С какими веществами кислород проявляет окислительные свойства

С какими веществами кислород проявляет окислительные свойства thumbnail

    Водород проявляет и восстановительные, и окислительные свойства. В обычных условиях благодаря прочности молекул он сравнительно мало активен и непосредственно взаимодействует лишь со фтором. При нагревании же вступает во взаимодействие с многими неметаллами — хлором, бромом, кислородом и пр. Восстановительная способность водорода используется для получения некоторых простых веществ из оксидов и галидов  [c.274]

    Реакционная способность молекул О3 и О2 очень сильно различается. Озон окисляет многие соединения при таких условиях, когда кислород еще не реагирует. В кислых растворах окислительные свойства озона усиливаются. По окислительному действию его превосходят лишь фтор, атомарный кислород, ОН-радикалы и перксенат-ионы. Приведем окислительно-восстановительные потенциалы пары О3/О2 для некоторых полуреакций в водных растворах  [c.478]

    При температуре, соответ. твующей химическому равновесию данной реакционной смеси, окислительные свойства хлора будут равны окислительным свойствам кислорода. [c.82]

    Что является более сильным окислителем — хлор или кислород — в системе, состоящей из газообразных Ог, С 2, НС и НгО Ответ дайте для комнатной температуры и 1000 К, а также вычислите температуру, при которой в данной системе окислительные свойства хлора и кислорода одинаковы. [c.66]

    П р и мер 87. Что является более сильным окислителем хлор или кислород в смеси, состоящей из газообразных Oj, I2, H l л Н2О при стандартных условиях. Ответ дать для комнатной температуры и 1000°К, а также вычислить температуру, при которой в данной смеси окислительные свойства хлора и кислорода одинаковы. [c.80]

    Все кислородные кислоты хлора обладают окислительными свойствами. Особенно сильным окислителем является хлорноватистая кислота, поскольку она очень склонна к распаду с образованием свободного кислорода. Самой прочной из кислородных кислот хлора является хлорная кислота, но и она обладает сильными окислительными свойствами в концентрированных растворах.  [c.65]

    Соли пероксида водорода называются пероксидами или перекисями. Они состоят из положительно заряженных ионов металла и отрицательно заряженных ионов 01 . Степень окисления кислорода в пероксиде водорода равна —1, т. е. имеет промежуточное значение между степенью окисления кислорода в воде (-2) и в молекулярном кислороде (0). Поэтому пероксид водорода обладает свойствами как окислителя, так и восстановителя, т. е. проявляет окислительно-восстановительную двойственность. Все же для него более характерны окислительные свойства, так как стандартный потенциал электрохимической системы [c.475]

    Опыт II. Окислительные свойства нитрата (III) натрия (ТЯГА ). К подкисленному разбавленной серной кислотой раствору иодида калия добавьте раствор нитрита натрия NaNOa. Отметьте выделение газа, его побурёние под действием кислорода воздуха, а также окраску образовавшегося раствора. Экспериментально докажите выделение иода. Напишите уравнение реакции. [c.39]

    Химические свойства. В химическом отношении сера довольно активна. В реакциях с металлами и водородом проявляет, как и кислород, окислительные свойства. В соответствии с местом в периодической системе элементарная сера — менее ярко выраженный окислитель, чем кислород. Ее атомы слабее оттягивают электроны от атомов восстановителей. [c.106]

    Распад и синтез в воде идут с участием многоступенчатых ферментных реакций, в которых металлы с переменной валентностью Ре -Ре Си -Си”” активизируют действие растворенного кислорода. Окислительные свойства кислорода усиливаются в протонной среде, где есть возможность одновременного переноса электрона и связывания образующегося кислородного аниона с ионом водорода или с ионом металла. Биохимическое окисление нефти и нефтепродуктов осуществляется благодаря наличию в морской среде и в донных отложениях микроорганизмов, способных утилизировать органические соединения в качестве своего источника углерода и энергии. [c.44]

    Многие соединения, содержащие переходные металлы в низких степенях окисления, могут окисляться растворенным в воде кислородом. Окислительные свойства кислорода в кислых растворах солей переходных металлов определяются протеканием полуреакции  [c.530]

    Следовательно, сильные окислительные свойства кислород про являет только и кислой среде. [c.115]

    Помимо OF2 ири этом всегда образуются кислород, озон и пероксид водорода. При обычных условиях OF2 — бесцветный газ с резким запахом озона. Фторид кислорода очень ядовит, проявляет сильные окислительные свойства и может служить одним из эффективных окислителей ракетных топлив. [c.366]

    Реакции, вероятно, способствует то, что оксид алюминия обладает окислительными свойствами. Например, в отсутствие кислорода он окисляет ароматические углеводороды [166]. [c.79]

    Окислительные свойства перекиси водорода основаны на сравнительно легком отщеплении одного из атомов кислорода. Перекись водорода при разложении выделяет значительное количество, тепла. Она склонна к самопроизвольному разложению на воду и кислород. При добавлении стабилизаторов стойкость Н2О2 настолько повыщается, что ее можно безопасно транспортировать. Разложение перекиси водорода становится ощутимым лишь тогда,, когда создаются для этого условия или когда она приходит в соприкосновение с веществами, во много раз ускоряющими ее разложение. Свет оказывает лишь очень слабое ускоряющее действие на разложение перекиси водорода. Скорость разложения разбавленного раствора перекиси водорода возрастает с увеличением концентрации пропорционально корню квадратному из количества поглощенной энергии. [c.121]

Читайте также:  У какого вещества наиболее ярко выражены кислотные свойства

    Сг и 9 % N1, быстрее всего происходит при закалке с температур от 1100 до 1200 °С и менее всего выражено при закалке с 900 или 1400 °С [22]. Сплавы высокой чистоты по углероду совершенно устойчивы. Присутствие небольших количеств углерода, азота, кислорода или марганца не оказывает существенного влияния, однако наличие кремния и фосфора (>100 мг/кг) приводит к разрушениям. Кремний вызывает межкристаллитную коррозию нержавеющей стали с 14 % Сг и 14 % N1, если его содержание находится в интервале 0,1—2 % если оно больше или меньше, сплав не склонен к межкристаллитной коррозии [23, 24]. Необходимость строгого контроля окислительных свойств среды и концентрации фосфора в сплаве для предотвращения межкристаллитной коррозии подтверждена также для закаленной. малоуглеродистой нержавеющей стали, содержащей [c.308]

    Опыт 1. Получение кислорода разложением солей и его окислительные свойства (ТЯГА1). Разложением оксохлората (V) калия (бертолетовой соли) в присутствии катализатора (МпОг) получите кислород и соберите его в три цилиндра. Внесите в разные цилиндры с кислородом горящий красный фосфор, горящую серу и раскаленную железную стружку. Объясните наблюдаемое. [c.50]

    Окислительные свойства. В две пробирки возьмите немного оксида марганца (IV), прибавьте в одну 2—3 мл концентрированной серной кислоты, во вторую — соляной. Осторожно подогрейте. Наблюдайте выделение из одной кислорода (проба тлеющей лучинкой), а из другой — хлора. [c.121]

    Исключение представляют благородные газы, р-элементы группы П1А периодической системы, не проявляющие в свободном состоянии окислительных свойств, а также кислород и фтор, не проявляющие восстановительных свойств  [c.95]

    Образовавшиеся атомы кислорода затем объединяются в молекулы. Образование атомарного кислорода при распаде озона обусловливает его сильные окислительные свойства. Следовательно, озон как окислитель активнее кислорода. [c.165]

    Легко отщепляя кислород, нитраты при высокой температуре являются энергичными окислителями. Их водные растворы, напротив, почти не проявляют окислительных свойств. [c.440]

    Электроотрицательность (по Малликену и Полингу) характеризует свойство атома притягивать (удерживать) электроны. В качестве меры электроотрицательности принимают полусумму энергии ионизации (/) и сродства к электрону (Е) — величину 1 (/+ Е). Наибольшая величина электроотрицательности — у элементов с ярко выраженными неметаллическими (окислительными) свойствами (фтор, хлор, кислород, сера и др.) - [c.82]

    При рассмотрении электроотрицательности химических элементов указывалось, что фтор является самым электроотрицательным элементом, затем в порядке уменьшения электроотрицательности идут кислород и хлор. От хлора к брому и иоду в соответствии с общим правилом изменения в группе электроотрицательность также уменьшается. С таким порядком изменения электроотрицательности галогенов тесно связаны их окислительные свойства, поскольку электроотрицательность характеризует склонность атомов присоединять к себе электроны. Следовательно, самым сильным окислителем будет фтор, [c.182]

    Подгруппа VIIА. Члены этой подгруппы предпоследние элементы в соответствующих периодах и являются в них наиболее типичными неметаллами. В соответствии с этим им более свойственно стремление к присоединению электронов, чем к отдаче потенциалы их ионизации высоки и уступают в своем периоде только потенциалам ионизации благородных газов. Из числа элементов больших периодов достоверные сведения имеются лишь о брома и иоде, так как радиоактивность астата и короткий период полураспада его изотопов не позволяют исследовать его свойства па макроскопических количествах этого вещества. Радиусы атомов галогенов меньше радиусов атомов соответствующих элементов подгруппы кислорода и нарастают от фтора к иоду. Следовательно, галогены — окислители более сильные, чем соответствующие элементы подгруппы кислорода. Окислительные свойства в подгруппе УПА падают от фтора к иоду. Устойчивость соединений, где они имеют положительную степень окисления, невелика. Стабильность водородных соединений падает сверху вниз и так же уменьшается в них полярность связи. Водородные соединения и гидроксиды элементов подгруппы УПА в водных растворах проявляют кислотные свойства. [c.358]

Читайте также:  При какой температуре теряет свойства неодимовый магнит

    Способность элементов к присоединению электронов, т. в. способность окислять другие вещества, характеризуется энергией сродства к электрону. Чем больше у элемента энергия сродства к электрону, тем сильнее его окислительная способность. Большой энергией сродства к электрону обладают неметаллы, в особенности фтор и кислород. Окислительные свойства характерны для тех сложных веществ, атомы которых находятся в высших степенях окисления. К таким веществам (окислителям) относят КМПО4, СггОу, РЬОг, Н2504 (конц.), НЫОз и др. [c.61]

    Бромная кислота в отличие от хлорной и йодной в свободном виде неустойчива, и окислительные свойства у нее проявляются гораздо сильнее, чем у хлорной, хотя по силе эти кислоты примерно одинаковы. Йодная же кислота является слабой кислотой, кристаллизуется в виде дигидрата Н104 2И20 и обнаруживает свойства многоосновной кислоты, поскольку образует соли, отвечающие замещению всех пяти атомов водорода атомами металла, например NasIOe. Это неудивительно, так как крупный атом иода координирует вокруг себя больше атомов кислорода, чем бром или хлор (6 вместо 4). Такая же тенденция проявляется в других группах периодической системы химических элементов Д. И. Менделеева (ср., например, серную и теллуровую кислоты). [c.108]

    К сильным окислителям принадлежат неметаллы верхней части VI и Vn групп периодической системы. Сильные окислительные свойства этих веществ объясняются больщой электроот-рицательностью их атомов. Сильнее всего окислительные свойства выражены у фтора, но в практике чаще пользуются в качестве окислителей кислородом, хлором и бромом. [c.270]

    При смкислороде получаются диоксиды ЗеОг и ТеОг, находящиеся нрн обычных условиях в твердом состоянии и являющиеся ангидридами селенистой HgiSeO я теллуристой НгТеОз кислот. В отличие от диоксида сер Ы 8еОг и ТеОа проявляют преимущественно окислительные свойства, легко восстанавливаясь до свободных селена и теллура, например  [c.396]

    Окислительная способность элементарных веществ. Окислительная способность веществ обусловлена способностью составляющих пх атомов притягивать к себе электроны. Окислительная активность атомов элементов является функцией энергии сродства к электрону чем она выше, или чем больше элекгроотрицатель-ность элементов, тем сильнее выражены окислительные свойства атомов. Среди различных окислительных элементов самыми энергичными окислителями являются фтор, кислород, азот, хлор и бром, атомы которых характеризуются самыми большими значениями энергии сродства к электрону. Окислительными свойствами элементарных веществ обусловлена их способность вступать в реакции взаимодействия с различными восстановнтеля.ми, в качестве которых могут выступать элементарные вещества, а также различные соединения. [c.119]

    С уменьшением концентрации растворенного в реактивном топливе кислорода иротмвоизносные свойства улучшаются, по-видимому, за счет подавления окислительных процессов на поверхности металла, но при полном удалении кислорода из топлива (продувкой азотом) износ пар трения достигает катастрофических величин вплоть до схватывания. Повышение температуры топлива до 90-100 С увеличивает износ при трении металлов в топливах, что связано с уменьшением вязкости. Но при дальнейшем нагревании топлива износ снижается, по-видимому, вследствие окисления малостабильных компонентов с образованием поверхностно-активных продуктов окисления (кислот и др.). [c.163]

    Фосфор проявляет восстановительные и окислительные свойства. Он легко окисляется кислородом, галогенами, серой и др. При недостатке окислителя обычно образуются соединения фосфора (П1) (РаОа, РНа1з, Ра5з), при избытке — соединения фосфора (V) (РаОв, РНаи, Р 8б). Окислительная активность фосфора проявляется при взаимодействии с металлами. При нагревании в воде и в особенности в щелочных растворах фосфор диспропорционирует. [c.410]

    При образовании молекулы озона из молекулы кислорода и атома кислорода происходит выделение энергии за счет образования связи (разд. 35.2). Образование же озона только из молекулярного кислорода — эндотермический процесс, так как для расщепления молекулы кислорода на атомы требуется значительная энергия (494 кДж/моль). Эндотермические молекулы озона способны легко разрушаться и вследствие этого проявляют сильные окислительные свойства. Так, озон окисляет серебро до сине-черного AgaOa и иодиды до иода (молекулярный кислород в такие реакции не вступает). [c.477]

    Взаимодействие простых веществ с кислотами — окислительно-восстановительный процесс, в котором кис- ота выступает в качестве окислителя, а простое вещество — в роли восстановителя. Характер протекания процесса зависит рт а) природы кислоты и ее концентрации б) температуры с) природы простого вещества. Разбавленные кислоты, как правило, проявляют окислительные свойства за счет иона водорода, а концентрированные — за счет элемента (не водорода и не кислорода) в высшей степени окисления. НС1 и в разбавленном и в концентрированном виде в реакциях с металлами проявляет окислительные свойства за счет иона водорода . HNO3 и в разбавленном и в концентрированном виде проявляет окислительные свойства только за счет азота (в степени окисления -1-5). [c.107]

Читайте также:  Какие физические свойства света

Практикум по общей химии Издание 3 (1957) — [

c.146

]

Практикум по общей химии Издание 4 (1960) — [

c.146

]

Практикум по общей химии Издание 5 (1964) — [

c.159

]

Источник

Кислород (лат. Oxygenium) – элемент VIa группы 2 периода периодической таблицы Д.И. Менделеева. Первым открывает
группу халькогенов – элементов VIa группы.

Газ без цвета, без запаха, составляет 21% воздуха.

Жидкий кислород

Общая характеристика элементов VIa группы

Общее название элементов VIa группы O, S, Se, Te, Po – халькогены. Халькогены (греч. χαλκος – руда + γενος –
рождающий) – входят в состав многих минералов. Например, кислород составляет 50% массы земной коры.

От O к Po (сверху вниз в периодической таблице) происходит увеличение: атомного радиуса, металлических, основных, восстановительных свойств.
Уменьшается электроотрицательность, энергия ионизация, сродство к электрону.

Среди элементов VIa группы O, S, Se – неметаллы. Te, Po – металлы.

Электронные конфигурации у данных элементов схожи, так как они находятся в одной группе (главной подгруппе!), общая формула ns2np4:

  • O – 2s22p4
  • S – 3s23p4
  • Se – 4s24p4
  • Te – 5s25p4
  • Po – 6s26p4
Основное состояние атома кислорода

У атома кислорода (как и атомы азота, фтора, неона) нет возбужденного состояния, так как отсутствует свободная орбиталь с более
высоким энергетическим уровнем, куда могли бы перемещаться валентные электроны.

Атом кислорода имеется два неспаренных электрона, максимальная валентность II.

Электронная конфигурация кислорода

Природные соединения
  • Воздух – в составе воздуха кислород занимает 21% (это число пригодится в задачах!)
  • В форме различных минералов в земной коре кислорода содержится около 50%
  • В живых организмов кислород входит в состав органических веществ: белков, жиров, углеводов и нуклеиновых кислот
Получение

В промышленности кислород получают из сжиженного воздуха. Также активно применяются кислородные установки, мембрана которых
устроена как фильтр, отсеивающие кислород (мембранная технология).

В лаборатории кислород получают разложением перманганата калия (марганцовки) или бертолетовой соли при нагревании. Применяется реакция
каталитического разложения пероксида водорода.

KMnO4 → K2MnO4 + MnO2 + O2↑

KClO3 → KCl + O2↑

H2O2 → (кат. – MnO2) H2O + O2

На подводных лодках для получения кислорода применяют следующую реакцию:

Na2O2 + CO2 → Na2CO3 + O2↑

Получение кислорода

Химические свойства

Является самым активным неметаллом после фтора, образует бинарные соединения со всеми элементами кроме гелия, неона, аргона. Чаще всего реакции
с кислородом экзотермичны (горение), ускоряются при повышении температуры.

  • Реакции с неметаллами
  • Во всех реакциях, кроме взаимодействия со фтором, кислород проявляет себя в качестве окислителя.

    NO + O2 → (t) NO2

    S + O2 → (t) SO2

    2C + O2 = (t) 2CO (неполное окисление – угарный газ, соотношение 2:1)

    C + O2 = (t) CO2 (полное окисление – углекислый газ, соотношение 1:1)

    F + O2 → OF2 (фторид кислорода, O+2)

    Обнаружение кислорода

  • Реакции с металлами
  • В реакциях кислорода с металлами образуются оксиды, пероксиды и супероксиды. Реакции с активными металлами идут без нагревания.

    Li + O2 → Li2O (оксид)

    Na + O2 → Na2O2 (пероксид)

    K + O2 → KO2 (супероксид)

  • Горение воды
  • Известна реакция горения воды во фторе.

    F2 + H2O → HF + O2

    Горение воды во фторе

  • Окисление органических веществ
  • Все органические вещества сгорают с образованием углекислого газа и воды.

    C3H7 + O2 = CO2 + H2O

    Горение древесины

  • Контролируемое окисление
  • При применении катализаторов и особых реагентов в органической химии достигают контролируемого окисления: алканы окисляются
    до спиртов, спирты – до альдегидов, альдегиды – до кислот.

    Процесс можно остановить на любой стадии в зависимости от желаемого результата.

    Реакции окисления в органической химии

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Источник