очень часто говорят о металлических свойствах как синониме восстановительных свойств.
В наибольшей степени металлические свойства выражены у элементов главной подгруппы I группы периодической системы — щелочных металлов. Их атомы настолько легко отдают валентный электрон, что в природе эти элементы встречаются исключительно в виде соединений.
Поскольку сверху вниз возрастают атомные радиусы элементов, сила притяжения валентных электронов к ядру ослабевает и увеличивается легкость отдачи внешних электронов, то есть восстановительные (или металлические) свойства.
Металлические (восстановительные) свойства элементов при движении по периоду убывают слева направо; а по группе убывают снизу вверх.
Элементы-металлы образуют генетический ряд химических соединений, в которых проявляются их металлические химические свойства: металл — оксид металла ($Me_xO_y$) — гидроксид (основание $Me^{+n}(OH)_n$. В сложных веществах проявление металлических свойств характеризуется понятием основность, и говорят, что оксиды и гидроксиды проявляют основные свойства. Соответственно, основные свойства оксидов и гидроксидов металлов сверху вниз по подгруппе увеличиваются, а кислотные — уменьшаются.
Элементы-неметаллы имеют на внешнем энергетическом уровне от четырех до семи электронов, при этом элементы восьмой группы образуют семейство инертных газов. Такие элементы имеют восемь электронов на внешнем энергетическом уровне, то есть такой уровень является завершенным, а сами элементы не вступают в химические реакции с другими элементами, то есть являются химически инертными.
Неметаллы в химических реакциях являются окислителями — они легко присоединяют электроны, отнимая их от атомов других элементов, и приобретают отрицательный заряд.
Легче всего принимают электроны те элементы, у которых число электронов на внешнем уровне больше четырех — до завершения внешнего уровня им более энергетически выгодно принять несколько электронов, чем отдать свои. В наибольшей степени свойства неметаллов проявляют галогены — элементы главной подгруппы VII группы.
Проследим закономерность изменения окислительных свойств по периоду на примере элементов второго периода:
3Li − 4Be − 5B − 6C − 7N − 😯 − 9F − 10Ne.
Литий и бериллий (типичные металлы) — окислительными свойствами не обладают. Неметаллы бор и углерода — очень слабые окислители. Например, они реагируют с углеродом только в электрической печи, где температура превышает 1500$^o$С. С неметаллом азотом алюминий вступает в реакцию уже при 1000$^o$С, а с кислородом порошок алюминия реагирует при внесении в пламя горелки. Фтор окисляет порошкообразный алюминий уже при комнатной температуре. А вот завершающий второй период инертный газ неон вообще не вступает в химические реакции.
Таким образом, неметаллические (окислительные) свойства простых веществ при движении по периоду слева направо возрастают.
Элементы-неметаллы образуют генетический ряд химических соединений, в которых проявляются их неметаллические химические свойства: неметалл — оксид неметалла ($HMe_xO_y$) — гидроксид неметалла (кислородсодержащая кислота $H_n(HMeO)^{n-}$). В сложных веществах проявление неметаллических свойств характеризуется понятием кислотность, и говорят, что оксиды и гидроксиды проявляют кислотные свойства. Соответственно, кислотные свойства оксидов и гидроксидов неметаллов в высших степенях окисления сверху вниз по подгруппе уменьшаются, а основные — увеличиваются.
Кислотные свойства оксидов и гидроксидов по периоду слева направо также возрастают.
Но изменение окислительно-восстановительных свойств происходит постепенно. Так, металл бериллий, в отличие от типичного металла лития, взаимодействует не только с кислотами, но и со щелочами (что характерно для ряда неметаллов), а простое вещество графит, образованное элементом-неметаллом углеродом, подобно металлам, обладает металлическим блеском и проводит электрический ток.
Энергия ионизации
Определение
Энергия ионизации — это наименьшая энергия, которая должна быть затрачена на отрыв электрона от нейтрального атома.
Ионный радиус
Диагональная периодичность
В заключение укажем, что химические элементы, расположенные в диагональном направлении периодической системы, также иногда могут проявлять близость многих физических и химических свойств. Это явление носит название диагонального сходства. Так, химические свойства лития и его соединений иногда оказываются гораздо ближе к свойствам магния, чем к свойствам остальных щелочных металлов. Аналогично свойства бериллия гораздо ближе к свойствам алюминия, чем к свойствам щелочноземельных металлов, а свойства бора ближе к свойствам кремния.
Диагональное сходство можно объяснить, если принять во внимание характер изменения атомных радиусов по группам и периодам: уменьшение радиусов в периодах (слева направо) приблизительно компенсируется увеличением радиусов в группах (сверху вниз). Тем самым оказываются весьма близки атомные радиусы лития и магния, бериллия и алюминия и др.
Все вышеупомянутые закономерности изменения свойств условно отражены в схеме ниже:
Сравнение строения и свойств элементов VIIА и VIIB групп
Чтобы увидеть, как изменяются свойства элементов по периоду рассмотрим строение и свойства типичных металлов и неметаллов – представителей IA и VIIA -группы. Кроме того, рассмотрим также свойства элементов побочных IB и VIIB -групп и сравним их между собой.
К седьмой группе главной подгруппы Периодической системы относятся элементы семейства галогенов. В длиннопериодном варианте ПС эта группа 17. Элементы этой группы обладают строением и свойствами типичных неметаллов, то есть имеют небольшой радиус и 7 электронов на внешнем уровне, поэтому относятся к p-элементам.
Типичным представителем галогенов является хлор. Электронная конфигурация этого элемента отвечает электронной формуле $1s^22s^22p^63s^23p^5$ или $[Ne]3s^23p^5$. Это означает, что валентными являются 7 внешних электронов – 2 s-электрона и 5р-электронов, которые образуют 3 пары и имеют один неспаренный электрон. Поэтому, образуя связь с менее электроотрицательными элементами (водородом или металлами), хлор отнимает у них 1 электрон и достраивает тем самым свой незавершенный уровень. При этом хлор проявляет свойства окислителя и имеет в соединениях степень окисление -1.
Нужно помнить, что хлор расположен в третьем периоде, поэтому имеет три энергетических уровня, а, значит на третьем, внешнем уровне у него имеются вакантные (незанятые) d-орбитали. При переходе в возбужденное состояние электроны с s- и р-подуровней могут перескакивать на более высокий d-энергетический подуровень:
В этом случае “распаренными” получаются 3, 5 или 7 электронов. Поэтому в соединениях с более электроотрицательными элементами, а именно с кислородом, хлор может проявлять степени окисления +1; +3; +5 или +7. В этих степенях окисления он образует оксиды и соответствующие им кислородсодержащие кислоты:
HCL- хлороводородная, соли – хлориды
HCLO – хлорноватистая (кислотный оксид $Cl_2O$, соли — гипохлориты), очень слабая кислота, неустойчивая, окислитель:
$2HClO + H_2S longrightarrow S + Cl_2 + H_2O$
$HCLO_2$ – хлористая (кислотный оксид $Cl_2O_3$, соли — хлориты), неустойчивая;
$HClO_3$ – хлорноватая (кислотный оксид — $Cl_2O_5$, соли – хлораты, $KClO_3$ – бертоллетова соль), в свободном виде не получена, «живет» только в растворах, сильный окислитель:
$HClO_3 + S + H_2O longrightarrow H_2SO_4 + HCl$
$HClO_4$– хлорная (кислотный оксид — $Cl_2O_7$, соли – перхлораты)
Все кислородсодержащие кислоты хлора являются сильными окислителями. Их свойства изменяются следующим образом:
с увеличением степени окисления хлора увеличивается сила кислородсодержащих кислот и их окислительные свойства
В то же время, в минимальной степени окисления (-1) хлор образует сильную кислоту HCl, но не является в ней окислителем.
Рассмотрим теперь особенности строения и свойств элементов IA группы (в длиннопериодном варианте ПС это тоже группа I) на примере натрия. Элементы этой группы являются типичными металлами, то есть обладают большим радиусом, имеют всего 1 валентный электрон, то есть относятся к s-элементам, и в химических реакциях являются типичными восстановителями. Элементы этой группы называются щелочными металлами.
Натрий находится с хлором в одном периоде, имеет электронную конфигурацию $1s^22s^22p^63s^1$ или $[Ne]3s^1$. то есть различия с атомом натрия заключается только в числе внешних валентных электронов. Имея один неспаренный электрон на внешнем уровне, натрий обладает свойствами восстановителя, то есть легко отдает валентный электрон на образование связи, а хлор, обладая свойствами окислителя, легко присоединяет этот электрон. Поэтому при образовании молекулы хлорида натрия валентный электрон натрия полностью переходит к хлору и образуется соединение с ионным типом связи:
Теперь рассмотрим и сравним свойства элементов побочных подгрупп IB и VIIB -групп. К IB-группе, или в длиннопериодном варианте XI группы, относятся металлы подгруппы меди: Cu, Ag, Au. Особенностью строения этих элементов является наличие заполненного предвнешнего (n-1)d-подуровня, которое происходит за счёт перескока электрона с ns-подуровня. Причина возможности такого “перескока” электрона объясняется высокой энергетической устойчивостью полностью заполненного d-подуровня и более высокой, по сравнению с 4s, энергией 3d-подуровня (вспомните порядок заполнения подуровней).
Строением энергетических уровней объясняется химическая инертность простых веществ, образованных этими элементами, которые называют “благородными металлами”. Если медь и серебро при обычных условиях медленно окисляются на воздухе, а также могут вступать во взаимодействие с соединениями серы, например сероводородом, то золото при нормальных условиях не реагирует с химическими веществами. Исключение составляет “царская водка” – смесь концентрированной соляной и азотной кислот.
Для сравнения осталось рассмотреть строение и свойства элементов VIIB-подгруппы, или VII группы в длиннопериодном варианте ПС. Эта подгруппа называется подгруппой марганца и включает три элемента: Mn-магранец, Tc – технеций, Re – рений Рассмотри особенности строения этих элементов на примере марганца. Электронная конфигурация марганца отображается электронной формулой $1s^22s^22p^63s^23p^63d^54s^2$ или $[Ar]3d^54s^2$. Как видно из формулы, у марганца не заполнен предвнешний уровень, на котором находится 5 электронов из 10-ти возможных. Для марганца характерны степени окисления +2, +4 и +7, что связано с более устойчивой конфигурацией $d^5$ и $d^3$.
Простое вещество- марганец, металл серебристо-белого цвета, широко использующийся в металлургии. Марганец образует следующие оксиды: MnO, $Mn_2O_3$, $MnO_2$, $MnO_3$ (не выделен в свободном состоянии) и марганцевый ангидрид $Mn_2O_7$. Оксиды низших валентностей (II, III) носят основной характер, высших – кислотный. Кислотным оксидам соответствуют кислоты и образованные ими соли:
Манганаты — соли нестойких, несуществующих в свободном состоянии кислородных кислот марганца в степенях окисления V, VI и VII:
$MnO_4^{3−}$ – гипоманганаты,
$MnO_4^{2−}$ – манганаты,
$MnO_4^−$ – перманганаты
Все соли марганца, особенно перманганаты, являются сильными окислителями. Например, перманганат калия в зависимости от pH раствора окисляет различные вещества, восстанавливаясь до соединений марганца разной степени окисления. Необходимо запомнить:
Степени окисления марганца:
В кислой среде — до соединений марганца (II), в нейтральной — до соединений марганца (IV), в сильно щелочной — до соединений марганца (VI).
Источник