При какой температуре стали теряют свои магнитные свойства

При какой температуре стали теряют свои магнитные свойства thumbnail

Еще со времен
Гильберта было известно, что железо и
сталь теряют свои магнитные свойства,
будучи нагреты до светло-красного
каления. Они при этом перестают
намагничиваться и не притягиваются
магнитом, но при охлаждении восстанавливают
свои обычные качества. То же происходит
при несколько более высокой температуре
с кобальтом и при более низкой — с
никкелем. Вообще говоря, переход от
магнитного состояния к немагнитному
происхо­дит очень быстро, как только
температура тела достигает опреде­ленного
предела.

152

В
виде примера приведем данные, которые
былиполучены:
Гопкинсоном во время одного опыта с
куском кованого железа. Когда этот
материал был подвергнут действию слабого
магнитного поля (H=0,3
эрстеда), его магнитная проницаемость
непрерывно возрастала с повышением
температуры сначала медленно, затем
все быстрее и быстрее и так далее, до
предельной температуры, которая в
описываемом случае оказалась равной
775° С. При этой температуре магнитная
проницаемость во много раз больше, чем
в случае холодного железа. При дальнейшем
нагревании последовала чрезвычайно
быстрая потеря магнитных свойств: когда
температура поднялась всего только на
11°, т. е. до 786°С, железо сделалось
практически немагнитным. Его магнитная
проницаемость стала равной 1,1, между
тем как при 775°С проницаемость имела
значение около 11000. На рисунке 89)
представлена графически зависимость

от температуры в данном случае, т. е. при
H=0,3
эрстеда.

При какой температуре стали теряют свои магнитные свойства

Здесь весьма
отчетливо видно, насколько внезапно
магнитная проницаемость данного образца
железа падает при приближении температуры
его к 786°С. Когда материал был подвергнут
дей­ствию сравнительно более сильного
поля, переход от магнитного состояния
к немагнитному совершался более плавно,
но потеря

153

магнитных свойств
столь же полная, и происходит это при
той же температуре, что и раньше. Гопкинсон
назвал ее критиче­ской температурой.
На рисунках 90 и 91 представлена зави­симость
от температуры
при

H=4
эрстедам,

H=45
эрстедам,

При какой температуре стали теряют свои магнитные свойства

При какой температуре стали теряют свои магнитные свойства

для того же сорта
железа, к которому относится и рисунок
89. В случае H=4
эрстедам, по мере повышения температуры
еще наблюдается некоторый подъем ,
и это
продолжается приблизительно до 650°.
Затем довольно
быстро падает. В случае же Н=45
эрстедам, повышения 
по мере повышения температуры совсем
не наблюдается. В пределах от 0 до 500°С
магнитная про­ницаемость практически
сохраняется неизменною, а при дальнейшем
нагревании начинает медленно падать и
сравнительно медленно же падает до
предельного значения =1,1
при температуре в 786° С. Критическая
температура различных сортов железа и
стали колеблется, как показали
исследования, в пределах от 690° до 870°С.
У кобальта критическая температура
равна приблизительно 1000°, у никкеля
—около 310°С.

Из приведенных на
рисунках 89, 90 и 91 кривых ясно, что в
пре­делах нормальных рабочих температур,
встречающихся в обычной электротехнической
практике, изменение магнитных свойств
железа и стали в зависимости от нагревания
настолько ничтожно, что при всякого
рода расчетах им можно пренебречь.

На рисунке 92
приведены еще характерные кривые,
предста­вляющие результаты наблюдений
Гопкинсона над ходом намаг­ничения
железа при разных температурах.

При какой температуре стали теряют свои магнитные свойства

Здесь
кривая I
дает зависимость В
от
Н
при
температуре в 10°. Кривая 11 дает ту же
зависимость при температуре в 670°. Кривая
III
построена для

154

температуры
около 742°, и, наконец, кривая IV
— для температуры около 771°. На рисунке
93 представлены начальные части этих
кривых.

При какой температуре стали теряют свои магнитные свойства

Здесь
масштаб Н
взят
нарочно большим, чтобы наглядно показать
относительное расположение кривых и
их пересечение. Обозначения кривых те
же, что и на рисунке 92.

Из
всех приведенных кривых отчетливо
видно, что чем слабее магнитное поле,
воздействующее на железо, тем большее
значение имеет повышение температуры
в смысле достижения высших степеней
намагничения. В этом отношении мы имеем
полную ана­логию с влиянием сотрясений
на магнитные свойства ферромаг­нитных
материалов (см. § 39). В данном случае
гипотеза элементарных магнитов дает
возможность высказать предположение,
что с повышением температуры устойчивость
отдельных групп магни­тиков должна
уменьшаться, так как при этом возрастает
общая подвижность всех молекул тела.
Надо полагать, что при прибли­жении
к критической температуре эта подвижность
настолько уже велика, что достаточно
небольших добавочных воздействий со
стороны слабой намагничивающей силы
для того, чтобы нарушить исходные
группировки молекулярных магнитиков
и ориентировать ихв
направлении поля.

155

Есть
много данных в пользу того предположения,
что при пере­ходе через критическую
температуру железо я
другие
магнитные материалы вообще претерпевают
какое-то резкое изменение в своих
свойствах. Так, при переходе через
критическую температуру резко меняются
термо-электрические свойства, а также
электрическое сопротивление материала.
Далее, железо и сталь, предварительно
нагретые выше критической температуры,
при остывании темнеют до достижения
этой температуры и затем внезапно
вспыхивают, проходя через нее. Это
последнее явление, открытое Барретом.
было им названо рекалесценцией.
Выяснилось,
что температура рекалесценции как раз
и есть температура критическая в
магнитном отношении. Совре­менная
металлургия в полной мере выяснила
сущность того, что про­исходит с
железом и другими подобными ма­териалами
при переходе через критическую
тем­пературу. Именно, при этом происходит
очень быстрое изменение мо­лекулярного
строения вещества, связанное с превращением
одной мо­дификации его (магнит­ной)
в другую (немаг­нитную).

Читайте также:  Какие фосфорные удобрения вы знаете опишите их свойства

Кроме
тех изменений магнитных качеств же­леза,
которые обнару­живаются немедленно
при повышении температуры его, на
практике приходится встречаться еще с
одним явлением, которое также повидимому
обусловливается нагреванием. Речь идет
о так называемом старении
железа.
Этот
про­цесс протекает очень медленно
при сравнительно низких температурах
и выражается между прочим в изменении
потерь на гистерезис, которые обычно
возрастают с течением времени. Такое
возрастание потерь на гисте-

156

резис
в прежнее время нередко наблюдалось
при работе транс­форматоров переменного
тока, для изготовления которых приме­нялось
простое железо. Есть основание полагать,
что в данном слу­чае мы имеем дело с
медленным изменением молекулярного
строе­ния железа. Опыт показывает,
что процесс старения ускоряется при
нагревании. В частности при температурах
порядка 150°—200° процесс этот протекает
в несколько дней, в то время как при
температурах порядка 50° он протекает
годы, прежде чем железо придет в некоторое
установившееся состояние. В связи с
тем, что явление впервые было наблюдено
в
трансформаторах,
сначала высказывалось предположение,
что возрастание потерь нагистерезис
представляет собою результат некоторой
усталости материала, происходящей
вследствие непрерывного перемагничивания,
подобно усталости упругого тела,
подверженного повторным механическим
напряжениям. Юинг, однако, показал, что
переменное намагниче­ние само по себе
не производит никакого действия. Мордей
выяснил совершенно определенно, что
возрастание потерь на гисте­резис
происходит исключительно благодаря
длительному нагрева­нию материала.
Это было затем подтверждено исследованием
Роджета. Для иллюстрации сказанного
выше о старении железа приведены на
рисунке 94 кривые гистерезиса, полученные
Роджетомдля
некоторого сорта железа при

Bmax=4000
гауссов.

При какой температуре стали теряют свои магнитные свойства

Здесь изображены
три цикла. Первый характеризует железо
в начальной стадии, т. е. до нагревания.
Второй — через 19 часов нагревания при
200°. Третий цикл характеризует материал
после нагревания при той же температуре
в течение 4 дней. За это время был пройден
максимум потерь на гистерезис.

В настоящее время
в области электрического машиностроения
и аппаратостроения вопрос о старении
железа потерял свою остроту, благодаря
тому, что удалось получить сплавы железа,
обладающие весьма устойчивыми магнитными
качествами (например, кремнистое железо).

Источник

Сергей Филин

4 июня 2018  · 1,3 K

Researcher, Institute of Physics, University of Tartu

Если Вы имеете в виду намагниченность (дальний порядок магнитных моментов в структуре), то да. Причем не при плавлении, а при более низкой температуре называемой температурой Кюри. При этой температуре спонтанная намагниченность разрушается и ферро(ферри)магнетики становятся парамагнетиками. Для большинства магнитных материалов температура Кюри намного ниже температуры плавления (исключение – кобальт и некоторые его сплавы, у них достаточно близки Тк и Тпл, но все равно точка Кюри, конечно, всегда ниже Тпл).

Повлияет ли на Землю частица, нагретая до температуры Большого взрыва?

Сусанна Казарян, США, Физик

Чтобы вопрос содержал физический смысл необходимо уточнить понятие “частицы”, а подсказка автора — “температура частицы”, указывает, что это не электрон (он точечный и не может иметь температуры). Для примера возьмём протон, состоящий из трех валентных кварков (uud), связанных цветовыми силами в море кварк-антикварковых пар и глюонов. Звучит жутко непонятно, но всё просто.

Температура (T) термодинамической системы (протон) пропорциональна средней кинетической энергии (E) частиц системы или другими словами T = ⅔(E/k), где k — постоянная Больцмана. Среднюю кинетическую энергию (E = mv²/2) определим из приближений: вклад глюонов нулевой из-за отсутствия у них массы; вклад виртуальных кварк-антикварковых пар моря так же — ноль, по определению; валентные кварки квазисвободны и скорости (v) их близки к скорости света (v ≈ с); средняя масса кварков равна m = 3 МэВ/с². Подставив численные значения, получим T ≈ 10¹⁰ К или 10 млрд К.

Из хронологии Вселенной следует, что это соответствует температуре Вселенной в Адронную эпоху, когда возраст Вселенной был немногим менее 1 секунды. Таким образом, все протоны, в том числе протоны в составе ядер атомов наших тел и планеты Земля, “нагреты” до температуры 10 млрд градусов Кельвина, что в 1000 раз выше температуры в центре Солнца, и ничего — живём без проблем.

Максимальные температуры, достигнутые человеком, на сегодня равны около 4 трлн градусов К или 4×10¹² К для кварк-глюонной плазмы при столкновениях ядер атомов золота на скоростях близких к скорости света (Брукхейвен, Нью-Йорк). Такая температура была в Кварковую эпоху, когда Вселенной было менее 1 мксек.

⋇ Крутые парни могут спросить: “Если всё так, то почему нет теплового излучения от протонов, раскалённых до 10 млрд °C ?”. Подумайте. Пишите.

Читайте также:  Каким из названных свойств географическая оболочка не обладает

Прочитать ещё 3 ответа

Существует ли материал который НЕ пропускает магнитные волны? Например, чтобы через пластинку из материала невозможно было примагнитить железо?

Researcher, Institute of Physics, University of Tartu

Сверхпроводники I рода (например, свинец, олово) обладают полным эффектом Мейснера в сверхпроводящем состоянии, то есть полностью выталкивают магнитное поле. Для сверхпроводников II рода (например, сплавы ниобия, сплавы молибдена, ВТСП-материалы) наблюдается частичный эффект Мейстнера, но если концентрация вихрей Абрикосова в теле сверхпроводника низка (не очень сильное поле), то макроскопически можно считать, что они тоже выталкивают магнитное поле. Через пластинку из таких материалов нельзя ничего примагнитить (если они находятся в СП состоянии, то есть это работает только при очень низких температурах).

Другой вариант – магнитотвердый ферромагнетик (например, неодим-кобальтовый сплав, гексаферриты) в разупорядоченном состоянии.  У него, правда, скорее всего все равно будет какая-то спонтанная намагниченность, но вплоть до какого-то значения напряженности внешнего магнитного поля (определяется коэрцитивной силой ферромагнетика, у магнитотвердых материалов она высокая) сквозь него тоже нельзя будет ничего примагнитить внешним магнитным полем.

Прочитать ещё 3 ответа

Что происходит с магнитом под нагревом??

При сильном нагревании магнит теряет свои свойства и перестает магнитить. Переход от магнитного состояния к немагнитному происходит очень быстро, как только температура тела достигает определенного предела

При сильном нагревании магнит теряет свои свойства и перестает магнитить. Переход от магнитного состояния к немагнитному происходит очень быстро, как только температура тела достигает определенного предела

!

Источник

Коля Жуков

28 апреля  · 1,6 K

При сильном нагревании магнит теряет свои свойства и перестает магнитить. Переход от магнитного состояния к немагнитному происходит очень быстро, как только температура тела достигает определенного предела
При сильном нагревании магнит теряет свои свойства и перестает магнитить. Переход от магнитного состояния к немагнитному происходит очень… Читать далее

Почему магнит магнитится?

На движущиеся заряды в магнитном поле дейтвует сила Лоренца, поэтому магнит и притягивает другие ферромагнетики. Но не у всех металлов в атомах есть непарные электроны, сила Лоренца действует на парные электроны в противоположные стороны, поэтому они не притягиваются магнитами. А посмотреть магниты вы можете на https://mirmagnitov.ru/ .

Прочитать ещё 1 ответ

Можно ли в домашних условиях намагнитить размагнитившийся неодимовый магнит?

Нуу это сильно зависит от того что у тебя валяется дома. Если  куча мощных конденсаторов, способных обеспечить импульс в 10 000 Ампер – то скорее всего да. В любом случае тебе просто надо подержать твой магнит в магнитном поле напряжённостью в 5-7 раз больше его коэрцитивной силы. 

Короче легче новый купить 🙂

Повлияет ли на Землю частица, нагретая до температуры Большого взрыва?

Сусанна Казарян, США, Физик

Чтобы вопрос содержал физический смысл необходимо уточнить понятие “частицы”, а подсказка автора — “температура частицы”, указывает, что это не электрон (он точечный и не может иметь температуры). Для примера возьмём протон, состоящий из трех валентных кварков (uud), связанных цветовыми силами в море кварк-антикварковых пар и глюонов. Звучит жутко непонятно, но всё просто.

Температура (T) термодинамической системы (протон) пропорциональна средней кинетической энергии (E) частиц системы или другими словами T = ⅔(E/k), где k — постоянная Больцмана. Среднюю кинетическую энергию (E = mv²/2) определим из приближений: вклад глюонов нулевой из-за отсутствия у них массы; вклад виртуальных кварк-антикварковых пар моря так же — ноль, по определению; валентные кварки квазисвободны и скорости (v) их близки к скорости света (v ≈ с); средняя масса кварков равна m = 3 МэВ/с². Подставив численные значения, получим T ≈ 10¹⁰ К или 10 млрд К.

Из хронологии Вселенной следует, что это соответствует температуре Вселенной в Адронную эпоху, когда возраст Вселенной был немногим менее 1 секунды. Таким образом, все протоны, в том числе протоны в составе ядер атомов наших тел и планеты Земля, “нагреты” до температуры 10 млрд градусов Кельвина, что в 1000 раз выше температуры в центре Солнца, и ничего — живём без проблем.

Максимальные температуры, достигнутые человеком, на сегодня равны около 4 трлн градусов К или 4×10¹² К для кварк-глюонной плазмы при столкновениях ядер атомов золота на скоростях близких к скорости света (Брукхейвен, Нью-Йорк). Такая температура была в Кварковую эпоху, когда Вселенной было менее 1 мксек.

⋇ Крутые парни могут спросить: “Если всё так, то почему нет теплового излучения от протонов, раскалённых до 10 млрд °C ?”. Подумайте. Пишите.

Прочитать ещё 3 ответа

Кто может простыми словами объяснить как работает постоянный магнит? В каком направлении двигаются в нем электроны и как получается так что если разрезать магнит получится два маленьких магнита?

Давайте заглянем в структуру металлов которые поддаются намагничиванию. Все они имеют в структуре кристаллическую решётку, причём эти решётки, имеют узлы в углах и параллерные связи между узлами. Всё, что может двигаться в кристаллической решётке, движется хаотично. Поместили такой металл в сильное постоянное магнитное поле. Какие изменения протекают в это время? Под действием сильного магнитного поля, которое проходит по внутренней области металла, начинают перестраиваться атомы, у которых не хватает электронов на внешней оболочке имеют (+) заряд и у которых избыток электронов имеют (-) заряд. Под дейсвием магнитного поля образуется упорядочная структура т. е. к положительному (+) заряду притягивается отрицательный (-) заряд образуя связь, которая называется диполь и так во всей структуре металла образуются диполи. И вот, когда сняли магнитное поле, диполи сохраняют свою ориентацию т. е. на одном канце болванки действует сила положительных (+) зарядов, на другом действует сила отрицательных (-) зарядов, что и обясняет появление полюсов на концах болванки. А вот в металлах, в которых другая форма кристаллической рещётки, не удаётся создать однонаправленную ориентацию диполей и поэтому на концах болванки не создаётся сила магнитного действия. При аккуратном разделении болванки на две части, структура диполей сохраняется, при сильном ударе по болванке ударная волна разрушёет структуру диполей, так жэ при нагревании и всё что может двигаться, начинает двигатся хаотично. Есть информация, что в структуре магнита учавствует сила ЭФИРА, но это пока на уровне предположения.

Читайте также:  Какие общие свойства присущи газам

Прочитать ещё 3 ответа

Источник

Евгений Платонов

16 января  · 1,2 K

Автор вопроса считает этот ответ лучшим

При охлаждении до минус 150 градусов по Цельсию магнитные свойства неодимовых магнитов растут, ниже минус 150 гардусов магнитные свойства неодимовых магнитов снижаются, на это тему есть ряд исследований, вот одно из них.

Совершенно ли все марки счётчиков на воду можно нейтрализовать(остановить)неодимовым магнитом?Где взять самые дешёвые,но эффективные?

Студент, ищу выгоду в всем! Автор блога “Простая Экономия”. prosto-ekonom.ru

Действительно, даже современные счетчики с защитой от магнитного воздействия поддаются мощному неодимовому магниту. И купить их очень просто, хоть на али заказывайте, по качеству они не хуже.

Из вопроса следует, что вы собираетесь использовать магнит в незаконных целях. Почитайте здесь о плюсах и минусах: https://prosto-ekonom.ru/dom/vsya-pravda-o-neodmovyh-magnitah/ Я вас не осужаю и не призываю к этому, но в таком случае, не забывайте хотя бы о правилах безоасности. Я лично видел, как в руку с неодимовым магнитом воткнулись несколько саморезов, это нереально сильный магнит. И подальше от детей храните!

И при перевозке тоже будте аккуратнее. Один знакомый долго не мог отлепить его от автомобиля.

Прочитать ещё 1 ответ

Теряет ли магнит свои свойства, когда он расплавлен?

Researcher, Institute of Physics, University of Tartu

Если Вы имеете в виду намагниченность (дальний порядок магнитных моментов в структуре), то да. Причем не при плавлении, а при более низкой температуре называемой температурой Кюри. При этой температуре спонтанная намагниченность разрушается и ферро(ферри)магнетики становятся парамагнетиками. Для большинства магнитных материалов температура Кюри намного ниже температуры плавления (исключение – кобальт и некоторые его сплавы, у них достаточно близки Тк и Тпл, но все равно точка Кюри, конечно, всегда ниже Тпл).

Существует ли материал который НЕ пропускает магнитные волны? Например, чтобы через пластинку из материала невозможно было примагнитить железо?

Researcher, Institute of Physics, University of Tartu

Сверхпроводники I рода (например, свинец, олово) обладают полным эффектом Мейснера в сверхпроводящем состоянии, то есть полностью выталкивают магнитное поле. Для сверхпроводников II рода (например, сплавы ниобия, сплавы молибдена, ВТСП-материалы) наблюдается частичный эффект Мейстнера, но если концентрация вихрей Абрикосова в теле сверхпроводника низка (не очень сильное поле), то макроскопически можно считать, что они тоже выталкивают магнитное поле. Через пластинку из таких материалов нельзя ничего примагнитить (если они находятся в СП состоянии, то есть это работает только при очень низких температурах).

Другой вариант – магнитотвердый ферромагнетик (например, неодим-кобальтовый сплав, гексаферриты) в разупорядоченном состоянии.  У него, правда, скорее всего все равно будет какая-то спонтанная намагниченность, но вплоть до какого-то значения напряженности внешнего магнитного поля (определяется коэрцитивной силой ферромагнетика, у магнитотвердых материалов она высокая) сквозь него тоже нельзя будет ничего примагнитить внешним магнитным полем.

Прочитать ещё 3 ответа

Почему магнит магнитится?

На движущиеся заряды в магнитном поле дейтвует сила Лоренца, поэтому магнит и притягивает другие ферромагнетики. Но не у всех металлов в атомах есть непарные электроны, сила Лоренца действует на парные электроны в противоположные стороны, поэтому они не притягиваются магнитами. А посмотреть магниты вы можете на https://mirmagnitov.ru/ .

Прочитать ещё 1 ответ

Источник