Типичные свойства кислот какие
Классификация кислот
Кислоты можно классифицировать исходя из разных критериев:
1) Наличие атомов кислорода в кислоте
Кислородсодержащие | Бескислородные |
H3PO4,HNO3,HNO2,H2SO4,H3PO4,H2CO3,H2CO3, HClO4 все органические кислоты (HCOOH, CH3COOH и т.д.) | HF, HCl, HBr, HI, H2S |
2) Основность кислоты
Основностью кислоты называют число «подвижных» атомов водорода в ее молекуле, способных при диссоциации отщепляться от молекулы кислоты в виде катионов водорода H+, а также замещаться на атомы металла:
одноосновные | двухосновные | трехосновные |
HBr, HCl, HNO3, HNO2, HCOOH, CH3COOH | H2SO4, H2SO3, H2CO3, H2SiO3 | H3PO4 |
3) Летучесть
Кислоты обладают различной способностью улетучиваться из водных растворов.
Летучие | Нелетучие |
H2S, HCl, CH3COOH, HCOOH | H3PO4, H2SO4, высшие карбоновые кислоты |
4) Растворимость
Растворимые | Нерастворимые |
HF, HCl, HBr, HI, H2S, H2SO3, H2SO4, HNO3, HNO2, H3PO4, H2CO3, CH3COOH, HCOOH | H2SiO3, высшие карбоновые кислоты |
5) Устойчивость
Устойчивые | Неустойчивые |
H2SO4, H3PO4, HCl, HBr, HF | H2CO3, H2SO3 |
6) Способность к диссоциации
хорошо диссоциирующие (сильные) | малодиссоциирующие (слабые) |
H2SO4, HCl, HBr, HI, HNO3, HClO4 | H2CO3, H2SO3, H2SiO3 |
7) Окисляющие свойства
слабые окислители (проявляют окислительные свойства за счет катионов водорода H+) | сильные окислители (проявляют окислительные свойства за счет кислотообразующего элемента) |
практически все кислоты кроме HNO3 и H2SO4 (конц.) | HNO3 любой концентрации, H2SO4 (обязательно концентрированная) |
Химические свойства кислот
1. Способность к диссоциации
Кислоты диссоциируют в водных растворах на катионы водорода и кислотные остатки. Как уже было сказано, кислоты делятся на хорошо диссоциирующие (сильные) и малодиссоциирующие (слабые). При записи уравнения диссоциации сильных одноосновных кислот используется либо одна направленная вправо стрелка (), либо знак равенства (=), что показывает фактически необратимость такой диссоциации. Например, уравнение диссоциации сильной соляной кислоты может быть записано двояко:
либо в таком виде: HCl = H+ + Cl—
либо в таком: HCl → H+ + Cl—
По сути направление стрелки говорит нам о том, что обратный процесс объединения катионов водорода с кислотными остатками (ассоциация) у сильных кислот практически не протекает.
В случае, если мы захотим написать уравнение диссоциации слабой одноосновной кислоты, мы должны использовать в уравнении вместо знака две стрелки . Такой знак отражает обратимость диссоциации слабых кислот — в их случае сильно выражен обратный процесс объединения катионов водорода с кислотными остатками:
CH3COOH CH3COO— + H+
Многоосновные кислоты диссоциируют ступенчато, т.е. катионы водорода от их молекул отрываются не одновременно, а по очереди. По этой причине диссоциация таких кислот выражается не одним, а несколькими уравнениями, количество которых равно основности кислоты. Например, диссоциация трехосновной фосфорной кислоты протекает в три ступени с поочередным отрывом катионов H+ :
H3PO4 H+ + H2PO4—
H2PO4— H+ + HPO42-
HPO42- H+ + PO43-
Следует отметить, что каждая следующая ступень диссоциации протекает в меньшей степени, чем предыдущая. То есть, молекулы H3PO4 диссоциируют лучше (в большей степени), чем ионы H2PO4— , которые, в свою очередь, диссоциируют лучше, чем ионы HPO42-. Связано такое явление с увеличением заряда кислотных остатков, вследствие чего возрастает прочность связи между ними и положительными ионами H+.
Из многоосновных кислот исключением является серная кислота. Поскольку данная кислота хорошо диссоциирует по обоим ступеням, допустимо записывать уравнение ее диссоциации в одну стадию:
H2SO4 2H+ + SO42-
2. Взаимодействие кислот с металлами
Седьмым пунктом в классификации кислот мы указали их окислительные свойства. Было указано, что кислоты бывают слабыми окислителями и сильными окислителями. Подавляющее большинство кислот (практически все кроме H2SO4(конц.) и HNO3) являются слабыми окислителями, так как могут проявлять свою окисляющую способность только за счет катионов водорода. Такие кислоты могут окислить из металлов только те, которые находятся в ряду активности левее водорода, при этом в качестве продуктов образуется соль соответствующего металла и водород. Например:
H2SO4(разб.) + Zn ZnSO4 + H2
2HCl + Fe FeCl2 + H2
Что касается кислот-сильных окислителей, т.е. H2SO4 (конц.) и HNO3, то список металлов, на которые они действуют, намного шире, и в него входят как все металлы до водорода в ряду активности, так и практически все после. То есть концентрированная серная кислота и азотная кислота любой концентрации, например, будут окислять даже такие малоактивные металлы, как медь, ртуть, серебро. Более подробно взаимодействие азотной кислоты и серной концентрированной с металлами, а также некоторыми другими веществами из-за их специфичности будет рассмотрено отдельно в конце данной главы.
3. Взаимодействие кислот с основными и амфотерными оксидами
Кислоты реагируют с основными и амфотерными оксидами. Кремниевая кислота, поскольку является нерастворимой, в реакцию с малоактивными основными оксидами и амфотерными оксидами не вступает:
H2SO4 + ZnO ZnSO4 + H2O
6HNO3 + Fe2O3 2Fe(NO3)3 + 3H2O
H2SiO3 + FeO ≠
4. Взаимодействие кислот с основаниями и амфотерными гидроксидами
HCl + NaOH H2O + NaCl
3H2SO4 + 2Al(OH)3 Al2(SO4)3 + 6H2O
5. Взаимодействие кислот с солями
Данная реакция протекает в случае, если образуется осадок, газ либо существенно более слабая кислота, чем та, которая вступает в реакцию. Например:
H2SO4 + Ba(NO3)2 BaSO4↓ + 2HNO3
CH3COOH + Na2SO3 CH3COONa + SO2↑ + H2O
HCOONa + HCl HCOOH + NaCl
6. Специфические окислительные свойства азотной и концентрированной серной кислот
Как уже было сказано выше, азотная кислота в любой концентрации, а также серная кислота исключительно в концентрированном состоянии являются очень сильными окислителями. В частности, в отличие от остальных кислот они окисляют не только металлы, которые находятся до водорода в ряду активности, но и практически все металлы после него (кроме платины и золота).
Так, например, они способны окислить медь, серебро и ртуть. Следует однако твердо усвоить тот факт, что ряд металлов (Fe, Cr, Al) несмотря на то, что являются довольно активными (находятся до водорода), тем не менее, не реагируют с концентрированной HNO3 и концентрированной H2SO4 без нагревания по причине явления пассивации — на поверхности таких металлов образуется защитная пленка из твердых продуктов окисления, которая не позволяет молекулами концентрированной серной и концентрированной азотной кислот проникать вглубь металла для протекания реакции. Однако, при сильном нагревании реакция все таки протекает.
В случае взаимодействия с металлами обязательными продуктами всегда являются соль соответствующего метала и используемой кислоты, а также вода. Также всегда выделяется третий продукт, формула которого зависит от многих факторов, в частности, таких, как активность металлов, а также концентрация кислот и температура проведения реакций.
Высокая окислительная способность концентрированной серной и концентрированной азотной кислот позволяет им реагировать не только практическим со всеми металлами ряда активности, но даже со многими твердыми неметаллами, в частности, с фосфором, серой, углеродом. Ниже в таблице наглядно представлены продукты взаимодействия серной и азотной кислот с металлами и неметаллами в зависимости от концентрации:
7. Восстановительные свойства бескислородных кислот
Все бескислородные кислоты (кроме HF) могут проявлять восстановительные свойства за счет химического элемента, входящего в состав аниона, при действии различных окислителей. Так, например, все галогеноводородные кислоты (кроме HF) окисляются диоксидом марганца, перманганатом калия, дихроматом калия. При этом галогенид-ионы окисляются до свободных галогенов:
4HCl + MnO2 MnCl2 + Cl2↑ + 2H2O
16HBr + 2KMnO4 2KBr + 2MnBr2 + 8H2O + 5Br2
14НI + K2Cr2O7 3I2↓ + 2Crl3 + 2KI + 7H2O
Среди всех галогеноводородных кислот наибольшей восстановительной активностью обладает иодоводородная кислота. В отличие от других галогеноводородных кислот ее могут окислить даже оксид и соли трехвалентного железа.
6HI + Fe2O3 2FeI2 + I2↓ + 3H2O
2HI + 2FeCl3 2FeCl2 + I2↓ + 2HCl
Высокой восстановительной активностью обладает также и сероводородная кислота H2S. Ее может окислить даже такой окислитель, как диоксид серы:
2H2S + SO2 3S↓+ 2H2O
Источник
Общие свойства кислот. Классификация
Кислоты — класс сложных химических веществ, состоящих из атомов водорода и кислотных остатков.
В первую очередь кислоты делятся на:
- органические или карбоновые и
- неорганические или минеральные.
Свойства карбоновых кислот подробно разбираются в статье Карбоновые кислоты (ссылка на статью)
В зависимости от количества атомов водорода, которые могут замещаться в химических реакциях различают:
- одноосновные кислоты
- двухосновные кислоты
- трехосновные кислоты.
Не смотря на то, что в уксусной кислоте четыре атома водорода, три из них принадлежат кислотному остатку и в реакциях замещения не участвуют. Соответственно, уксусная кислота — одновалентная.
Свойства неорганических кислот также зависят от наличия в их составе кислорода и делятся на
- бескислородные
- кислородсодержащие.
Растворы кислот способны диссоциировать и проводить электрический ток т.е. являются электролитами. В зависимости от степени диссоциации делятся на:
- сильные
- слабые электролиты.
Химия. 8 класс. Учебник
Учебник написан преподавателями химического факультета МГУ им. М. В. Ломоносова. Отличительными особенностями книги являются простота и наглядность изложения материала, высокий научный уровень, большое количество иллюстраций, экспериментов и занимательных опытов, что позволяет использовать её в классах и школах с углублённым изучением естественно-научных предметов.
Купить
Химические свойства кислот
1. Диссоциация
При диссоциации кислот образуются катионы водорода и анионы кислотного остатка.
HNO3 → H+ + NO-3
HCl → H+ + Cl-
Многоосновные кислоты диссоциируют ступенчато.
Н3РО4 ↔ Н+ + Н2РО-4 (первая ступень)
Н2РО-4 ↔ Н+ + НРO2-4 (вторая ступень)
НРО2-4 ↔ Н+ + PОЗ-4 (третья ступень)
2. Разложение
Кислородсодержащие кислоты разлагаются на оксиды и воду.
H2CO3 → H2O + CO2↑
Бескислородные на простые вещества
3. Реакция с металлами
Кислоты реагируют лишь с теми металлами, что стоят в ряду активности до кислорода. В результате взаимодействия образуется соль и выделяется водород.
Mg + 2HCl → MgCl2 + H2↑
Найти ряд активности можно на последней странице электронного учебника
«Химия 9 класс» под редакцией В. В. Еремина.
Бдительные ученики могут сказать: «Золото стоит в ряду активности металлов после водорода, а с „царской водкой“ реагирует. Как же так?»
Из всех правил есть исключения.
Поскольку в состав азотной кислоты входит азот со степенью окисления +5, а в состав серной — сера со степенью окисления +6, то с металлами реагируют не ионы водорода, а более сильные окислители. Образуется соль, но не происходит выделения водорода.
Au + HNO3 + 4HCl → HAuCl4 + NO + 2H2O.
4. Реакции с основаниями
В результате образуются соль и вода, происходит выделение тепла.
Na2CO3 + 2CH3 — COOH → 2CH3 — COONa + H2O + CO2↑.
Реакции такого типа называются реакциями нейтрализации. Простейшая реакция, которую можно провести на собственной кухне — гашение соды столовым уксусом или 9%раствором уксусной кислоты.
5. Реакции кислот с солями
Вспомним, когда мы разбирали ионные уравнения ( ссылка на статью), одним из условий протекания реакций было образование в ходе взаимодействия нерастворимой соли, выделение летучего газа или слабо диссоциирующего вещества — например, воды. Те же условия сохраняются и для реакций кислот с солями.
BaCl2 + H2SO4 → BaSO4↓ + 2HCl↑
6. Реакция кислот с основными и амфотерными оксидами
В ходе реакции образуется соль и происходит выделение воды.
K2O + 2HNO3 → 2KNO3 + H2O
7. Восстановительные свойства бескислородных кислот
Если в окислительных реакциях первую скрипку играет водород, то в восстановительных реакциях основная роль принадлежит анионному остатку. В результате реакций образуются свободные галогены.
4HCl + MnO2 → MnCl2 + Cl2↑ + 2H2O
Физические свойства кислот
При нормальных условиях (Атмосферное давление = 760 мм рт. ст. Температура воздуха 273,15 K = 0°C) кислоты чаще жидкости, хотя встречаются и твердые вещества: например ортофосфорная H3PO4 или кремниевая H2SiO3.
Некоторые кислоты представляют собой растворы газов в воде: фтороводородная-HF, соляная-HCl, бромоводородная-HBr.
Кислотные свойства кислот в ряду HF → HCl → HBr → HI усиливаются.
Для некоторых кислот (соляная, серная, уксусная) характерен специфический запах.
Благодаря наличию ионов водорода в составе, кислоты обладают характерным кислым вкусом.
Химическая лаборатория не ресторан, и в целях безопасности существует жесткий запрет на опробование на вкус химических веществ.
Как же можно определить кислота в пробирке или нет?
В 1300 году был открыт лакмус, и с тех пор алхимикам и химикам не пришлось рисковать своим здоровьем, пробуя на вкус содержимое пробирок. Запомните, что лакмус в кислой среде краснеет.
Вторым широко используемым индикатором является фенолфталеин.
Простой мнемонический стишок поможет запомнить, как ведут себя индикаторы в разных средах.
Индикатор лакмус — красный
Кислоту укажет ясно.
Индикатор лакмус — синий,
Щёлочь здесь — не будь разиней,
Когда ж нейтральная среда,
Он фиолетовый всегда.
Фенолфталеиновый — в щелочах малиновый
Но несмотря на это в кислотах он без цвета.
Что ещё почитать?
Неметаллы
Биография Д.И. Менделеева. Интересные факты из жизни великого химика
Карбоновые кислоты
Массовая доля вещества
18HBr + 2KMnO4 →2KBr + 2MnBr2 + 8H2O + 5Br2
14НI + K2Cr2O7 →3I2↓ + 2Crl3 + 2KI + 7H2O
#ADVERTISING_INSERT#
Источник
Кислотами называются сложные вещества, в состав молекул которых входят атомы водорода, способные замещаться или обмениваться на атомы металла и кислотный остаток.
По наличию или отсутствию кислорода в молекуле кислоты делятся на кислородсодержащие (H2SO4 серная кислота, H2SO3 сернистая кислота, HNO3 азотная кислота, H3PO4 фосфорная кислота, H2CO3 угольная кислота, H2SiO3 кремниевая кислота) и бескислородные (HF фтороводородная кислота, HCl хлороводородная кислота (соляная кислота), HBr бромоводородная кислота, HI иодоводородная кислота, H2S сероводородная кислота).
В зависимости от числа атомов водорода в молекуле кислоты кислоты бывают одноосновные (с 1 атомом Н), двухосновные (с 2 атомами Н) и трехосновные (с 3 атомами Н). Например, азотная кислота HNO3 одноосновная, так как в молекуле её один атом водорода, серная кислота H2SO4 – двухосновная и т.д.
К И С Л О Т Ы | ||
Одноосновные | Двухосновные | Трехосновные |
HNO3 азотная HF фтороводородная HCl хлороводородная HBr бромоводородная HI иодоводородная | H2SO4 серная H2SO3 сернистая H2S сероводородная H2CO3 угольная H2SiO3 кремниевая | H3PO4 фосфорная |
Неорганических соединений, содержащих четыре атома водорода, способных замещаться на металл, очень мало.
Часть молекулы кислоты без водорода называется кислотным остатком.
Кислотные остатки могут состоять из одного атома (-Cl, -Br, -I) – это простые кислотные остатки, а могут – из группы атомов (-SO3, -PO4, -SiO3) – это сложные остатки.
В водных растворах при реакциях обмена и замещения кислотные остатки не разрушаются:
H2SO4 + CuCl2 → CuSO4 + 2 HCl↑
Слово ангидрид означает безводный, то есть кислота без воды. Например,
H2SO4 – H2O → SO3. Бескислородные кислоты ангидридов не имеют.
Своё название кислоты получают от названия образующего кислоту элемента (кислотообразователя) с прибавлением окончаний «ная» и реже «вая»: H2SO4 – серная; H2SO3 – угольная; H2SiO3 – кремниевая и т.д.
Элемент может образовать несколько кислородных кислот. В таком случае указанные окончания в названии кислот будут тогда, когда элемент проявляет высшую валентность (в молекуле кислоты большое содержание атомов кислорода). Если элемент проявляет низшую валентность, окончание в названии кислоты будет «истая»: HNO3 – азотная, HNO2 – азотистая.
Кислоты можно получать растворением ангидридов в воде. В случае, если ангидриды в воде не растворимы, кислоту можно получить действием другой более сильной кислоты на соль необходимой кислоты. Этот способ характерен как для кислородных так и бескислородных кислот. Бескислородные кислоты получают так же прямым синтезом из водорода и неметалла с последующим растворением полученного соединения в воде:
H2 + Cl2 → 2 HCl;
H2 + S → H2S.
Растворы полученных газообразных веществ HCl и H2S и являются кислотами.
При обычных условиях кислоты бывают как в жидком, так и в твёрдом состоянии.
Химические свойства кислот
Растворыв кислот действуют на индикаторы. Все кислоты (кроме кремниевой) хорошо растворяются в воде. Специальные вещества – индикаторы позволяют определить присутствие кислоты.
Индикаторы – это вещества сложного строения. Они меняют свою окраску в зависимоти от взаимодействия с разными химическими веществами. В нейтральных растворах — они имеют одну окраску, в растворах оснований – другую. При взаимодействии с кислотой они меняют свою окраску: индикатор метиловый оранжевый окрашивается в красный цвет, индикатор лакмус – тоже в красный цвет.
Взаимодействуют с основаниями с образованием воды и соли, в которой содержится неизменный кислотный остаток (реакция нейтрализации):
H2SO4 + Ca(OH)2 → CaSO4 + 2 H2O.
Взаимодействуют с основанными оксидами с образованием воды и соли (реакция нейтрализации). Соль содержит кислотный остаток той кислоты, которая использовалась в реакции нейтрализации:
H3PO4 + Fe2O3 → 2 FePO4 + 3 H2O.
Взаимодействуют с металлами. Для взаимодействия кислот с металлами должны выполнятся некоторые условия:
1. металл должен быть достаточно активным по отношению к кислотам (в ряду активности металлов он должен располагаться до водорода). Чем левее находится металл в ряду активности, тем интенсивнее он взаимодействует с кислотами;
2. кислота должна быть достаточно сильной (то есть способной отдавать ионы водорода H+).
При протекании химических реакций кислоты с металлами образуется соль и выделяется водород (кроме взаимодействия металлов с азотной и концентрированной серной кислотами,):
Zn + 2HCl → ZnCl2 + H2↑;
Cu + 4HNO3 → CuNO3 + 2 NO2 + 2 H2O.
Остались вопросы? Хотите знать больше о кислотах?
Чтобы получить помощь репетитора – зарегистрируйтесь.
Первый урок – бесплатно!
Зарегистрироваться
© blog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.
Источник
Кислотами называют химические соединения, в состав которых входят атомы водорода и кислотные остатки. Молекула кислоты может содержать один или несколько атомов водорода, которые способны замещаться на атомы металлов при взаимодействии с ними.
Важно
Кислотный остаток – это часть молекулы кислоты, в которой отсутствует водород.
Так, молекула серной кислоты H2SO4, как видно из ее формулы, содержит 2 атома водорода и кислотный остаток SO4.
С точки зрения теории электролитической диссоциации кислоты (или кислотные гидроксиды) – это сложные вещества, которые обладают свойством подвергаться диссоциации в растворах, в результате которой образуются ионы водорода.
Перейдем к рассмотрению свойств кислот.
Физические свойства кислот
По физическим свойствам разные кислоты сильно отличаются друг от друга. В нормальных условиях они могут находиться в трех состояниях: твердом, жидком или газообразном. К примеру, HNO3 (азотная кислота) и H2SO4 (серная кислота) представляют собой не имеющие цвета прозрачные жидкости, H3BO3 (борная кислота) и HPO3 (метафосфорная кислота) – твердые вещества, а H2S (сероводород) – газ, раствор которого обладает характерными свойствами слабой кислоты. Соляная кислота (HCl), если она не растворена, также находится в газообразном состоянии и известна как газ хлороводород.
Приведем пример одного из самых интересных опытов с кислотами, демонстрирующий последовательный переход бензойной кислоты (C6H5СООН) из одного агрегатного состояния в другое. Возьмем химический стакан на 500 мл, насыпем в него 5 г бензойной кислоты и положим небольшую сосновую или еловую ветку. Закроем его фарфоровой чашкой, наполненной холодной водой, и начнем нагревать на спиртовке. Кислота, расплавившись, перейдет в жидкое состояние, жидкость эта начнет испаряться, а пары, соприкасаясь с холодной чашкой, превратятся в белые кристаллы. Ветка покроется хлопьями «снега» из бензойной кислоты. Также для проведения опыта вместо бензойной кислоты можно использовать нафталин.
Почти все кислоты растворяются в воде, хотя степень их растворимости варьируется в широких пределах. Существуют и практически нерастворимые кислоты, например, H2SiO3 (кремниевая кислота).
Одни кислоты имеют цвет и запах, у других же их нет. Например, серная кислота ни цветом, ни запахом не обладает.
Сероводород тоже бесцветен, но отличается отвратительным запахом тухлых яиц. В больших концентрациях сероводород смертельно ядовит, а в незначительных количествах он безвреден. Главная его опасность заключается в том, что при высокой концентрации его запах перестает ощущаться. В природе он образуется в процессе вулканической деятельности и при разложении органических остатков растительного и животного происхождения (так, именно его наличием в значительной степени объясняется неприятный запах на болотах). С другой стороны, небольшая концентрация сероводородной кислоты присутствует в минеральных источниках, известных своими целебными свойствами.
Специфический резкий запах, который невозможно ни с чем спутать, имеет уксусная кислота (CH3COOH).
Синильная кислота (HCN) отличается характерным запахом, очень похожим на аромат горького миндаля.
Сернистая кислота (H2SO3) обладает запахом, напоминающим только что зажженную спичку.
Концентрированный раствор азотной кислоты (HNO3) окрашен в бурый цвет, а азотистой кислоты (HNO2) – в голубоватый.
Кислоты в растворенном виде имеют кислый вкус.
Внимание
Чтобы не получить тяжелый химический ожог или отравление, пробовать большинство кислот строго запрещено!
Это не относится к фруктовым кислотам. Они значительно влияют на вкусовые качества плодов и фруктов. Существуют фруктовые кислоты, которые получили свое название от плодов, в составе которых они содержатся: например, лимонная (HOOC-CH2-C(OH)COOH-CH2-COOH) или яблочная кислота (НООС-СН2СН(ОН)-СООН).
Химические свойства кислот
Кислоты обладают рядом общих химическх свойств. Опишем их подробнее.
Под действием кислот изменяется окраска индикаторов. Примеры изменения цвета вы можете увидеть в таблице:
Индикатор | Окраска в нейтральной среде | Окраска в кислоте |
---|---|---|
лакмус | фиолетовая | красная |
фенолфталеин | без цвета | без цвета |
метиловый оранжевый | оранжевая | красная |
Опыт
Возьмем стеклянную емкость с толстыми стенами (тонкостенный сосуд может лопнуть) объемом не менее 1 л, заполним ее хлороводородом и плотно закроем пробкой со вставленной в нее стеклянной трубкой. Конец трубки, находящийся внутри сосуда, должен быть несколько оттянут, а на противоположный конец следует надеть резиновую трубку с зажимом. Затем перевернем емкость вверх дном, конец трубки опустим в бутыль (примерно до половины), заполненную водой, которая подкрашена лакмусом, после чего уберем зажим. В склянке с хлороводородом возникнет разреженное пространство, вода начнет резко врываться в сосуд и из трубки забьет фонтан. Окраска воды при этом изменится на красную.
Кислоты взаимодействуют с металлами, которые в ряду активности расположены перед H2 (за исключением азотной кислоты). В результате образуется соль и высвобождается газообразный водород. Это так называемая реакция замещения.
Zn+2HCl→ZnCl2+H2↑
Для проведения этой реакции рекомендуется налить в пробирку 5 мл соляной кислоты и поместить туда пару гранул цинка. Чтобы образующийся водород сразу не улетучивался, можно заткнуть горло пробирки пальцем. Если через некоторое время резко убрать палец и поднести к пробирке горящую спичку, произойдет воспламенение водорода со свистом (осторожно, возгорание газа может быть очень резким!). Если будет накоплено достаточно большое количество водорода, а пробирка была предварительно закрыта пробкой с трубкой для отвода газа, после поднесения горящей спички к концу трубки начнется равномерное горение водорода. Горение продолжится до тех пор, пока цинк или кислота не будут полностью израсходованы.
Чтобы определить, вступит ли металл в реакцию с кислотой, нужно предварительно найти положение металла в электрохимическом ряду активности:
Li→Rb→K→Ba→Sr→Ca→Na→Mg→Al→Mn→Cr→Zn→Fe→
→Cd→Co→Ni→Sn→Pb→H2→Sb→Bi→Cu→Hg→Ag→Pd→Pt→Au.
Реакционная способность металлов в этом ряду снижается слева направо.
Кислоты участвуют в реакциях обмена с основными оксидами (оксидами металлов). Продуктами таких реакций являются соли и вода.
CuO+H2SO4→CuSO4+H2O
Кислоты вступают в обменные реакции с основаниями с образованием соли и воды. Такие реакции называются реакциями нейтрализации.
H3PO4+3NaOH→Na3PO4+3H2O
Кислоты могут взаимодействовать с солями. Реакция начнется при условии, что соль была образована более слабой или летучей кислотой.
CaCl2+H2SO4→CaSO4↓+2HCl (сульфат кальция выпадает в виде белого осадка)
Любители ставить химические опыты могут положить в слабый раствор соляной кислоты куриное яйцо. Его плотность больше плотности раствора, поэтому оно опустится на дно сосуда. Соляная кислота вступит в реакцию с карбонатом кальция (CaCO3), который находится в составе скорлупы яйца, что приведет к образованию углекислого газа, пузырьки которого закрепятся на скорлупе. Благодаря этим пузырькам яйцо всплывет вверх. После поднятия яйца на поверхность пузырьки исчезнут, так как углекислый газ перейдет в воздух, и яйцо снова утонет. Затем все повторится сначала. Яйцо будет то тонуть, то снова всплывать, пока полностью не разрушится скорлупа.
Опыт
Нам понадобится пустая бутылка (чтобы получилось эффектнее, лучше взять бутылку из-под шампанского), в которую нужно положить несколько кусков мела и залить разбавленной соляной кислотой, после чего закрыть пробкой (не очень туго). Для соблюдения предосторожности бутылку следует завернуть в полотенце. Здесь, как и в предыдущем опыте, произойдет реакция соляной кислоты с карбонатом кальция:
СаСО3+2НСl→CaCl2+CO2+H2O.
Через несколько минут после начала опыта под давлением образовавшегося углекислого газа бутылка «выстрелит», и пробка взлетит на 2,5-3 метра.
Под воздействием высоких температур кислоты, в составе которых присутствуют атомы кислорода, разлагаются на кислотный оксид и воду (за исключением серной и ортофосфорной кислот):
H2SiO3→H2O+SiO2
При разложении неустойчивых кислот образуются газообразное вещество и вода:
H2CO3↔H2O+CO2
Бескислородные кислоты также подвержены реакциям разложения:
H2S→H2+S
Тест по теме «Свойства кислот»
Источник