При какой температуре металл теряет магнитные свойства при

При какой температуре металл теряет магнитные свойства при thumbnail

Еще со времен
Гильберта было известно, что железо и
сталь теряют свои магнитные свойства,
будучи нагреты до светло-красного
каления. Они при этом перестают
намагничиваться и не притягиваются
магнитом, но при охлаждении восстанавливают
свои обычные качества. То же происходит
при несколько более высокой температуре
с кобальтом и при более низкой — с
никкелем. Вообще говоря, переход от
магнитного состояния к немагнитному
происхо­дит очень быстро, как только
температура тела достигает опреде­ленного
предела.

152

В
виде примера приведем данные, которые
былиполучены:
Гопкинсоном во время одного опыта с
куском кованого железа. Когда этот
материал был подвергнут действию слабого
магнитного поля (H=0,3
эрстеда), его магнитная проницаемость
непрерывно возрастала с повышением
температуры сначала медленно, затем
все быстрее и быстрее и так далее, до
предельной температуры, которая в
описываемом случае оказалась равной
775° С. При этой температуре магнитная
проницаемость во много раз больше, чем
в случае холодного железа. При дальнейшем
нагревании последовала чрезвычайно
быстрая потеря магнитных свойств: когда
температура поднялась всего только на
11°, т. е. до 786°С, железо сделалось
практически немагнитным. Его магнитная
проницаемость стала равной 1,1, между
тем как при 775°С проницаемость имела
значение около 11000. На рисунке 89)
представлена графически зависимость

от температуры в данном случае, т. е. при
H=0,3
эрстеда.

При какой температуре металл теряет магнитные свойства при

Здесь весьма
отчетливо видно, насколько внезапно
магнитная проницаемость данного образца
железа падает при приближении температуры
его к 786°С. Когда материал был подвергнут
дей­ствию сравнительно более сильного
поля, переход от магнитного состояния
к немагнитному совершался более плавно,
но потеря

153

магнитных свойств
столь же полная, и происходит это при
той же температуре, что и раньше. Гопкинсон
назвал ее критиче­ской температурой.
На рисунках 90 и 91 представлена зави­симость
от температуры
при

H=4
эрстедам,

H=45
эрстедам,

При какой температуре металл теряет магнитные свойства при

При какой температуре металл теряет магнитные свойства при

для того же сорта
железа, к которому относится и рисунок
89. В случае H=4
эрстедам, по мере повышения температуры
еще наблюдается некоторый подъем ,
и это
продолжается приблизительно до 650°.
Затем довольно
быстро падает. В случае же Н=45
эрстедам, повышения 
по мере повышения температуры совсем
не наблюдается. В пределах от 0 до 500°С
магнитная про­ницаемость практически
сохраняется неизменною, а при дальнейшем
нагревании начинает медленно падать и
сравнительно медленно же падает до
предельного значения =1,1
при температуре в 786° С. Критическая
температура различных сортов железа и
стали колеблется, как показали
исследования, в пределах от 690° до 870°С.
У кобальта критическая температура
равна приблизительно 1000°, у никкеля
—около 310°С.

Из приведенных на
рисунках 89, 90 и 91 кривых ясно, что в
пре­делах нормальных рабочих температур,
встречающихся в обычной электротехнической
практике, изменение магнитных свойств
железа и стали в зависимости от нагревания
настолько ничтожно, что при всякого
рода расчетах им можно пренебречь.

На рисунке 92
приведены еще характерные кривые,
предста­вляющие результаты наблюдений
Гопкинсона над ходом намаг­ничения
железа при разных температурах.

При какой температуре металл теряет магнитные свойства при

Здесь
кривая I
дает зависимость В
от
Н
при
температуре в 10°. Кривая 11 дает ту же
зависимость при температуре в 670°. Кривая
III
построена для

154

температуры
около 742°, и, наконец, кривая IV
— для температуры около 771°. На рисунке
93 представлены начальные части этих
кривых.

При какой температуре металл теряет магнитные свойства при

Здесь
масштаб Н
взят
нарочно большим, чтобы наглядно показать
относительное расположение кривых и
их пересечение. Обозначения кривых те
же, что и на рисунке 92.

Из
всех приведенных кривых отчетливо
видно, что чем слабее магнитное поле,
воздействующее на железо, тем большее
значение имеет повышение температуры
в смысле достижения высших степеней
намагничения. В этом отношении мы имеем
полную ана­логию с влиянием сотрясений
на магнитные свойства ферромаг­нитных
материалов (см. § 39). В данном случае
гипотеза элементарных магнитов дает
возможность высказать предположение,
что с повышением температуры устойчивость
отдельных групп магни­тиков должна
уменьшаться, так как при этом возрастает
общая подвижность всех молекул тела.
Надо полагать, что при прибли­жении
к критической температуре эта подвижность
настолько уже велика, что достаточно
небольших добавочных воздействий со
стороны слабой намагничивающей силы
для того, чтобы нарушить исходные
группировки молекулярных магнитиков
и ориентировать ихв
направлении поля.

155

Есть
много данных в пользу того предположения,
что при пере­ходе через критическую
температуру железо я
другие
магнитные материалы вообще претерпевают
какое-то резкое изменение в своих
свойствах. Так, при переходе через
критическую температуру резко меняются
термо-электрические свойства, а также
электрическое сопротивление материала.
Далее, железо и сталь, предварительно
нагретые выше критической температуры,
при остывании темнеют до достижения
этой температуры и затем внезапно
вспыхивают, проходя через нее. Это
последнее явление, открытое Барретом.
было им названо рекалесценцией.
Выяснилось,
что температура рекалесценции как раз
и есть температура критическая в
магнитном отношении. Совре­менная
металлургия в полной мере выяснила
сущность того, что про­исходит с
железом и другими подобными ма­териалами
при переходе через критическую
тем­пературу. Именно, при этом происходит
очень быстрое изменение мо­лекулярного
строения вещества, связанное с превращением
одной мо­дификации его (магнит­ной)
в другую (немаг­нитную).

Кроме
тех изменений магнитных качеств же­леза,
которые обнару­живаются немедленно
при повышении температуры его, на
практике приходится встречаться еще с
одним явлением, которое также повидимому
обусловливается нагреванием. Речь идет
о так называемом старении
железа.
Этот
про­цесс протекает очень медленно
при сравнительно низких температурах
и выражается между прочим в изменении
потерь на гистерезис, которые обычно
возрастают с течением времени. Такое
возрастание потерь на гисте-

156

резис
в прежнее время нередко наблюдалось
при работе транс­форматоров переменного
тока, для изготовления которых приме­нялось
простое железо. Есть основание полагать,
что в данном слу­чае мы имеем дело с
медленным изменением молекулярного
строе­ния железа. Опыт показывает,
что процесс старения ускоряется при
нагревании. В частности при температурах
порядка 150°—200° процесс этот протекает
в несколько дней, в то время как при
температурах порядка 50° он протекает
годы, прежде чем железо придет в некоторое
установившееся состояние. В связи с
тем, что явление впервые было наблюдено
в
трансформаторах,
сначала высказывалось предположение,
что возрастание потерь нагистерезис
представляет собою результат некоторой
усталости материала, происходящей
вследствие непрерывного перемагничивания,
подобно усталости упругого тела,
подверженного повторным механическим
напряжениям. Юинг, однако, показал, что
переменное намагниче­ние само по себе
не производит никакого действия. Мордей
выяснил совершенно определенно, что
возрастание потерь на гисте­резис
происходит исключительно благодаря
длительному нагрева­нию материала.
Это было затем подтверждено исследованием
Роджета. Для иллюстрации сказанного
выше о старении железа приведены на
рисунке 94 кривые гистерезиса, полученные
Роджетомдля
некоторого сорта железа при

Bmax=4000
гауссов.

При какой температуре металл теряет магнитные свойства при

Здесь изображены
три цикла. Первый характеризует железо
в начальной стадии, т. е. до нагревания.
Второй — через 19 часов нагревания при
200°. Третий цикл характеризует материал
после нагревания при той же температуре
в течение 4 дней. За это время был пройден
максимум потерь на гистерезис.

В настоящее время
в области электрического машиностроения
и аппаратостроения вопрос о старении
железа потерял свою остроту, благодаря
тому, что удалось получить сплавы железа,
обладающие весьма устойчивыми магнитными
качествами (например, кремнистое железо).

Источник

Железо теряет свой магнетизм, когда его нагревают до нескольких сотен градусов, но ядро ​​Земли, которое создает достаточно сильное магнитное поле для удержания планеты, состоит из железа, который настолько горячен, что он находится в жидком состоянии!

Почему же тогда расплавленное железо в ядре Земли производит магнитное поле?

Давайте начнем прямо со всей этой тайны.

Ферромагнитные материалы

Железо представляет собой ферромагнитный материал. (Фото: Pixabay)

Чтобы объяснить ферромагнетизм железа вам простыми словами, я бы сказал, что железо состоит из крошечных «вещей» (точнее атомных моментов), атомов, которые действуют как крошечные магниты, так как все они имеют север и южные полюса (как обычные магниты).

Когда вы задерживаете магнит возле железного объекта, эти крошечные магниты присутствуют внутри объекта, выстраиваются сами или выстраиваются в линию. Это то, что делает этот объект магнитным, и любой объект, который ведет себя подобным образом при наличии внешнего магнитного поля, называется ферромагнитным материалом.

Однако, когда вы нагреваете ферромагнитный материал, как железо, все начинает меняться.

Что происходит, когда вы нагреваете ферромагнитный материал?

Ядро Земли состоит из огромного количества железа. (Фото: Naeblys / Shutterstock)

Итак, довольно очевидно, что железо перестает быть ферромагнитным материалом, превышающим 770 градусов по Цельсию. Однако мы также знаем, что ядро ​​Земли состоит из расплавленного железа, который настолько невероятно горячий (почти 6000 градусов Цельсия), что он делает сердцевину такой же горячей, как и поверхность самого солнца! Не только это, но и расплавленный железный сердечник производит очень сильное магнитное поле, что делает Землю пригодной для жизни планетой.

Но разве это не противоречит самому себе? Если железо теряет свои ферромагнитные свойства и перестает быть магнитом при (относительно) ничтожной температуре 770 градусов Цельсия, то как же ядро ​​Земли, которое в основном состоит из железа, создает такое сильное магнитное поле?

Как земное ядро ​​производит магнитное поле?

Динамо – это устройство, которое преобразует механическую энергию в электрическую. Если вы знаете физические условия ядра Земли, то вы сможете понять теорию динамо в мгновение ока.

Обратите внимание, что внутренний сердечник твердый из-за условий высокого давления. (Фото: Kelvinsong / Wikimedia Commons)

Ядро Земли имеет два сегмента: внутреннее и внешнее ядро. Внешний сердечник настолько горячий, что он существует в жидком состоянии, но внутренний сердечник является твердым, из-за условий чрезвычайно высокого давления (источник). Кроме того, внешнее ядро ​​постоянно перемещается из-за вращения Земли и конвекции.

Теперь движение жидкости во внешнем ядре перемещает расплавленное железо (т. Е. Проводящий материал) через уже существующее слабое магнитное поле. Этот процесс генерирует электрический ток (из-за магнитной индукции). Затем этот электрический ток генерирует магнитное поле, которое взаимодействует с движением жидкости для создания вторичного магнитного поля.

Вторичное магнитное поле усиливает начальное магнитное поле, и процесс становится самоподдерживающимся. Если движение жидкости во внешнем сердечнике не прекратится, сердечник продолжит производить магнитное поле. Это как раз предпосылка фильма научной фантастики 2003 года The Core .

Проще говоря, расплавленное железо, присутствующее в ядре, непосредственно не создает магнитного поля; скорее, он производит электрический ток, который, в свою очередь, производит электромагнитный эффект, который в конечном итоге создает сильное магнитное поле ядра Земли.

Источник

Короткое введение—————— Перевод с английского

Пару лет назад, я занялся ковкой клинков. Под руку естественно попались
рессоры, пружины, подшипники, напильники и т.п. , т.е. изделия выполненные из
углеродистой стали. И я перековывал орала на мечи 🙂 Кидал их в самодельный
горн, придавал им форму клинка, далее наждак …, ну думаю все с этим знакомы.
Но результат был печальным. При закалке клинуи вело волной. Десятка два, почти
готовых клинков разломанные буквально пальцами валялись в коробке кучкой
обломков. На изломе они имели крупное зерно, видимое невооруженным взглядом.

Я искал причину моей неудачии не где не мог найти точного ответа. Учебники
И справочники по металлургии подавляли килограммами своих сведений и
академичностью. Там что-то говорили про нармализацию, отжиг, приводили кучу
цифр, а я не маг понять, что, как, в какой последовательности делать. Пытался
на конференциях задавать вопросы, но видимо мастера не горели желанием делится
своими проф. Секретами и отвечали весьма уклончиво типа: “Правильная сталь,
грамотная закалка, не в домашних условиях” и т.п. ничего не значащие фразы. А
если что-то и говорили то опять же: “Нагреть до светло-вишневого цвета, обратить
внимание на цвет искры …”

Дела мои были плохи, пока я не наткнулся в Интернете на статью замечательно
мужика, которого зовут Max Burnett. Прочитав ее у меня все стало получатся, а
статья стала своеобразной библией. Есть же люди на свете!

Частенько в Инете я встречаю людей, которые хотят выковать, именно полностью
С нуля изготовит свой первый клинок. Именно им посвящается мой несколько вольный
перевод. Извиняюсь, если что не так.
————————————

Heat Treating
by Max Burnett

Закалка клинков из рессор и подшипников
Написано Максимом Пережогиным (Max Burnett) 🙂

Это всего на всего введение, что бы помочь понять загадку, емкого выражения
как закалка стали. Я также скажу, какие шаги вам нужно будет сделать перед тем
как вы будете непосредственно закаливать сталь.

Я упомяну только основные принципы в легко понимаемой форме, но это очень
важно, что бы вы поняли, что происходит в куске стали с каким вы работаете. А
так же что бы знали наиболее важные термины с какими вам придется встретится при
чтении.

Сталь, которую я буду использовать в данном описании, низко легированная
углеродистая сталь; 1084 (углерод-84-.90 , марганец – .72-.90). Есть несколько
причин почему это хорошая сталь для ковки лезвий, и первое слово это:
Эвтектоидная. Умные головы металлургии произносят эта так: Эвтектоид, или точка
баланса содержания углерод/сталь; 0.85% углерода. Все это означает для меня и
для вас, что нет причин использовать сталь с большим содержанием углерода для
лезвия ножа, если вы не имеете дело спец. сталями, типа высоколегированных, или
высокоуглеродистыми сталями. (О них другой разговор) Более высокое содержание
углерода отнесет сталь к классу “заэвтетоидных”. Более низкое содержание,
естественно, к “доэвтетоидным”. Но, достаточно об этом.

Если вы ничего и не вынесите из этой статьи, то хотя бы, запомните крепко-
накрепко следующее: Не доверяйте вашим глазам что бы определить, когда сталь
готова для нормализации, отжига, или закалки. Вы просто напросто не получите
хороших, стабильных результатов. Используйте обычный магнит, чтобы определять,
когда сталь переходит в немагнитное состояние.

А сейчас, очень важно узнать, почему сталь магнитится по разному, в процессе
нагрева/охлаждения. Когда вы подогреваете ваше лезвие в горне, сталь нагревается
все сильнее и сильнее, и меняет цвет от едва заметного, до ярко красного
непонятно какой температуры. Когда идет нагрев, ваш магнит не солгет вам. А вот
когда идет охлаждение, сталь будет оставаться немагнитной
достаточно продолжительное время. Вообще-то, извиняюсь, я забежал вперед, через
минуту вы все узн

Источник

От чего зависят магнитные свойства материалов

Для определения магнитных свойств нержавейки и других сплавов используется определенная формула, в которой отражается коэффициент пропорциональности и магнитная восприимчивость. В зависимости от типа используемого коэффициента нержавеющая сталь входит в одну из нескольких групп:

  1. При коэффициенте выше нуля материал относится к группе парамагнетиков.
  2. При использовании нуля нержавейка относится к диамагнетикам.
  3. Ферромагнетики характеризуются хорошей магнитной восприимчивостью. В эту группу входят никель, кадмий и железо.

Магнитные свойства нержавейки

Нержавейка магнитится при воздействии определенного поля. Подобная реакция связана с особенностями структуры сплава, в некоторой степени, от химического состава. Некоторые вещества характеризуются тем, что реагируют на воздействие магнита.

Классификация нержавейки

И все же, нержавейка магнитится или нет? В зависимости от состава химических элементов и внутренней структуры она бывает магнитной или нет, и делится на следующие типы:

  • Ферритные – содержат хрома более 20%, устойчивы к агрессивным средам, наделены магнитными свойствами, доступны по цене, имеют широкое применение.
  • Аустенитные – не подвергаются коррозии, содержат большое количество никеля и хрома, отличаются гибкостью и прочностью. Легко свариваются, принадлежат к немагнитным сплавам.
  • Мартенситные – антикоррозийные сплавы могут подвергаться воздействию высоких температур, не выделяют вредных паров, обладают повышенной износоустойчивостью и прочностью.
  • Комбинированные – особые нержавеющие стали, в которых сочетаются свойства всех перечисленных выше групп. Производятся по индивидуальным заявкам заказчика. Наибольший спрос имеют аустенитно-мартенситные и аустенитно-ферритные сплавы.

Нержавеющие стали с хорошими магнитными свойствами

Магнитные свойства нержавеющей стали во многом зависят от структуры материала. Больше всего они проявляются в нижеприведенных случаях:

  1. Мартенсит характеризуется хорошими магнитными свойствами, является ферримагнетиком в чистом виде. Встречается подобная нержавейка крайне редко, так как чистый химический состав выдержать довольно сложно. Как и обычные углеродистые варианты исполнения, рассматриваемый может улучшаться при помощи закалки или отпуска. Подобный металл получил широкое распространение не только в промышленности, но и в быту. Наибольшее распространение получили следующие марки: 20Х13 и 40Х13. Они могут подвергаться механическому воздействию, шлифованию или полированию, а также различной термообработке. К особенностям химического состава можно отнести повышенную концентрацию хрома и углерода. 20Х17Н2 – еще одна нержавейка, которая характеризуется высокой концентрацией хрома. За счет этого структура становится более устойчивой к воздействию влаги и некоторых агрессивным средствам. Несмотря на большое количество легирующих элементов, спав поддается сварке и может подвергаться горячей или холодной штамповке.
  2. Феррит в зависимости от степени нагрева может применять две формы: ферромагнетика и парамагнетика. В химическом составе подобных материалов меньше углерода, за счет чего они становятся более мягкими и лучше поддаются обработке. В эту группу входит нержавейка 08Х13, которая активно применяется в пищевой промышленности. Кроме этого, в данную группу входят AISI 430, который применяется на пищевых производственных предприятиях.
  3. Мартенситно-ферритные сплавы характеризуются весьма привлекательными эксплуатационными качествами. Подобной структурой обладает сплав 12Х13. Как и предыдущие металлы, рассматриваемый может подвергаться механической и термохимической обработке.

Сталь 20Х13

Сталь 40Х13

Приведенная выше информация указывает на то, что наиболее ярко выраженные магнитные свойства у мартенситной структуры.

При выборе сплава следует учитывать, что не все нержавейки характеризуются устойчивостью к механическим повреждениям. Даже незначительное воздействие может привести к повреждению поверхностного слоя. Несмотря на то, что хромистая пленка способна восстанавливаться при контакте с кислородом, были выпущены новые сплавы, характеризующиеся повышенной механической устойчивостью.

Еще одна классификация металлов подразумевает их деление на следующие группы:

  1. С высокой степенью устойчивости к воздействию кислот.
  2. Жаропрочный вариант исполнения
  3. Пищевые нержавейки.

Жаропрочная нержавеющая сталь

Маркировка материала проводится при применении буквенно-цифрового обозначения. Каждый символ применяется для обозначения конкретного химического элемента, цифра указывает на концентрацию. В других странах применяются свои определенные стандарты для обозначения металла.

Нержавеющие стали, не обладающие магнитными свойствами

Есть довольно большое количество металлов, которые не обладают магнитными свойствами. В их состав включается никель и марганец. Выделяют следующие группы сплавов:

  1. Аустениты получили самое широкое распространение. В эту группу входят 08Х18Н10 и 10Х17Н13М2Т. эти металлы активно применяются при изготовлении различных изделий в пищевой промышленности, к примеру, столовых приборов и посуды. Повышенные коррозионные свойства выдерживаются практически в любой среде эксплуатации.
  2. Аустенитно-ферритные нержавейки 08Х22Н6Т и 08Х21Н6М2Т характеризуются повышенной концентрацией хрома и некоторых других легирующих элементов. Для изменения основных характеристик в состав включаются и другие химические элементы.

Сталь 10Х17Н13М2Т

Сталь 08Х18Н10

Немагнитная нержавеющая сталь выбирается в случае, когда получаемое изделие не должно реагировать на воздействие магнитного поля.

Выбор нержавейки может проводится не только при учете степени магнетизма, но и следующих моментов:

  1. Способность к свариванию. Некоторые варианты исполнения нужно предварительно подогревать, другие хорошо свариваются даже в холодном состоянии.
  2. Пластичность учитывается в случае выбора материала для холодной и горячей штамповки. Достаточно высокий показатель пластичности определяет то, что можно проводить штамповку металлических листов в холодном состоянии.
  3. Коррозионная стойкость при воздействии высокой температуры. Многие металлы теряют свои характеристики при сильном нагреве, в том числе и коррозионную стойкость.
  4. Цена также является немаловажным фактором. Металлы могут обладать высокими эксплуатационными характеристиками, но из-за высокой стоимости их использовать для производства некоторых изделий нецелесообразно.
  5. Степень механической обрабатываемости. Часто заготовки поставляются для обработки резанием на специальном оборудовании. За счет большой концентрации углерода повышается твердость и усложняется процесс обработки поверхности.
  6. Жаропрочность также является важным качеством, которое рассматривается при выборе материала. При хорошей жаропрочности изготавливаемое изделие не теряет свою прочность и твердость при воздействии высокой температуры.

Некоторые марки подвергаются термической обработке, за счет чего повышается прочность и твердость поверхности.

При проведении отпуска структура становится более пластичной и устойчивой к воздействию переменных нагрузок.

Как определить, является ли магнитная или немагнитная сталь нержавеющей?

Как ранее было отмечено, определить магнитится ли нержавейка можно без использования специального оборудования. Среди особенностей проводимой процедуры отметим следующие моменты:

  1. Тестируемый участок должен быть отполирован до блеска. Для этого могут использоваться ручные инструменты и специальные материалы.
  2. На очищенный участок наносится несколько капель концентрированного медного купороса.
  3. Если металл нержавейка, то на поверхности появится красный налет.

Определение магнитных свойств при помощи купороса

Подобный процесс позволяет определить, какая нержавейка магнитится, а какая не обладает коррозионной стойкостью. Характеристики пищевого сплава определить самостоятельно практически невозможно.

Магнитные свойства можно проверить также при использовании обычного магнита. Однако, он не дает точного результата.

Именно поэтому рекомендуется приобретать изделия у известных производителей.

Портативный анализатор металлов

В заключение отметим, что магнитные свойства ничуть не снижают коррозионную стойкость поверхности. Именно поэтому подобные сплавы характеризуются широкой областью применения.

Читать также: Чем распилить кирпич красный

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Бывают ли магнитящиеся нержавеющие стали и как это влияет на коррозионностойкость

На вопрос о том, магнитится ли нержавеющая сталь, однозначного ответа не существует, поскольку магнитные свойства сплавов определяются свойствами их структурных составляющих.

Классификация материалов по их магнитным свойствам

Тела, помещённые в магнитное поле, намагничиваются. Интенсивность намагничивания (J ) прямо пропорциональна увеличению напряжённости поля (H ):

J= ϰH, где ϰ – коэффициент пропорциональности, называемый магнитной восприимчивостью.

Если ϰ>0, то такие материалы называют парамагнетиками, а если ϰ

Некоторые металлы – Fe, Co, Ni, Cd – обладают чрезвычайно большой положительной восприимчивостью (около 105), они называются ферромагнетиками. Ферромагнетики интенсивно намагничиваются даже в слабых магнитных полях.

Нержавеющие стали промышленного назначения могут содержать в своей структуре феррит, мартенсит, аустенит или комбинации этих структур в разных соотношениях. Именно фазовыми составляющими и их соотношением определяется – магнитится нержавейка или нет.

Магнитная нержавеющая сталь: структурный состав и марки

Существуют две фазовые составляющие стали с сильными магнитными характеристиками:

  • Мартенсит, с точки зрения магнитных свойств, является чистым ферромагнетиком.
  • Феррит может иметь две модификации. При температурах, которые находятся ниже точки Кюри, он, как и мартенсит, ферромагнетик. Высокотемпературный дельта-феррит – парамагнетик.

Таким образом, коррозионностойкие стали, структура которых состоит из мартенсита, – это магнитная нержавейка. Эти сплавы реагируют на магнит, как обычная углеродистая сталь. А ферритные или феррито-мартенситные стали могут иметь различные свойства, зависящие от соотношения фазовых составляющих, но, чаще всего, и они ферромагнитны.

К данной категории относятся хромистые и некоторые хромникелевые стали. Они разделяются на следующие подгруппы:

  • Мартенситные стали твёрдые, упрочняются закалкой и отпуском, как обычные углеродистые стали. Применяются они в основном для производства столовых приборов, режущего инструмента и в общем машиностроении.

Стали 20Х13, 30Х13, 40Х13 мартенситного класса производятся преимущественно в термически обработанном шлифованном или полированном состоянии

Хромоникелевая сталь мартенситного класса 20Х17Н2 обладает более высокой коррозионной стойкостью, чем 13%-ые хромистые стали. Эта сталь отличается высокой технологичностью – хорошо поддаётся штамповке, горячей и холодной, обрабатывается резанием, может свариваться всеми видами сварки.

  • Ферритные стали типа 08Х13 мягче мартенситных из-за меньшего содержания углерода. Одна из самых потребляемых сталей ферритного класса – магнитный коррозионностойкий сплав AISI 430, который является улучшенным аналогом марки 08Х17. Эта сталь применяется для изготовления технологического оборудования пищевых производств, используемого при мойке и сортировке пищевого сырья, измельчения, разделения, сортировки, расфасовки, транспортировки продукции.
  • Ферритно-мартенситные стали (12Х13 ) имеют в структуре мартенсит и структурно-свободный феррит.

Немагнитная нержавеющая сталь

К немагнитным сплавам относятся хромоникелевые и хромомарганцевоникелевые стали следующих групп:

  • Аустенитные стали по объёму производства занимают ведущее место. Широко распространена нержавейка немагнитная аустенитного класса – сталь AISI 304 (аналог – 08Х18Н10). Этот материал применяется в производстве оборудования для пищевой промышленности, изготовления тары для кваса и пива, испарителей, столовых приборов – кастрюль, сковород, мисок, раковин для кухни, в медицине – для игл, судового и холодильного оборудования, сантехнического оборудования, резервуаров для жидкостей различного состава и назначения и сухих веществ. Стали 08Х18Н10, 08Х18Н10Т, 12Х18Н10Т (используется в метизах А2), 10Х17Н13М2Т (используется в метизах для использования в агрессивных средах, кислотостойких и соленых, А4) имеют прекрасную технологичность и высокую коррозионную стойкость даже в парах химических производств и океанских водах.
  • Аустенитно-ферритным сталям характерно высокое содержание хрома и пониженное содержание никеля. Дополнительными легирующими элементами являются молибден, медь, титан или ниобий. Эти стали (08Х22Н6Т , 12Х21Н5Т, 08Х21Н6М2Т) имеют некоторые преимущества перед аустенитными сталями – более высокую прочность при сохранении требуемой пластичности, большую стойкость к межкристаллитной коррозии и коррозионному растрескиванию.

Читать также: Самоделки с редуктором от муравья

К группе немагнитных материалов относятся также коррозионностойкие аустенитно-мартенситные и аустенитно-карбидные стали.

Способ определения, является ли немагнитная сталь коррозионностойкой

Как показывает изложенная выше информация, однозначного ответа на вопрос – нержавейка магнитится или нет – не существует.

Если сталь магнитится, можно ли узнать, является ли она коррозионностойкой? Для ответа на этот вопрос необходимо зачистить небольшой участок детали (проволоки , трубы, пластины) до блеска. На зачищенную поверхность наносят и растирают две-три капли концентрированного раствора медного купороса. Если сталь покрылась слоем красной меди – сплав не является коррозионностойким. Если никаких изменений на поверхности материала не произошло, то перед вами нержавеющая сталь.

Проверить в домашних условиях, относится ли сталь к группе пищевых сплавов, невозможно.

Магнитные свойства нержавеющей стали никак не влияют на эксплуатационные характеристики, в частности, на коррозионную стойкость материала.

Количество

Количество

· Аустенитные.

Из материалов аустенитного класса (например, из стали AISI 304) производят оборудование для пищевой промышленности, тару для пищевых жидкостей, кухонную посуду, а также разнообразное холодильное, судовое и сантехническое оборудование. Высокая стойкость к агрессивным средам обеспечивает широкое распространение этого типа стали.

· Аустенитно-ферритные.

В основе таких материалов используются хром и никель. В качестве дополнительных легирующих элементов могут применяться титан, молибден, медь и ниобий. К главным достоинствам аустенитно-ферритных сталей относятся улучшенные показатели прочности и большая стойкость структуры к коррозионному растрескиванию.

· Мартенситные.

Благодаря закалке и отпуску материал характеризуется высокой прочностью, не уступающей соответствующему параметру стандартных углеродистых сталей. Мартенситные марки находят свое применение в изготовлении абразивов и в машиностроительной отрасли. Также их них делают столовые приборы, и в этом случае можно смело давать положительный ответ на вопрос, магнитится ли пищевая нержавейка. Материалы классов 20Х13, 30Х13, 40Х13 широко используются в шлифованном или полированном состоянии, а класс 20Х17Н2 высоко ценится за непревзойденную устойчивость к коррозии, превосходя по этому показателю даже 13%-ные хромистые стали. Благодаря высокой технологичности этот материал хорошо подходит для любых видов обработки, включая штамповку, резание и сварку.

· Ферритные.

Эта группа материалов легче мартенситных сталей из-за меньшего содержания углерода. Один из самых востребованных сплавов – это магнитная сталь AISI 430, которая находит свое применение в производстве оборудования для пищевых производственных предприятий.

( 2 оценки, среднее 4 из 5 )

Источник