Температура плавления это какое свойство
Температура плавления (обычно совпадает с температурой кристаллизации) — температура, при которой твёрдое кристаллическое тело совершает переход в жидкое состояние и наоборот. При температуре плавления вещество может находиться как в жидком, так и в твёрдом состоянии. При подведении дополнительного тепла вещество перейдёт в жидкое состояние, а температура не будет изменяться, пока всё вещество в рассматриваемой системе не расплавится. При отведении лишнего тепла (охлаждении) вещество будет переходить в твёрдое состояние (застывать), и, пока оно не застынет полностью, его температура не изменится.
Температура плавления/отвердевания и температура кипения/конденсации считаются важными физическими свойствами вещества. Температура отвердевания совпадает с температурой плавления только для чистого вещества. На этом свойстве основаны специальные калибраторы термометров для высоких температур. Так как температура отвердевания чистого вещества, например олова, стабильна, достаточно расплавить и ждать, пока расплав не начнёт кристаллизоваться. В это время, при условии хорошей теплоизоляции, температура застывающего слитка не изменяется и в точности совпадает с эталонной температурой, указанной в справочниках.
Смеси веществ не имеют температуры плавления/отвердевания вовсе и совершают переход в некотором диапазоне температур (температура появления жидкой фазы называется точкой солидуса, температура полного плавления — точкой ликвидуса). Поскольку точно измерить температуру плавления такого рода веществ нельзя, применяют специальные методы (ГОСТ 20287 и ASTM D 97). Но некоторые смеси (эвтектического состава) обладают определённой температурой плавления, как чистые вещества.
Аморфные (некристаллические) вещества, как правило, не обладают чёткой температурой плавления. С ростом температуры вязкость таких веществ снижается, и материал становится более жидким.
Поскольку при плавлении объём тела изменяется незначительно, давление мало влияет на температуру плавления. Зависимость температуры фазового перехода (в том числе и плавления, и кипения) от давления для однокомпонентной системы даётся уравнением Клапейрона-Клаузиуса. Температуру плавления при нормальном атмосферном давлении (101 325 Па, или 760 мм ртутного столба) называют точкой плавления.
| вещество | температура плавления (°C) |
|---|---|
| гелий (при 2,5 МПа) | −272,2 |
| водород | −259,2 |
| кислород | −219 |
| азот | −210,0 |
| метан | −182,5 |
| спирт | −114,5 |
| хлор | −101 |
| аммиак | −77,7 |
| ртуть[2] | −38,83 |
| водяной лёд[3] | 0 |
| бензол | +5,53 |
| цезий | +28,64 |
| галлий | +29,8 |
| сахароза | +185 |
| сахарин | +225 |
| олово | +231,93 |
| свинец | +327,5 |
| алюминий | +660,1 |
| серебро | +960,8 |
| золото | +1063 |
| медь | +1083,4 |
| кремний | +1415 |
| железо | +1539 |
| титан | +1668 |
| платина | +1772 |
| цирконий | +1852 |
| корунд | +2050 |
| рутений | +2334 |
| молибден | +2622 |
| карбид кремния | +2730 |
| карбид вольфрама | +2870 |
| осмий | +3054 |
| оксид тория | +3350 |
| вольфрам[2] | +3414 |
| углерод (сублимация) | +3547 |
| карбид гафния | +3890 |
| карбид тантала-гафния[4] | +3942 |
Предсказание температуры плавления (критерий Линдемана)[править | править код]
Попытка предсказать точку плавления кристаллических материалов была предпринята в 1910 году Фредериком Линдеманом (англ.)[5]. Идея заключалась в наблюдении того, что средняя амплитуда тепловых колебаний увеличивается с увеличением температуры. Плавление начинается тогда, когда амплитуда колебаний становится достаточно большой для того, чтобы соседние атомы начали частично занимать одно и то же пространство.
Критерий Линдемана утверждает, что плавление ожидается, когда среднеквадратическое значение амплитуды колебаний превышает пороговую величину.
Температура плавления кристаллов достаточно хорошо описывается формулой Линдемана[6]:
где — средний радиус элементарной ячейки, — температура Дебая, а параметр для большинства материалов меняется в интервале 0,15-0,3.
Температура плавления — Расчет
Формула Линдемана выполняла функцию теоретического обоснования плавления в течение почти ста лет, но развития не имела из-за низкой точности.
Расчёт температуры плавления металлов[править | править код]
В 1999 году профессором Владимирского государственного университета И. В. Гаврилиным было получено новое выражение для расчёта температуры плавления:
где — температура плавления, — скрытая теплота плавления, — число Авогадро, — константа Больцмана.
Впервые получено исключительно компактное выражение для расчёта температуры плавления металлов, связывающее эту температуру с известными физическими константами: скрытой теплотой плавления, числом Авогадро и константой Больцмана.
Формула выведена как одно из следствий новой теории плавления и кристаллизации, опубликованной в 2000 г.[7] Точность расчетов по формуле Гаврилина можно оценить по данным таблицы.
По этим данным, точность расчетов меняется от 2 до 30 %, что в расчетах такого рода вполне приемлемо.
См. также[править | править код]
- Температура застывания
Примечания[править | править код]
- ↑ Дрица М. Е., Будберг П. Б., Бурханов Г. С., Дриц А. М., Пановко В. М. Свойства элементов. — Металлургия, 1985. — С. 672.
- ↑ 1 2 Haynes, 2011, p. 4.122.
- ↑ Температура плавления очищенной воды была измерена как 0,002519 ± 0,000002 °C, см. Feistel, R.; Wagner, W. A New Equation of State for H2O Ice Ih (англ.) // J. Phys. Chem. Ref. Data (англ.)русск. : journal. — 2006. — Vol. 35, no. 2. — P. 1021—1047. — doi:10.1063/1.2183324. — Bibcode: 2006JPCRD..35.1021F.
- ↑ Agte, C.; Alterthum, H. Researches on Systems with Carbides at High Melting Point and Contributions to the Problem of Carbon Fusion (англ.) // Z. Tech. Phys. : journal. — 1930. — Vol. 11. — P. 182—191.
- ↑ Lindemann FA (англ.)русск.. The calculation of molecular vibration frequencies (нем.) // Phys. Z. : magazin. — 1910. — Bd. 11. — S. 609—612.
- ↑ Жирифалько Л. Статистическая физика твердого тела. — М.: Мир, 1975. — С. 15.
- ↑ Гаврилин И. В. 3.7. Расчёт температуры плавления металлов // Плавление и кристаллизация металлов и сплавов. — Владимир: Изд. ВлГУ, 2000. — С. 72. — 200 экз. — ISBN 5-89368-175-4.
Литература[править | править код]
- Haynes, William M. CRC Handbook of Chemistry and Physics (неопр.). — 92nd. — CRC Press, 2011. — ISBN 1439855110.
Источник
Температу́ра плавле́ния и отвердева́ния — температура, при которой твёрдое кристаллическое тело совершает переход в жидкое состояние и наоборот. При температуре плавления вещество может находиться как в жидком, так и в твёрдом состоянии. При подведении дополнительного тепла вещество перейдёт в жидкое состояние, а температура не будет меняться, пока всё вещество в рассматриваемой системе не расплавится. При отведении лишнего тепла (охлаждении) вещество будет переходить в твёрдое состояние (застывать) и, пока оно не застынет полностью, температура не изменится.
Температура плавления/отвердевания и температура кипения/конденсации считаются одними из наиболее важных физических свойств вещества. Температура отвердевания совпадает с температурой плавления только для чистого вещества.
На этом свойстве основаны специальные калибраторы термометров для высоких температур. Так как температура застывания чистого вещества, например олова, стабильна, достаточно расплавить и ждать, пока расплав не начнёт кристаллизоваться. В это время, при условии хорошей теплоизоляции, температура застывающего слитка не меняется и в точности совпадает с эталонной температурой, указанной в справочниках.
Смеси веществ не имеют температуры плавления/отвердевания вовсе, и совершают переход в некотором диапазоне температур (температура появления жидкой фазы называется точкой солидуса, температура полного плавления — точкой ликвидуса). Но некоторые смеси (эвтектического состава) обладают определенной температурой плавления, как чистые вещества.
Аморфные (некристаллические) вещества, как правило, не обладают четкой температурой плавления, с ростом температуры снижается вязкость таких веществ, и чем ниже вязкость, тем более жидким становится материал.
Поскольку при плавлении объём тела меняется незначительно, давление мало влияет на температуру плавления. Зависимость температуры фазового перехода (в том числе и плавления, и кипения) от давления для однокомпонентной системы дается уравнением Клапейрона-Клаузиуса. Температуру плавления при нормальном атмосферном давлении (1013,25 гПа, или 760 мм ртутного столба) называют точкой плавления.
Температуры плавления некоторых веществ:
| температура плавления | °C |
|---|---|
| водорода | −259,2 |
| кислорода | −218,8 |
| азота | ALIGN=RIGHT −210,0 |
| этилового спирта | −114,5 |
| аммиака | −77,7 |
| ртути | −38,87 |
| льда (воды) | +0 |
| бензола | +5,53 |
| цезия | T+28,64 |
| сахарозы | +185 |
| сахаринa | +225 |
| oловa | +231,93 |
| свинца | +327,5 |
| алюминия | +660,1 |
| серебра | +960,8 |
| золота | +1063 |
| железа | +1535 |
| платины | +1769,3 |
| корунда | +2050 |
| вольфрама | > + 410 |
af:Smeltpunt
ar:نقطة انصهار
ast:Puntu de fusión
bs:Talište
ca:Punt de fusió
cs:Teplota tání
da:Smeltepunkt
de:Schmelzpunkt
el:Σημείο τήξης
en:Melting point
eo:Frostopunkto
es:Punto de fusión
et:Sulamistemperatuur
fa:دمای ذوب
fi:Sulamispiste
fr:Température de fusion
he:נקודת התכה
hr:Talište
hu:Olvadáspont
id:Titik lebur
is:Bræðslumark
it:Punto di fusione
ja:融点
jbo:selrunme
ko:녹는점
lmo:Pünt de füsiun
lt:Lydymosi temperatūra
lv:Kušanas temperatūra
mk:Точка на топење
nl:Smeltpunt
nn:Smeltepunkt
no:Smeltepunkt
pl:Temperatura topnienia
pt:Ponto de fusão
ro:Punct de topire
sh:Talište
simple:Melting point
sl:Tališče
sr:Тачка топљења
sv:Smältpunkt
th:จุดหลอมเหลว
tr:Ergime noktası
uk:Температура плавлення
uz:Erish harorati
zh:熔点
zh-yue:冰點
- Страница 0 – краткая статья
- Страница 1 – энциклопедическая статья
- Разное – на страницах: 2 , 3 , 4 , 5
- Прошу вносить вашу информацию в «Температура плавления 1», чтобы сохранить ее
Материалы сообщества доступны в соответствии с условиями лицензии CC-BY-SA, если не указано иное.
Источник
Каждый металл и их сплавы имеют различные свойства. Одно из таких свойств — температура плавления. Каждый металл плавится при разной температуре. Все что нужно для перевода вещества из твёрдого состояния в жидкое — источник тепла, который будет разогревать металл до определенной температуры.
Так как у каждого металла температура плавления различная, можно определить менее устойчивый металл к температуре и более. Так самый легкоплавкий металл — ртуть, он готов перейти в жидкое состоянии при температуре равно 39 градусов по цельсию. А вот вольфрам( из чего собственно и сделаны вольфрамовые электроды для аргоновой сварки), расплавится только по достижению температуры в 3422 градусов цельсии.
Что касается сплавов, таких как сталь и прочих, определить температуру, при которой те будут плавиться, довольно сложно. Вся сложность в их составе… Так как состав разный, то и температура плавления различная. Как правило, для сплавов указывается диапазон температур, при которых он будет плавиться. Вообще, температура плавления металлов интересная тема.
Способы плавления
Способов плавления два — внешний и внутренний. Каждый из способов по своему эффективен. Во время применений внешнего способа плавления, на металл или сплав воздействуют теплом с наружи, на пример в печи. А в случае с внутренним, через металл пропускается высокий разряд электрического тока или воздействуют электромагнитным полем.
На фото индукционный электромагнитный нагреватель металла для кузнечного дела.
Процесс плавления
Во время нагрева металла, в его кристаллической решетке начинается повышенное движение молекул. Они начинают двигаться с высокой(относительно) амплитудой, что увеличивает расстояние, между кристалами самой решетки. Образуются дефекты( пустота между атомами), что и является началом процесса плавления. Вот так происходить плавление металла при определенных температурах.
Группы металлов по температуре плавления
Все металлы можно разделить на три группы в связи с температурой их плавления. Ниже можно наблюдать список групп.
- Тугоплавкие (от 1600°C и выше)
- Среднеплавкие (от 600°C до 1600°C)
- Легкоплавкие (до 600°C)
Выше вы можете наблюдать три группы плавления металлов по необходимой температуре. Какие это металлы конкретно, вы сможете посмотреть в таблице.
Таблицы плавления металлов и сплавов
Ниже, представлены таблицы, для наглядного знакомства с температурами плавления тех или иных металлов и их сплавов.
Таблица температуры плавления легкоплавких металлов и сплавов
Таблица с температурами плавления легкоплавких металлов
| Название | Обозначение | Плавление | Кипение |
|---|---|---|---|
| Олово | Sn | 232°C | 2600°C |
| Свинец | Pb | 327°C | 1750°C |
| Цинк | Zn | 420°C | 907°C |
| Калий | K | 63,6°C | 759°C |
| Натрий | Na | 97,8°C | 883°C |
| Ртуть | Hg | 38,9°C | 356.73°C |
| Цезий | Cs | 28,4°C | 667.5°C |
| Висмут | Bi | 271,4°C | 1564°C |
| Полоний | Po | 254°C | 962°C |
| Кадмий | Cd | 321,07°C | 767°C |
| Рубидий | Rb | 39,3°C | 688°C |
| Галлий | Ga | 29,76°C | 2204°C |
| Индий | In | 156,6°C | 2072°C |
| Таллий | Tl | 304°C | 1473°C |
| Литий | Li | 18,05°C | 1342°C |
Таблица температуры плавления среднеплавких металлов и сплавов
Таблица температур плавления среднеплавких металлов и сплавов
| Название | Обозначение | t Плавления | t Кипения |
|---|---|---|---|
| Алюминий | Al | 660°C | 2519°C |
| Германий | Ge | 937°C | 2830°C |
| Магний | Mg | 650°C | 1100°C |
| Серебро | Ag | 960°C | 2180°C |
| Золото | Au | 1063°C | 2660°C |
| Медь | Cu | 1083°C | 2580°C |
| Железо | Fe | 1539°C | 2900°C |
| Кремний | Si | 1415°C | 2350°C |
| Никель | Ni | 1455°C | 2913°C |
| Барий | Ba | 727°C | 1897°C |
| Бериллий | Be | 1287°C | 2471°C |
| Нептуний | Np | 644°C | 3901,85°C |
| Протактиний | Pa | 1572°C | 4027°C |
| Плутоний | Pu | 640°C | 3228°C |
| Актиний | Ac | 1051°C | 3198°C |
| Кальций | Ca | 842°C | 1484°C |
| Радий | Ra | 700°C | 1736,85°C |
| Кобальт | Co | 1495°C | 2927°C |
| Сурьма | Sb | 630,63°C | 1587°C |
| Стронций | Sr | 777°C | 1382°C |
| Уран | U | 1135°C | 4131°C |
| Марганец | Mn | 1246°C | 2061°C |
| Константин | 1260°C | ||
| Дуралюмин | Сплав алюминия, магния, меди и марганца | 650°C | |
| Инвар | Сплав никеля и железа | 1425°C | |
| Латунь | Сплав меди и цинка | 1000°C | |
| Нейзильбер | Сплав меди, цинка и никеля | 1100°C | |
| Нихром | Сплав никеля, хрома, кремния, железа, марганца и алюминия | 1400°C | |
| Сталь | Сплав железа и углерода | 1300°C – 1500°C | |
| Фехраль | Сплав хрома, железа, алюминия, марганца и кремния | 1460°C | |
| Чугун | Сплав железа и углерода | 1100°C – 1300°C |
Таблица температуры плавления тугоплавких металлов и сплавов
Таблица температур плавления тугоплавких металлов и сплавов
| Название | Обозначение | t Плавления °C | t Кипения °C |
|---|---|---|---|
| Вольфрам | W | 3420 | 5555 |
| Титан | Ti | 1680 | 3300 |
| Иридий | Ir | 2447 | 4428 |
| Осмий | Os | 3054 | 5012 |
| Платина | Pt | 1769,3 | 3825 |
| Рений | Re | 3186 | 5596 |
| Хром | Cr | 1907 | 2671 |
| Родий | Rh | 1964 | 3695 |
| Рутений | Ru | 2334 | 4150 |
| Гафний | Hf | 2233 | 4603 |
| Тантал | Ta | 3017 | 5458 |
| Технеций | Tc | 2157 | 4265 |
| Торий | Th | 1750 | 4788 |
| Ванадий | V | 1910 | 3407 |
| Цирконий | Zr | 1855 | 4409 |
| Ниобий | Nb | 2477 | 4744 |
| Молибден | Mo | 2623 | 4639 |
| Карбиды гафния | 3890 | ||
| Карбиды ниобия | 3760 | ||
| Карбиды титана | 3150 | ||
| Карбиды циркония | 3530 | ||
| Палладий | Pd | 1 554 °C | 2980 °C |
Температура плавления и кипения, в чем разница?
Для тех, кому интересно или нужно узнать, в чем разница температурой плавления металла и кипением, расскажу в двух словах. И так, температура плавления та, при которой металл находится на грани перехода из твердого состояния в жидкое. Проще говоря — начало процесса плавления. Но тогда что же такое температура кипения? А это та температура, при которой давление пара расплавленного металла такое же, как и давление внешней среды.
Вместо заключения
Только что, вы познакомились с температурой плавления металлов и сплавов, лицезрели таблицы этих самых температур. Если данная статья оказалась для вас полезной, не забудьте поделиться её в социальных сетях, сделать это просто с помощью специальных кнопок ниже. А так же, нас очень радуют ваши комментарии(чуточку намёка). Всем добра коллеги!
Просмотров: 2 102
Вырази свои эмоции!
Навигация по записям
Источник
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 24 октября 2016;
проверки требуют 15 правок.
Плавле́ние — это процесс перехода тела из кристаллического твёрдого состояния в жидкое, то есть переход вещества из одного агрегатного состояния в другое. Плавление происходит с поглощением теплоты плавления и является фазовым переходом первого рода, которое сопровождается скачкообразным изменением теплоёмкости в конкретной для каждого вещества температурной точке превращения — температура плавления.
Способность плавиться относится к физическим свойствам вещества[1]
При нормальном давлении, наибольшей температурой плавления среди металлов обладает вольфрам (3422 °C), среди простых веществ — углерод (по разным данным 3500 — 4500 °C[2]) а среди произвольных веществ — карбид тантала-гафния Ta4HfC5 (3942 °C). Можно считать, что самой низкой температурой плавления обладает гелий: при нормальном давлении он остаётся жидким при сколь угодно низких температурах.
Многие вещества при нормальном давлении не имеют жидкой фазы. При нагревании они путём сублимации сразу переходят в газообразное состояние.
Плавление смесей и твёрдых растворов[править | править код]
У сплавов, как правило, нет определённой температуры плавления; процесс их плавления происходит в конечном диапазоне температур. На диаграммах состояния «температура — относительная концентрация» имеется конечная область сосуществования жидкого и твёрдого состояния, ограниченная кривыми ликвидуса и солидуса. Аналогичная ситуация имеет место и в случае многих твёрдых растворов.
Фиксированной температуры плавления нет также у аморфных тел; они переходят в жидкое состояние постепенно, размягчаясь при повышении температуры.
Кинетика плавления[править | править код]
Технически плавление вещества осуществляется с помощью подвода тепловой энергии снаружи образца (внешний нагрев, например, в термической печи) или непосредственно во всём его объёме (внутренний нагрев, например, резистивный нагрев при пропускании тока через образец, или индукционный нагрев в высокочастотном электромагнитном поле). Способ плавления не влияет на основные характеристики процесса — температуру и скрытую теплоту плавления, но определяет внешнюю картину плавления, например, появление квази-жидкого слоя на поверхности образца при внешнем нагреве.
Считается, что плавление характеризуется потерей дальнего ориентационного межатомного порядка в кристалле с переходом к «жидкоподобному» или «газоплотному» беспорядку.
Природа плавления[править | править код]
Поясним вначале, почему при некоторой температуре тело предпочитает разорвать часть межатомных связей и из упорядоченного состояния (кристалл) перейти в неупорядоченное (жидкость).
Как известно из термодинамики, при фиксированной температуре тело стремится минимизировать свободную энергию . При низких температурах второе слагаемое (произведение температуры и энтропии) несущественно, и в результате всё сводится к минимизации обычной энергии . Состояние с минимальной энергией — это кристаллическое твёрдое тело. При повышении температуры, второе слагаемое становится всё важнее, и при некоторой температуре оказывается выгоднее разорвать некоторые связи. При этом обычная энергия слегка повысится, но при этом сильно возрастет и энтропия, что в результате приведёт к понижению свободной энергии.
Динамика плавления[править | править код]
Тепловые колебания атомов в решетке кристалла: точки — атомы, соединяющие линейные отрезки — межатомные связи
Поведение атомов жидкости после перехода кристалла через точку плавления, как в среднем постоянные для заданной температуры разрывы и восстановления межкластерных и внутрикластерных межатомных связей (короткие утолщенные отрезки — разорванные связи)[3]
Изначально, в умозрительном, то есть не количественном, представлении считалось, что в динамике плавление происходит следующим образом.
При повышении температуры тела увеличивается амплитуда тепловых колебаний его молекул, и время от времени возникают структурные дефекты решётки в виде перескоков атомов, роста дислокаций и других нарушений кристаллической решетки[4]. Каждый такой дефект, возникновение и перемещение дислокаций требуют определённого количества энергии, поскольку сопровождается разрывом некоторых межатомных связей. Стадия рождения и накопления дефектов называется стадией предплавления. Кроме того, на этой стадии, как правило, при внешнем нагреве возникает квази-жидкий слой на поверхности тела. Считается, что при некоторой температуре концентрация дефектов становится столь большой, что приводит к потере ориентационного порядка в образце, то есть плавлению.
Однако, в связи с тем, что механизм термодеструкции кристалла за счёт образования дефектов и роста дислокаций, протекающей в широком диапазоне температур, не приводит к фазовому превращению 1-го рода, то есть к скачку термодинамических характеристик вещества в конкретной, фиксированной для каждого вещества температурной точке, то Линдеман[5] развил простые представления о ходе процесса плавления, согласно которым амплитуда колебания частиц в точке плавления увеличивается настолько, что становится сравнимой с межатомным расстоянием в кристаллической решётке и приводит к разрушению решётки и потере ориентационного межатомного порядка. Фактически этот «фактор плавления» является основой большинства моделей с определяющей ролью отталкивающей части потенциала парного взаимодействия и наложением условий перехода от порядка к «жидкоподобному» или «газоплотному» беспорядку, рассчитываемых методами Монте-Карло и молекулярной динамики[6][7][8]. Однако, было установлено[9], что в точке плавления среднеквадратичное смещение атомов из состояния равновесия составляет всего около 1/8 межатомного расстояния, что исключает модель Линдемана, то есть соударение атомов как «фактор плавления». При этом энергия атомов оказывается существенно ниже потенциальной энергии атомизации кристаллической решётки, т.е. вещество остаётся в конденсированном (связанном) состоянии.
Теоретические исследования В. Андреева[10][11] показали, что динамика плавления кристаллического тела, как фазового превращения 1-го рода, определяется (в отличие от модели накопления дефектов и дислокаций и модели Линдемана) «катастрофичеким» (crash — [крэш]) конформационным преобразованием (инвертированием) структуры группы атомов при их тепловых колебаниях с амплитудами, меньшими межатомных расстояний в решетке, сопровождаемым разрушением межатомной связи при преодолении потенциального барьера инвертирования в фиксированной температурной точке с затратой постоянной величины энергии, ниже энергии атомизации решетки, и равной удельной теплоте плавления. Этот механизм приводит к подтверждаемой экспериментально кластерной структуре связанного (конденсированного) жидкого состояния с постоянным (для заданной температуры) средним числом разрывающихся и восстанавливающихся межкластерных и внутрикластерных межатомных связей, обеспечивающих сохранение объёма и определяющих подвижность (текучесть) и химическую активность жидкости. С ростом температуры количество атомов в кластерах уменьшается за счет увеличения разорванных связей. Образующиеся свободные атомы (молекулы) испаряются с поверхности жидкости или остаются в межкластерном пространстве в качестве растворённого газа (пара). При температуре кипения вещество переходит в моноатомное (мономолекулярное) газообразное (парообразное) состояние.
Плавление в двумерных системах[править | править код]
В двумерных или квази-двумерных системах кристалл является гораздо более шатким объектом, чем в трёхмерном случае, а именно у двумерного кристалла нет дальнего позиционного порядка. Для сравнения, в одномерном случае кристалл при конечной температуре вообще не может быть стабильным.
Как выяснилось, это приводит к тому, что плавление двумерного кристалла происходит в два этапа. Вначале кристалл переходит в так называемую гексатическую фазу, в которой теряется ближний позиционный порядок, но сохраняется ориентационный, а затем происходит потеря и ориентационного порядка и тело становится жидким.
Примечания[править | править код]
- ↑ С. Т. Жуков Химия 8-9 класс, Глава 1. Основные представления и понятия химии
- ↑ Разброс экспериментальных данных связан, по видимому, с фазовым переходом графит-карбин и различной скоростью нагрева при измерениях. Климовский И. И., Марковец В. В. Влияние фазового перехода графит-карбин на излучательную способность графитовых образцов при их нагревании до температур 3000 K и более // International Scientific Journal for Alternative Energy and Ecology. — 2007. — № 6 (50). — С. 50—59. Архивировано 26 октября 2015 года.
- ↑ Андреев В. Д. Избранные проблемы теоретической физики.. — Киев: Аванпост-Прим,. — 2012.
- ↑ Мейер К. Физико-химическая кристаллография, М., «Металлография», 1972
- ↑ Lindemann F. A. // Phys.Z., 1910, v.11, p.609
- ↑ Wood W. W., Jacobson J. D. Preliminary Results from a Recalculation of the Monte Carlo Equation of State of Hard Spheres // J. Chem. Phys.. — 1957. — № 27. — С. 1207. — doi:10.1063/1.1743956.
- ↑ Alder B. J., Wainwright T. E. Phase Transition in Elastic Disks // Phys. Rev.. — 1962. — № 127. — С. 359. — doi:10.1103/PhysRev.127.359.
- ↑ Hoover W. G., Gray S. G., Johnson K. W. Thermodynamic Properties of the Fluid and Solid Phases for Inverse Power Potentials // J. Chem. Phys.. — 1971. — № 55. — С. 1128. — doi:10.1063/1.1676196.
- ↑ Пайнс Д. Элементарные возбуждения в твёрдых телах. М., Мир, 1965.
- ↑ Андреев В. Д. Крэш (crash)-конформационная кинематика ковалентной решетки алмаза при плавлении. // Журнал структурной химии. — 2001. — № 3. — С. 486—495.
- ↑ Андреев В. Д. «Фактор плавления» при межатомных взаимодействиях в алмазной решетке. // Химическая физика. — 2002. — № 8,т.21. — С. 35—40.
Ссылки[править | править код]
- Поверхностное предплавление льда
- Плавление двумерных кристаллов
Источник