Сколько молекул атф и какие продукты образуются

Сколько молекул атф и какие продукты образуются thumbnail
  • Подготовка к ЕГЭ по биологии 2019

    /

  • Блок С1

    /

  • Вопрос 16.

СОДЕРЖАНИЕ:

Вопрос 1.

Ответ 1.

Вопрос 2.

Ответ 2.

Вопрос 3.

Ответ 3.

Вопрос 4.

Ответ 4.

Вопрос 5.

Ответ 5.

Вопрос 6.

Ответ 6.

Вопрос 7.

Ответ 7.

Вопрос 8.

Ответ 8.

Вопрос 9.

Ответ 9.

Вопрос 10.

Ответ 10.

Вопрос 11.

Ответ 11.

Вопрос 12.

Ответ 12.

Вопрос 13.

Ответ 13.

Вопрос 14.

Ответ 14.

Вопрос 15.

Ответ 15.

Вопрос 16.

Ответ 16.

Вопрос 17.

Ответ 17.

Вопрос 18.

Ответ 18.

Вопрос 19.

Ответ 19.

Какие продукты образуются и сколько молекул АТФ запасается в клетках дрожжей при спиртовом брожении глюкозы, если расщеплению подверглось 30 молекул глюкозы?

Источник

МЕТАБОЛИЗМ. КАТАБОЛИЗМ И АНАБОЛИЗМ

Совокупность реакций обмена веществ, протекающих в организме, называется метаболизмом.

Процессы синтеза специфических собственных веществ из более простых называется анаболизмом, или ассимиляцией, или пластическим обменом. В результате анаболизма образуются ферменты, вещества, из которых построены клеточные структуры, и т.п. Этот процесс, как правило, сопровождается большим потреблением энергии.

Эта энергия получается организмом в других реакциях, в которых более сложные вещества расщепляются до простых. Эти процессы называются катаболизмом, или диссимиляцией, или энергетическим обменом. Продуктами катаболизма у аэробных организмов являются СО2, Н2О, АТФ и

восстановленные переносчики водорода (НАД∙Н и НАДФ∙Н), которые принимают атомы водорода, отщепляемые от органических веществ в процессах окисления. Некоторые низкомолекулярные вещества, которые образуются в ходе катаболизма, в дальнейшем могут служить предшественниками необходимых клетке веществ (пересечение катаболизма и анаболизма).

Катаболизм и анаболизм тесно связаны: анаболизм использует энергию и восстановители, образующиеся в реакциях катаболизма, а катаболизм осуществляется под действием ферментов, образующихся в результате реакций анаболизма.

Сколько молекул атф и какие продукты образуются

Как правило, катаболизм сопровождается окислением используемых веществ, а анаболизм — восстановлением.

пластический обмен (анаболизм)энергетический обмен (катаболизм)
синтез и накопление (ассимиляция) сложных веществ распад сложных веществ на простые (диссимиляция)
 идет с затратой энергии (расходуется АТФ) выделяется энергия (синтезируется АТФ)
может быть источником органических веществ для энергетического обмена является источником энергии для пластического обмена

 Пример:

биосинтез белков, жиров, углеводов;

фотосинтез (синтез углеводов растениями и сине-зелеными водорослями);

хемосинтез

 Пример:

анаэробное дыхание ( = гликолиз = брожение);

аэробное дыхание (окислительное фосфорилирование)

Реакции анаболизма у разных организмов могут иметь некоторые отличия (см. тему “Способы получения энергии живыми организмами”).

АТФ — аденозинтрифосфат

В процессе катаболизма выделяется энергия в виде тепла и в виде АТФ.

Сколько молекул атф и какие продукты образуются

АТФ — единый и универсальный источник энергообеспечения клетки.

АТФ нестабильна.

АТФ является “энергетической валютой”, которую можно потратить на синтезы сложных веществ в реакциях анаболизма.

Сколько молекул атф и какие продукты образуются

Гидролиз (распад) АТФ:

АТФ + $Н_{2}О$ = АДФ + $Н_{3}РО_{4}$ + 40 кДж/моль

Энергетический обмен

Живые организмы получают энергию в результате окисления органических соединений.

Окисление — процесс отдачи электронов.      

Расход полученной энергии:

50% энергии выделяется в виде тепла в окружающую среду;

50% энергии идет на пластический обмен (синтез веществ).

В клетках растений:

крахмал  → глюкоза →  АТФ

В клетках животных:

гликоген  → глюкоза →  АТФ

Подготовительный этап

Ферментативное расщепление сложных органических веществ до простых в пищеварительной системе:

  • белковые молекулы — до аминокислот

  • липиды — до глицерина и жирных кислот

  • углеводы — до глюкозы

Распад (гидролиз) высокомолекулярных органических соединений осуществляется или ферментами желудочно-кишечного тракта или ферментами лизосом.

Вся высвобождающаяся при этом энергия рассеивается в виде тепла.

Простые вещества всасываются ворсинками тонкого кишечника:

  • аминокислоты и глюкоза — в кровь;

  • жирные кислоты и глицерин — в лимфу;

и переносятся к клеткам тканей организма.

Образовавшиеся небольшие органические молекулы могут быть использованы в качестве «строительного материала» или могут подвергаться дальнейшему расщеплению (гликолизу).

На подготовительном этапе может происходить гидролиз запасные вещества клеток: гликогена — у животных (и грибов) и крахмала — у растений. Гликоген и крахмал являются полисахаридами и распадаются на мономеры — молекулы глюкозы.

Гликоген печени используется не столько для собственных нужд печени, сколько для поддержания постоянной концентрации глюкозы в крови, и, следовательно, обеспечивает поступление глюкозы в другие ткани.

Сколько молекул атф и какие продукты образуются

Рис. Функции гликогена в печени и мышцах

Гликоген, запасенный в мышцах, не может распадаться до глюкозы из-за отсутствия фермент. Функция мышечного гликогена заключается в освобождении глюкозо-6-фосфата, потребляемого в самой мышце для окисления и использования энергии.

Распад гликогена до глюкозы или глюкозо-6-фосфата не требует энергии.

Гликолиз (анаэробный этап)

Гликолиз — расщепление глюкозы с помощью ферментов.

Идет в цитоплазме, без кислорода.

Во время этого процесса происходит дегидрирование глюкозы, акцептором водорода служит кофермент НАД+ (никотинамидадениндинуклеотид).

Глюкоза в результате цепочки ферментативных реакций превращается в две молекулы пировиноградной кислоты (ПВК), при этом суммарно образуются 2 молекулы АТФ и восстановленная форма переносчика водорода НАД·Н2:

$С_{6}Н_{12}О_{6}$ + 2АДФ + 2$Н_{3}РО_{4}$ + 2$НАД^{+}$ → 2$С_{3}Н_{4}О_{3}$ + 2АТФ + 2$Н_{2}О$ + 2($НАДН+Н^{+}$).

Дальнейшая судьба ПВК зависит от присутствия кислорода в клетке:

если кислорода нет, у дрожжей и растений происходит спиртовое брожение, при котором сначала происходит образование уксусного альдегида, а затем этилового спирта:

$С_{3}Н_{4}О_{3}$ → $СО_{2}$ + $СН_{3}СОН$,

$СН_{3}СОН$ + $НАДН+Н^{+}$ → $С_{2}Н_{5}ОН$ + $НАД^{+}$.

У животных и некоторых бактерий при недостатке кислорода происходит молочнокислое брожение с образованием молочной кислоты:

$С_{3}Н_{4}О_{3}$ + $НАДН+Н^{+}$ → $С_{3}Н_{6}О_{3}$ + $НАД^{+}$.

В результате гликолиза одной молекулы глюкозы высвобождается 200 кДж, из которых 120 кДж рассеивается в виде тепла, а 80кДж запасается в связях 2 молекул АТФ.

дыхание, или Окислительное фосфорилирование (аэробный этап)

Окислительное фосфорилирование — процесс синтеза АТФ с участием кислорода.

Идет на мембранах крист митохондрий в присутствии кислорода.

Пировиноградная кислота, образовавшаяся при бескислородном расщеплении глюкозы, окисляется до конечных продуктов СО2 и Н2О. Этот многоступенчатый ферментативный процесс называется циклом Кребса, или циклом трикарбоновых кислот.

В результате клеточного дыхания при распаде двух молекул пировиноградной кислоты синтезируются 36 молекул АТФ:

2$С_{3}Н_{4}О_{3}$  + 32$О_{2}$ + 36АДФ + 36$Н_{3}РО_{4}$ → 6$СО_{2}$ + 58$Н_{2}О$ + 36АТФ.

Кроме того, нужно помнить, что две молекулы АТФ запасаются в ходе бескислородного расщепления каждой молекулы глюкозы.

Суммарная реакция расщепления глюкозы до углекислого газа и воды выглядит следующим образом:

$С_{6}Н_{12}О_{6}$ + 6$О_{2}$ + 38АДФ → 6$СО_{2}$ + 6$Н_{2}О$ + 38АТФ + Qт,

где Qт — тепловая энергия.

Таким образом при окислительном фосфорилировании образуется в 18 раз больше энергии (36 АТФ), чем при гликолизе (2 АТФ).

Гликолиз используют некоторые бактерии и паразиты, обитающие в анаэробных условиях.

Источник

Универсальным источником энергии во всех клетках служит АТФ (аденозинтрифосфат, или аденозинтрифосфорная кислота).

Все энергетические затраты любой клетки обеспечиваются за счёт универсального энергетического вещества — АТФ.

АТФ синтезируется в результате реакции фосфорилирования, то есть присоединения одного остатка фосфорной кислоты к молекуле АДФ (аденозиндифосфата):

АДФ + H3PO4+ 40 кДж = АТФ + H2O.

Энергия запасается в форме энергии химических связей АТФ.  Химические связи АТФ, при разрыве которых выделяется много энергии, называются макроэргическими.

При распаде АТФ до АДФ клетка за счёт разрыва макроэргической связи получит приблизительно (40) кДж энергии.

Энергия для синтеза АТФ из АДФ  выделяется в процессе диссимиляции.

Энергетический обмен (диссимиляция, катаболизм) — это совокупность химических реакций постепенного распада органических соединений, сопровождающихся высвобождением энергии, часть которой расходуется на синтез АТФ.

В зависимости от среды обитания организма, диссимиляция может проходить в два или в три этапа.

Процессы расщепления органических соединений у аэробных организмов происходят в три этапа: подготовительныйбескислородный и кислородный.

В результате этого органические вещества распадаются до простейших неорганических соединений.

 

У анаэробных организмов, обитающих в бескислородной среде и не нуждающихся в кислороде (а также у аэробных организмов при недостатке кислорода), диссимиляция происходит в два этапа: подготовительный и бескислородный.

В двухэтапном энергетическом обмене энергии запасается гораздо меньше, чем в трёхэтапном.

Первый этап — подготовительный

Подготовительный этап заключается в распаде крупных органических молекул до более простых: полисахаридов — до моносахаридов, липидов — до глицерина и жирных кислот, белков — до аминокислот.

Этот процесс называется пищеварением. У многоклеточных организмов он осуществляется в желудочно-кишечном тракте с помощью пищеварительных ферментов. У одноклеточных организмов — происходит под действием ферментов лизосом.

В ходе биохимических реакций, происходящих на этом этапе, энергии выделяется мало, она рассеивается в виде тепла, и АТФ  не образуется.

Второй этап — бескислородный (гликолиз)

Второй (бескислородный) этап заключается в ферментативном расщеплении органических веществ, которые были получены в ходе подготовительного этапа. Кислород в реакциях этого этапа не участвует.

Биологический смысл второго этапа заключается в начале постепенного расщепления и окисления глюкозы с накоплением энергии в виде (2) молекул АТФ.

Процесс бескислородного расщепления глюкозы называется гликолиз.

Гликолиз происходит в цитоплазме клеток.

Он состоит из нескольких последовательных реакций превращения молекулы глюкозы C6H12O6 в две молекулы пировиноградной кислоты — ПВК C3H4O3 и две молекулы АТФ (в виде которой запасается примерно (40) % энергии, выделившейся при гликолизе). Остальная энергия (около (60) %) рассеивается в виде тепла.

C6H12O6+2H3PO4+2АДФ=2C3H4O3+2АТФ +2H2O.

Получившаяся пировиноградная кислота при недостатке кислорода в клетках животных, а также клетках многих грибов и микроорганизмов, превращается в молочную кислоту C3H6O3.

HOOC−CO−CH3пировиноградная кислота→НАД⋅H+H+лактатдегидрогеназаHOOC−CHOH−CH3молочная кислота.

В мышцах человека при больших нагрузках и нехватке кислорода образуется молочная кислота и появляется боль. У нетренированных людей это происходит быстрее, чем у людей тренированных.

При недостатке кислорода в клетках растений, а также в клетках некоторых грибов (например, дрожжей), вместо гликолиза происходит спиртовое брожение: пировиноградная кислота распадается на этиловый спирт C2H5OH и углекислый газ CO2:

C6H12O6+2H3PO4+2АДФ=2C2H5OH+2CO2+2АТФ+2H2O.

Третий этап — кислородный

В результате гликолиза глюкоза распадается не до конечных продуктов (CO2 и H2O), а до богатых энергией соединений (молочная кислота, этиловый спирт) которые, окисляясь дальше, могут дать её в больших количествах. Поэтому у аэробных организмов после гликолиза (или спиртового брожения) следует третий, завершающий этап энергетического обмена — полное кислородное расщепление, или клеточное дыхание.

Этот этап происходит на кристах митохондрий.

Третий этап, так же как и гликолиз, является многостадийным и состоит из двух последовательных процессов — цикла Кребса и окислительного фосфорилирования.

Третий (кислородный) этап заключается в том, что при кислородном дыхании ПВК окисляется до окончательных продуктов — углекислого газа и воды, а энергия, выделяющаяся при окислении, запасается в виде  (36) молекул АТФ  ((2) молекулы в цикле Кребса и (34) молекулы в ходе окислительного фосфорилирования).

Этот этап можно представить себе в следующем виде:

2C3H4O3+6O2+36H3PO4+36АДФ=6CO2+42H2O+36АТФ.

Вспомним, что ещё две молекулы АТФ запасаются в ходе бескислородного расщепления каждой молекулы глюкозы (на втором, бескислородном, этапе). Таким образом, в результате полного расщепления одной молекулы глюкозы образуется (38) молекул АТФ.

Суммарная реакция энергетического обмена:

C6H12O6+6O2=6CO2+6H2O+38АТФ.

Для получения энергии в клетках, кроме глюкозы, могут быть использованы и другие вещества: липиды, белки. Однако ведущая роль в энергетическом обмене у большинства организмов принадлежит сахарам.

Источники:

Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. 9 класс // ДРОФА.
Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. Общая биология (базовый уровень) 10–11 класс // ДРОФА.

Лернер Г. И. Биология: Полный справочник для подготовки к ЕГЭ: АСТ, Астрель.

Источник

Все биологические процессы в тканях и клетках живых существ — обменные, выделительные, двигательные, делительные и другие происходят за счет энергии, которая синтезируется в организме. Но откуда берется эта энергия и как ее еще можно использовать?

Что такое АТФ
Фанаты кинотрилогии «Матрица», созданной американскими режиссерами, сценаристами и продюсерами Вачовски, наверняка помнят сцену в первом фильме, когда герой Морфеус показывает Нео батарейку и объясняет, что все, что нужно матрице и ее программам от людей — это их аккумулированная внутри биоэлектрическая энергия. Данное заявление далее почти никак не объясняется и не обыгрывается, но авторы детально и скрупулезно проработали всю идеологию своей фантастической истории, и этот важный, можно сказать, ключевой вопрос, тоже не лишен своей логики. Энергия клеток человека поистине уникальна — можно подумать, что она берется из ниоткуда и на ее основе осуществляются тысячи сложных биохимических процессов, причем одновременно. И хотя вся эта биоэлектрическая мощь нужна самому телу, чтобы функционировать, теоретически такая энергия действительно могла бы питать большое количество технических приборов, если бы ее можно было перевести в обычный ток в бытовом его понимании.

Еще в 1929 году группа ученых из Гарвардской медицинской школы открыла химическое вещество аденозинтрифосфорную кислоту — АТФ — универсальный источник энергии для всех биохимических процессов, протекающих в любых живых системах. Чуть позже, также американские биохимики установили, что именно АТФ является основным переносчиком энергии в живой клетке. То есть все, что клетка делает — дышит, делится, развивается, — она осуществляет за счет этого вещества. Аденозинтрифосфат — это молекула, которая состоит из пятиуглеродного сахара — рибозы, соединения атома углерода с азотом и трифосфатом, который обычным людям более известен как солевой пищевой стабилизатор. Что же представляет собой этот живой биохимический сгусток энергии? Фактически это — в молекулярном размере сахар, протеин, молочная кислота, соли и кислород — все то, без чего любое существо, в том числе и человек, не способно жить.

Как работает АТФ
Человек употребляет продукты питания и в его организм поступают различные вещества, но главное — жирные кислоты и глюкоза. Они проходят многочисленные циклы расщепления, которые тесно связаны с дыханием. Во многом благодаря им из молекулы кислорода выделяются ионы водорода, которые по своей сути являются протонами. Представим себе, что живой организм специально создает пока еще «пустые батарейки» — клетки синтазы специально для последующего наполнения их энергией. Положительные заряды, взаимодействуя внутри клетки синтазы с другими микровеществами, создают электрический потенциал в ее мембране. Исследование, как все это точно происходит, еще в прошлом веке осуществил английский биохимик, член Лондонского королевского общества Питер Митчелл. За открытие хемоосмотического механизма синтеза АТФ путем транспорта протонов в 1978 году он получил Нобелевскую премию по химии. Этот принцип приблизительно выглядит так: протоны быстро движутся по специальным каналам клеточной мембраны синтазы, внутри которой расположен некий биологический вид молекулярноскопического ротора. Несущиеся протоны, словно река, раскручивают маховики этого ротора со скоростью 300 оборотов в секунду. Это сопоставимо с работой двигателя болида «Формулы-1» на максимальных оборотах. Только так действует одна клетка синтазы АТФ, а сколько их в организме человека? В 1997 году английский химик Джон Уокер и его американский коллега, Член Национальной академии наук США Пол Бойер достоверно описали механику работы синтазы АТФ, за что и получили Нобелевскую премию на двоих. Эта круглая молекула во время синтеза аденозинтрифосфорной кислоты за счет потока ионов водорода, вырывающихся наружу, вращается и «захватывает» необходимые ей в межклеточном пространстве разные микробиологические «детали». Поэтому синтаза и действует эффективно и мгновенно — за каждый свой оборот, то есть за одну секунду, она «выпускает» три готовых молекулы АТФ. А сколько секунд в сутках? Если умножить, получается, что ежедневно в человеческом теле вырабатывается примерно 50 кг АТФ. Только зачем нам так много?

Можно ли использовать АТФ в других целях

Ученые выяснили, что обычных запасов АТФ, которые может в себе скапливать человеческий организм, хватает только на первые 2—3 секунды практически любой двигательной активности. Однако мышцы могут работать только при наличии этого аденозинтрифосфата. Поэтому в теле человека специальные биологические системы, состоящие из цепочек-колоний синтазы АТФ, постоянно генерируют новые ее молекулы и даже могут работать медленнее или быстрее в зависимости от продолжительности физической нагрузки. Поэтому, чисто теоретически, метаболизм данной энергии, так необходимой мышцам, можно использовать для увеличения силы и мощности в спорте. Если ученые выяснили, как биохимически синтезируется энергия в организме человека на клеточном уровне, то создать ее в чистом виде должны наверняка. И действительно, цикл получения аденозинтрифосфорной кислоты в лабораторных условиях на данный момент описан во многих научных трудах по биохимии и физиологии человека. Однако такая прямая активация мышечной работы за счет дополнительного введения в организм раствора АТФ наталкивается на ряд различных препятствий. Во-первых, существует запрет Международного антидопингового агентства на применение инъекционной формы АТФ. А во-вторых, многие исследователи опытным путем уже установили, что фармакологически дозировка ампульного раствора АТФ настолько мала, что не оказывает действительно значительного влияния на метаболические процессы в организме человека. Пока медики некоторых стран пытаются использовать фармакокинетические возможности АТФ в лечении тяжелых кардиологических и онкологических заболеваний на клеточном уровне, но с переменным успехом. Ученые еще не догадались, как из аденозинтрифосфорной кислоты сделать биологически активную «батарейку», способную «заряжать» человеческие тела или другие устройства. Но идея «Матрицы» все равно витает в воздухе, и возможно, что очень скоро биоэлектрическая энергия на основе АТФ будет использоваться в каких-нибудь невероятных проектах по оживлению или питанию роботизированных существ.

Видео дня. Экс-банкиры лишились имущества на 50 млрд рублей

Источник

Читайте также:  В каких продуктах наибольшее содержание натрия