При каких условиях реальный газ по своим свойствам близок к нему
ТОП 10:
Ид.газ-газ молекулы которого рассматриваются как материальные точки взаимодействующие по законам соударения упругих шаров. Между частицами вещества действуют силы взаимного притяжения и отталкивания. В зависимости от интенсивности хаотического движения и сил взаимодействия между молекулами, которые зависят от внешних условий (температуры, давления), различают три агрегатных состояния вещества: твердое, жидкое, газообразное. С изменением внешних условий наблюдается переход вещества из одного состояния в другое – фазовый переход первого рода. В газообразном состоянии тепловое движение наиболее интенсивно, а силы взаимодействия малы. Пренебрегая взаимодействием молекул и размерами, получаем модель идеального газа как совокупности материальных точек, не взаимодействующих друг с другом и находящихся в непрерывном хаотическом движении. Ясно, что такая модель газа выбрана для простоты расчета. Реальный газ, конечно, не удовлетворяет таким представлениям, однако, если газ находится под небольшим давлением, то по своим свойствам он приближается к идеальному. . Несмотря на существенные упрощения, представления об идеальном газе позволяют находить зависимость макроскопических параметров состояния от микросвойств частиц.
Запишите основное урав кин. теории газов, объясните его смысл.
Следствием хаотичес. движения молекул является давление газа на стенки сосуда. , где р – давление газа на стенки сосуда, n – число молекул в единице объема, m0 – масса молекулы, – среднее значение квадрата скорости теплового движения молекул, – средняя кинетическая энергия поступательного движения молекулы. Число молекул в единице объема равно отношению полного числа молекул газа N, находящихся в сосуде, к его объему V: , тогда Общее число молекул равно: ,где – число молей газа, NA– число Авогадро, тогда Сопоставим это уравнение с эмпирическим уравнением состояния Менделеева – Клапейрона
имеем .
т.к. ,то
Средняя кинетическая энергия хаотического движения молекул идеального газа прямо пропорциональна его абсолютной температуре и является мерой интенсивности теплового движения молекул при заданной температуре. Формула выявляет молекулярно-кинетический смысл понятия температуры: температура тела есть количественная мера энергии теплового движения молекул, из которых состоит это тело. Подставляя, мы можем преобразовать основное уравнение кинетической теории газов к виду:p = n k T.
Каков физ смысл температуры? Каков физ смысл постоянной Больцмана?
Температура – характеристика внутреннего состояния макроскопической системы – состояния теплового равновесия. Температура – термодинамический параметр, одинаковый во всех частях термодинамической системы, находящейся в тепловом равновесии. Температуры тел, находящихся в тепловом контакте, выравниваются.
Физический смысл температуры. Опыт: давление газа зависит от температуры – и . Из основного уравнения МКТ идеального газа: . Следовательно .
Опыт показывает, что для любых веществ . Заменяя знак пропорциональности на знак равенства, получим: , где k – коэффициент пропорциональности, называемый постоянная Больцмана, а Т – абсолютная термодинамическая температура.
Абсолютная температура. – абсолютная температура неотрицательна! Т.к. объем газа равен нулю быть не может, то температура равна нулю, если давление равно нулю, а значит, равна нулю скорость поступательного теплового движения (сохраняются т.н. нулевые колебания). Единица температуры – Кельвин (К). Кельвин равен 1/273,16 части термодинамической температуры тройной точки воды. Шкала строится так, что
Постоянная Больцмана – физическая постоянная (k), равная отношению универсальной газовой постоянной к постоянной Авогадро.
Величины R, NA являются универсальными постоянными. Их отношение также является универсальной постоянной и называется постоянной Больцмана. Если
R=8,31 Дж/(моль×К),
NА = 6,02×1023 моль-1, то
k = 1,38×10-23 Дж/К.
Источник
Объясните принцип действия термоэлектрического термометра.
Термоэлектрический термометр представляет собой цепь, содержащую два спая разнородных металлов, в разрыв одного из проводников которой включен милливольтметр. Для того, чтобы цепь, содержащую два спая разнородных проводников, использовать в качестве термометра, ее необходимо
проградуировать. Для градуировки обычно используют некоторые заранее известные температурные значения, например, температуру таяния льда,
кипения воды, плавления чистых металлов. Во время градуировки один спай термостатируется (т.е. остается при постоянной температуре) в сосуде Дьюара с тающим льдом, а второй поочередно погружается в ванны, в которых создана известная температура. При использовании термоэлектрического термометра для точных измерений температуры лучше измерять возникающую в цепи электродвижущую силу, а не текущий в ней ток. Это связано с тем, что т.э.д.с. зависит только от рода образующих спаи металлов и температуры спаев, в то время как сила текущего в цепи тока определяется, кроме того, сопротивлением измерительного прибора и соединительных проводов и внутренним сопротивлением спаев. Схема экспериментальной установки представлена на рис
10.Назовите преимущества и недостатки термоэлектронного термометра!
Такие термометры обладают тем преимуществом, что позволяют измерять как очень высокие, так и низкие температуры, что невозможно сделать с помощью обычных жидкостных термометров; кроме того, они более чувствительны и простота изготовления, надежность и прочность конструкции.
Недостатком же этого метода, являются так называемая градуировка, то есть составление закономерности зависимоти электрического тока(термо э.д.с) возникающего в цепи от температуры спая, где измеряется температура . Так же отличичтельным недостатком яв-ся: воздействие на цепь внешних электрических полей, сохранение стационарной температуры в сосуде Дьюара.
От чего зависит интервал измеряемых температур для жидкостных термометров и для термоэлектрического термометра?
Жидкостные термометры основаны на принципе изменения объёма жидкости, которая залита в термометр (обычно это спирт или ртуть), при изменении температуры окружающей среды. Основным условием, которое обеспечивает широкий интервал для жидкостных яв-ся то, что рабочая среда-жидкость остается жидкой в широком интервале температур. Например: для ртути диапазоном температуры, в котором он в жидком агрегатном состоянии простирается от -38,87 ~ до 100(порядка двух сотен) градусов Цельсия, для спирта этот диапазон простирается от . Кроме ртути в качестве термометрического вещества в стеклянных термометрах применяются и другие жидкости, преимущественно органического происхождения.
Принцип работы электрических термометров основан на изменении сопротивления проводника при изменении температуры окружающей среды. Электрические термометры более широкого диапазона основаны на термопарах (контакт между металлами с разной электроотрицательностью создаёт контактную разность потенциалов, зависящую от температуры). Интервал измеряемых температурных данных термоэлектронных термометров зависит от материала, из которого сделаны спаи. Т.е. металлы проводники(полупроводники) при достижении достаточно высоких температур (порядка одного или двух тысяч Кельвина) начинают вести себя по-другому. Иначе говоря металл полностью теряет свойство электропроводности при высоких температурах, с ростом температуры появляется все больше и больше препятствий на пути направленного движения свободных электронов под действием электрического поля, т. е. уменьшается средняя длина свободного пробега электрона l. уменьшается подвижность электронов и, как следствие, уменьшается удельная проводимость металлов и возрастает удельное сопротивление (рис. 2-1). Иными словами, температурный коэффициент удельного сопротивления металлов, при низких температурах металлы обладают свойством Сверхпроводи́мости, эти свойства непосредственно так или иначе влияют на интервал измеряемых температур.
Что такое идеальный газ? при каких условиях реал газ близок идеальному?)))
Идеальный газ — математическая модель газа, в которой предполагается, что: 1) потенциальной энергией взаимодействия молекул можно пренебречь по сравнению с их кинетической энергией; 2) суммарный объем молекул газа пренебрежимо мал. Между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосуда абсолютно упруги, а время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями. Реальный газ приближается к идеальным при низких давлениях, когда число молекул в единице объема невелико. Следовательно, при низких давлениях величина коэффициента сжимаемости должна быть близка к единице. С повышением давления молекулы газа сближаются и силы притяжения между молекулами начинают помогать внешним силам, сжимающим газ.
Источник
Конспект лекции с демонстрациями
Аннотация: традиционное изложение темы, дополненное демонстрацией на компьютерной модели.
Из трех агрегатных состояний вещества наиболее простым является газообразное состояние. В газах силы, действующие между молекулами, малы и при определенных условиях ими можно пренебречь.
Газ называется идеальным, если:
– можно пренебречь размерами молекул, т.е. можно считать молекулы материальными точками;
– можно пренебречь силами взаимодействия между молекулами (потенциальная энергия взаимодействия молекул много меньше их кинетической энергии);
– удары молекул друг с другом и со стенками сосуда можно считать абсолютно упругими.
Реальные газы близки по свойствам к идеальному при:
– условиях, близких к нормальным условиям (t = 00C, p = 1.013·105 Па);
– при высоких температурах.
Законы, которым подчиняется поведение идеальных газов, были открыты опытным путем достаточно давно. Так, закон Бойля – Мариотта установлен еще в 17 веке. Дадим формулировки этих законов.
Закон Бойля – Мариотта. Пусть газ находится в условиях, когда его температура поддерживается постоянной (такие условия называются изотермическими).Тогда для данной массы газа произведение давления на объем есть величина постоянная:
Эту формулу называют уравнением изотермы. Графически зависимость p от V для различных температур изображена на рисунке.
Свойство тела изменять давление при изменении объема называется сжимаемостью. Если изменение объема происходит при T=const, то сжимаемость характеризуется изотермическим коэффициентом сжимаемости который определяется как относительное изменение объема, вызывающее изменение давления на единицу.
Для идеального газа легко вычислить его значение. Из уравнения изотермы получаем:
и тогда
Знак минус указывает на то, что при увеличении объема давление уменьшается. Т.о., изотермический коэффициент сжимаемости идеального газа равен обратной величине его давления. С ростом давления он уменьшается, т.к. чем больше давление, тем меньше у газа возможностей для дальнейшего сжатия.
Закон Гей – Люссака. Пусть газ находится в условиях, когда постоянным поддерживается его давление (такие условия называются изобарическими). Их можно осуществить, если поместить газ в цилиндр, закрытый подвижным поршнем. Тогда изменение температуры газа приведет к перемещению поршня и изменению объема. Давление же газа останется постоянным. При этом для данной массы газа его объем будет пропорционален температуре:
где V0 – объем при температуре t = 00C, – коэффициент объемного расширения газов. Его можно представить в виде, аналогичном коэффициенту сжимаемости:
Графически зависимость V от T для различных давлений изображена на рисунке.
Перейдя от температуры в шкале Цельсия к абсолютной температуре , закон Гей – Люссака можно записать в виде:
Закон Шарля. Если газ находится в условиях, когда постоянным остается его объем (изохорические условия), то для данной массы газа давление будет пропорционально температуре:
где р0 – давление при температуре t = 00C, – коэффициент давления. Он показывает относительное увеличение давления газа при нагревании его на 10:
Закон Шарля также можно записать в виде:
Закон Авогадро: один моль любого идеального газа при одинаковых температуре и давлении занимает одинаковый объем. При нормальных условиях (t = 00C, p = 1.03·105 Па) этот объем равен м-3/моль.
Число частиц, содержащихся в 1 моле различных веществ, наз. постоянная Авогадро:
Легко вычислить и число n0 частиц в 1 м3 при нормальных условиях:
Это число называется числом Лошмидта.
Закон Дальтона: давление смеси идеальных газов равно сумме парциальных давлений входящих в нее газов, т.е.
где – парциальные давления – давления, которые бы оказывали компоненты смеси, если бы каждый из них занимал объем, равный объему смеси при той же температуре.
Уравнение Клапейрона – Менделеева. Из законов идеального газа можно получить уравнение состояния, связывающее Т, р и V идеального газа в состоянии равновесия. Это уравнение впервые было получено французским физиком и инженером Б. Клапейроном и российским учеными Д.И. Менделеевым, поэтому носит их имя.
Пусть некоторая масса газа занимает объем V1, имеет давление p1 и находится при температуре Т1. Эта же масса газа в другом состоянии характеризуется параметрами V2, p2, Т2 (см. рисунок). Переход из состояния 1 в состояние 2 осуществляется в виде двух процессов: изотермического (1 – 1′) и изохорического (1′ – 2).
Для данных процессов можно записать законы Бойля – Мариотта и Гей – Люссака:
Исключив из уравнений p1′, получим
Так как состояния 1 и 2 были выбраны произвольно, то последнее уравнение можно записать в виде:
Это уравнение называется уравнением Клапейрона, в котором В – постоянная, различная для различных масс газов.
Менделеев объединил уравнение Клапейрона с законом Авогадро. Согласно закону Авогадро, 1 моль любого идеального газа при одинаковых p и T занимает один и тот же объем Vm, поэтому постоянная В будет одинаковой для всех газов. Эта общая для всех газов постоянная обозначается R и называется универсальной газовой постоянной. Тогда
Это уравнение и является уравнением состояния идеального газа, которое также носит название уравнение Клапейрона – Менделеева.
Числовое значение универсальной газовой постоянной можно определить, подставив в уравнение Клапейрона – Менделеева значения p, T и Vm при нормальных условиях:
Уравнение Клапейрона – Менделеева можно записать для любой массы газа. Для этого вспомним, что объем газа массы m связан с объемом одного моля формулой V=(m/M)Vm, где М – молярная масса газа. Тогда уравнение Клапейрона – Менделеева для газа массой m будет иметь вид:
где – число молей.
Часто уравнение состояния идеального газа записывают через постоянную Больцмана:
Исходя из этого, уравнение состояния можно представить как
где – концентрация молекул. Из последнего уравнения видно, что давление идеального газа прямо пропорционально его температуре и концентрации молекул.
Небольшая демонстрация законов идеального газа. После нажатие кнопки “Начнем” Вы увидите комментарии ведущего к происходящему на экране (черный цвет) и описание действий компьютера после нажатия Вами кнопки
“Далее” (коричневый цвет). Когда компьютер “занят” (т.е. идет опыт) эта кнопка не активна. Переходите к следующему кадру, лишь осмыслив результат, полученный в текущем опыте. (Если Ваше восприятие не совпадает с комментариями ведущего,
напишите!)
Начнем демонстрацию
Вы можете убедиться в справедливости законов идеального газа на имеющейся компьютерной модели самостоятельными измерениями.
Источник
Реальный газ — в общем случае — газообразное состояние реально существующего вещества.
В термодинамике под реальным газом, понимается газ, который не описывается в точности уравнением Клапейрона — Менделеева, в отличие упрощенной его модели — гипотетического идеального газа, строго подчиняющегося вышеуказанному уравнению.
Обычно под реальным газом понимают газообразное состояние вещества во всем диапазоне его существования. Однако, существует и другая классификация, по которой реальным газом называется высоко перегретый пар, состояние которого незначительно отличается от состояния идеального газа, а к парам относят перегретый пар, состояние которого заметно отличается от идеального газа, и насыщенный пар (двухфазовая равновесная система жидкость — пар), который вообще не подчиняется законам идеального газа. [1]
С позиции молекулярной теории строения вещества реальный газ — это газ, свойства которого зависят от взаимодействия и размеров молекул.
Зависимости между его параметрами показывают, что молекулы в реальном газе взаимодействуют между собой и занимают определённый объём. Состояние реального газа часто на практике описывается обобщённым уравнением Клапейрона — Менделеева:
где — давление, — объём, — температура, — коэффициент сжимаемости газа, — масса, — молярная масса, — универсальная газовая постоянная.
Физика реального газа[править | править код]
Чтобы подробнее установить условия, когда газ может превратиться в жидкость и наоборот, простых наблюдений за испарением или кипением жидкости недостаточно. Надо внимательно проследить за изменением давления и объёма реального газа при разных температурах.
Будем медленно сжимать газ в сосуде с поршнем, например сернистый ангидрид (SO2). Сжимая его, мы выполняем над ним работу, вследствие чего внутренняя энергия газа увеличится. Когда мы хотим, чтобы процесс происходил при постоянной температуре, то сжимать газ надо очень медленно, чтобы теплота успевала переходить от газа в окружающую среду.
Выполняя этот опыт, можно заметить, что сначала при большом объёме давление с уменьшением объёма увеличивается согласно закону Бойля — Мариотта. В конце концов, начиная с какого-то значения, давление не будет изменяться, несмотря на уменьшение объёма. На стенках цилиндра и поршня образуются прозрачные капли. Это означает, что газ начал конденсироваться, то есть переходить в жидкое состояние.
Продолжая сжимать содержимое цилиндра, мы будем увеличивать массу жидкости под поршнем и, соответственно, будем уменьшать массу газа. Давление, которое показывает манометр, будет оставаться постоянным до тех пор, пока всё пространство под поршнем не заполнит жидкость. Жидкости мало сжимаемы. Поэтому дальше, даже при незначительном уменьшении объёма, давление будет быстро возрастать.
Поскольку весь процесс происходит при постоянной температуре , кривую, что изображает зависимость давления от объёма , называют изотермой. При объёме начинается конденсация газа, а при объёме она заканчивается. Если , то вещество будет в газообразном состоянии, а при — в жидком.
Опыты показывают, что такой вид имеют изотермы и всех других газов, если их температура не очень высокая.
В этом процессе, когда газ превращается в жидкость при изменении его объёма от к , давление газа остаётся постоянным. Каждой точке прямолинейной части изотермы 1—2 соответствует равновесие между газообразным и жидким состояниями вещества. Это означает, что при определённых и количество жидкости и газа над ней остаётся неизменным. Равновесие имеет динамический характер: количество молекул, которые покидают жидкости, в среднем равняется количеству молекул, которые переходят из газа в жидкость за одно и то же время.
Также существует такое понятие как критическая температура, если газ находится при температуре выше критической (индивидуальна для каждого газа, например для углекислого газа примерно 304 К), то его уже невозможно превратить в жидкость, какое бы давление к нему не прилагалось. Данное явление возникает вследствие того, что при критической температуре силы поверхностного натяжения жидкости равны нулю. Если продолжать медленно сжимать газ при температуре большей критической, то после достижения им объёма, равного приблизительно четырём собственным объёмам молекул, составляющих газ, сжимаемость газа начинает резко падать.
Точки Бойля, кривая Бойля, температура Бойля[править | править код]
Рассмотрим отклонение свойств реального газа от свойств идеального газа с помощью -диаграммы. Из уравнения Клапейрона — Менделеева следует, что изотермы идеального газа на такой диаграмме изображаются горизонтальными прямыми. Воспользуемся уравнением состояния реального газа в вириальной форме. Для одного моля газа [2]
(Вириальное уравнение состояния реального газа) |
где и — соответственно второй, третий и четвёртый вириальные коэффициенты, зависящие только от температуры. Из вириального уравнения состояния следует, что на -диаграмме ось ординат () соответствует идеально-газовому состоянию вещества: при вириальное уравнение состояния превращается в уравнение Клапейрона — Менделеева и, следовательно, положения точек пересечения изотерм с ординатой на рассматриваемой диаграмме соответствуют значениям для каждой из изотерм.
Из вириального уравнения состояния находим:
(Второй вириальный коэффициент) |
PV, P-диаграмма реального газа
Таким образом, в рассматриваемой системе координат наклон (то есть угловой коэффициент касательной) изотермы газа в точке пересечения этой изотермы с осью ординат даёт значение второго вириального коэффициента.
На -диаграмме изотермы, соответствующие температурам, меньшим некоторого значения (называемого температурой Бойля) имеют минимумы, называемые точками Бойля[3][4][5][6].
Некоторые авторы в понятие «точка Бойля» вкладывают другое содержание, а именно, они исходят из единственности точки Бойля, понимая под ней точку на -диаграмме с нулевым давлением и температурой, равной температуре Бойля[7][8][9].
В точке минимума
что всегда справедливо для идеального газа. Иными словами, в точке Бойля сжимаемости реального и идеального газов совпадают[8]. Участок изотермы слева от точки Бойля соответствует условиям, когда реальный газ более сжимаем, чем идеальный; участок справа от точки Бойля соответствует условиям худшей сжимаемости реального газа по сравнению с идеальным[6].
Линию, являющуюся геометрическим местом точек минимумов изотерм на -диаграмме, называют кривой Бойля[2][4][5][6]. Точке пересечения кривой Бойля с осью ординат соответствует изотерма с температурой, равной температуре Бойля. Это означает, что при температуре Бойля второй вириальный коэффициент обращается в нуль[10][2] и температура Бойля есть корень уравнения[11][9]
Ниже температуры Бойля второй вириальный коэффициент отрицателен, выше — положителен[2][12]. Температура Бойля — важная характеристика кривой инверсии (в каждой точке которой дроссельный эффект равен нулю): при температурах ниже температуры Бойля возможно частичное сжижение газов при дросселировании[4][6] (подробнее см. в книге[13]).
Для газа, подчиняющегося уравнению Ван-дер-Ваальса,
где — критическая температура[4][6]. Для многих веществ примерное значение температуры Бойля даёт следующее эмпирическое соотношение[7][8][14][9]:
Из -диаграммы видно, что начальный участок изотермы с температурой Бойля, соответствующий сравнительно невысоким давлениям, достаточно близок к горизонтальной прямой, то есть при температуре газа, равной или близкой к температуре Бойля, реальный газ обладает свойствами, близкими к свойствам идеального газа[7][15].
Уравнения состояния реального газа[править | править код]
Наиболее часто используются следующие уравнения состояния реального газа:
- Уравнение Ван-дер-Ваальса
- Уравнение Дитеричи
- Уравнение Бертло
- Уравнение Клаузиуса
- Уравнение Камерлинг-Оннеса
Примечания[править | править код]
- ↑ Белоконь Н. И., Основные принципы термодинамики, 1968, с. 78..
- ↑ 1 2 3 4 Кириллин В. А. и др., Техническая термодинамика, 2008, с. 192..
- ↑ Базаров И. П., Термодинамика, 2010, с. 34..
- ↑ 1 2 3 4 Бойля точка // Физическая энциклопедия, т. 1, 1988, с. 226.
- ↑ 1 2 Термодинамика. Основные понятия. Терминология. Буквенные обозначения величин, 1984, с. 23..
- ↑ 1 2 3 4 5 Бойля точка // Большая Советская Энциклопедия, 3-е изд., т. 2, 1970.
- ↑ 1 2 3 Кириллин В. А. и др., Техническая термодинамика, 2008, с. 193..
- ↑ 1 2 3 Коновалов В. И., Техническая термодинамика, 2005, с. 200..
- ↑ 1 2 3 Додж Б. Ф., Химическая термодинамика, 1950, с. 219..
- ↑ Базаров И. П., Термодинамика, 2010, с. 35..
- ↑ Бэр Г. Д., Техническая термодинамика, 1977, с. 197..
- ↑ Еремин Е. Н., Основы химической термодинамики, 1978, с. 21..
- ↑ Докторов А. Б., Бурштейн А. И., Термодинамика, 2003, с. 50—56..
- ↑ Гуйго Э. И. и др., Техническая термодинамика, 1984, с. 116..
- ↑ Андрющенко А. И., Основы технической термодинамики реальных процессов, 1967, с. 95..
Литература[править | править код]
- Андрющенко А. И. Основы технической термодинамики реальных процессов. — М.: Высшая школа, 1967. — 268 с.
- Базаров И. П. Термодинамика. — 5-е изд. — СПб.—М.—Краснодар: Лань, 2010. — 384 с. — (Учебники для вузов. Специальная литература). — ISBN 978-5-8114-1003-3.
- Белоконь Н. И. Основные принципы термодинамики. — Москва: Недра, 1968. — 112 с.
- Бэр Г. Д. Техническая термодинамика. — М.: Мир, 1977. — 519 с.
- Гуйго Э. И., Данилова Г. Н., Филаткин В. Н. и др. Техническая термодинамика / Под общ. ред. проф. Э. И. Гуйго. — Л.: Изд-во Ленингр. ун-та, 1984. — 296 с.
- Додж Б. Ф. Химическая термодинамика в применении к химическим процессам и химической технологии. — М.: Иностранная литература, 1950. — 786 с.
- Докторов А. Б., Бурштейн А. И. Термодинамика. — Новосибирск: Новосиб. гос. ун-т, 2003. — 83 с.
- Еремин Е. Н. Основы химической термодинамики. — 2-е изд., испр. и доп. — М.: Высшая школа, 1978. — 392 с.
- Кириллин В. А., Сычев В. В., Шейндлин А. Е. Техническая термодинамика. — 5-е изд., перераб. и доп. — М.: Изд. дом МЭИ, 2008. — 496 с. — ISBN 978-5-383-00263-6.
- Коновалов В. И. Техническая термодинамика. — Иваново: Иван. гос. энерг. ун-т, 2005. — 620 с. — ISBN 5-89482-360-9.
- Термодинамика. Основные понятия. Терминология. Буквенные обозначения величин / Отв. ред. И. И. Новиков. — АН СССР. Комитет научно-технической терминологии. Сборник определений. Вып. 103. — М.: Наука, 1984. — 40 с.
Источник