По степеням окисления какие вещества могут проявлять только окислительные свойства
Окислительно-восстановительные реакции могут проходить только при условии, что исходные компоненты содержат атомы, молекулы или ионы, обладающие противоположными способностями принимать или отдавать электроны.
5KCl+5O3+6P0 = 5KCl-1+3P2+5O5
В приведенной реакции хлор и фосфор изменяют свои степени окисления:
- P0-5e- → P+5, фосфор (P0) является восстановителем, окисляясь до P+5 (степень окисления фосфора повышается на 5 единиц от 0 до +5).
- Cl+5+6e- → Cl-1, хлор (Cl+5) является окислителем, восстанавливаясь до Cl-1 (степень окисления хлора понижается на 6 единиц – от +5 до -1).
В периодической таблице Менделеева четко прослеживается закономерность изменения окислительно-восстановительных свойств элементов:
- В периодах с увеличением порядкового номера элемента (слева-направо) нарастают окислительные свойства и убывают восстановительные – натрий самый сильный восстановитель в третьем периоде, а хлор – самый сильный окислитель.
- В главных подгруппах, в пределах одной главной подгруппы с повышением порядкового номера (по направлению сверху-вниз) нарастают восстановительные свойства элементов и убывают окислительные – в VIIа группе фтор является сильным окислителем, а астат в некоторых соединениях проявляет восстановительные свойства.
На рисунке ниже показана примерная принадлежность элементов к восстановителям (голубой цвет) и окислителям (красный цвет).
С окислительно-восстановительными свойствами элементов в периодической таблице в общем чертах понятно. Теперь скажем пару слов о ионах.
- Элементарные катионы металлов (Na+, Cu2+, Ca2+) являются окислителями и не проявляют восстановительных свойств, окислительные свойства снижаются по мере роста активности металла.
- Ионы металлов с промежуточными степенями окисления могут проявлять, как восстановительные, так и окислительные свойства (Fe2+ – восстановитель; Fe3+ – окислитель).
- Элементарные анионы (Cl-, Br-, I-) являются восстановителями.
- Сложные ионы являются окислителями, если содержат атомы элементов с высокой степенью окисления (Cr2O72-, ClO3-,NO3-), при этом окислительные свойства обусловлены всем анионом, но не конкретным атомом, имеющим высокую степень окисления.
А что же с окислительно-восстановительными свойствами сложных веществ?
При взаимодействии сложных веществ следует обращать внимание на те элементы, которые в ходе реакции меняют свою степень окисления (если таковых нет, то и реакция не является окислительно-восстановительной).
- Если элемент, меняющий свою степень окисления, присутствует в исходном веществе в максимальной степени окисления – такое вещество может быть только окислителем, например перманганат калия, в котором марганец имеет максимальную степень окисления, т.е., может только принимать электроны.
- Если элемент, меняющий свою степень окисления, присутствует в исходном веществе в низшей степени окисления – такое вещество может быть только восстановителем, например, сульфат марганца (II), в котором марганец имеет низшую степень окисления, т.е., может только отдавать электроны.
- Если элемент, меняющий свою степень окисления, присутствует в исходном веществе в промежуточной степени окисления, – такое вещество может быть как окислителем, так и восстановителем – все зависит от других реагирующих веществ и условий протекания реакции.
Рассмотрим вкратце вещества, которые могут проявлять и восстановительные, и окислительные свойства, в зависимости от условий реакции и других взаимодействующих веществ.
Оксид серы (IV) в некоторых случаях играет роль восстановителя, например, окисляясь кислородом, но в металлургии оксид серы используют в реакции извлечения серы из отходящих газов, где оксид серы проявляет свойства окислителя:
2SO2+O2 = 2SO3
2CO+SO2 = S+2SO2
Пероксид водорода H2O2, как восстановитель применяется для дезинфекции, травления германиевых пластинок при изготовлении полупроводниковых приборов. Окислительные свойства пероксида водорода используют при отбеливании пуха, пера, мехов, тюли, волос.
Сернистая кислота в реакции с сероводородом играет роль окислителя, поскольку в молекуле H2S сера имеет степень окисления -2:
H2S+4O3+2H2S-2 = 3S0+3H2O
В реакции с кислородом сернистая кислота выступает восстановителем, поскольку кислород является более сильным окислителем:
2H2S+4O3+O20 = 2H2SO4
Не последнюю роль на окислительно-восстановительные свойства веществ оказывает среда, в которой протекает химическая реакция:
- I2+5H2O2 → 2HIO3+4H2O – при pH=1 пероксид водорода является окислителем;
- 2HIO3+5H2O2 → I2+6H2O+5O2 – при pH=2 пероксид водорода является восстановителем.
Оксид марганца (IV) является окислителем только в кислотной среде:
MnO2+4H++2e- → Mn2++2H2O
Перманганат калия KMnO4 является окислителем в любой среде:
- кислая среда: MnO4-+8H++5e- → Mn2++4H2O
- щелочная среда: MnO4-+1e- → MnO42-
- нейтральная среда: MnO4-+2H2O+3e- → MnO2+4OH-
См. далее:
- Типичные восстановители
- Типичные окислители
Окислители и восстановители любят “свою” среду – в кислотной среде сила окислителей увеличивается, а в щелочной – увеличивается сила восстановителей.
См. далее Элементы-восстановители
Источник
Вы хотите познавать химию и профессионально, и с удовольствием? Тогда вам сюда! Автор методики системно-аналитического изучения химии Богунова В.Г. раскрывает тайны решения задач, делится секретами мастерства при подготовке к ОГЭ, ЕГЭ, ДВИ и олимпиадам
Сегодня – особенный день. “И что же в нем такого необычного?” – спросите вы. Отвечаю. Я, наконец-то, добралась до моего самого любимого царства-королевства, до моих конфет и пирожных, малинок и клубничек! Окислительно-восстановительные реакции! Вы даже не представляете, насколько это интересно!
Мои ученики в процессе подготовки к экзамену по химии, проходят несколько стадий вызревания. Первое серьезное испытание на прочность – газы! Это из серии “гестапо отдыхает”. Решив огромное количество газовых задач, по сравнению с которыми 28-е задачи ЕГЭ – детский лепет, народ полностью структурирует свой мозг и настраивает мышление на профессиональное восприятие химии по-взрослому.
Вторая ступень химической зрелости и мудрости – окислительно-восстановительные реакции. Они приучают к усидчивости и внимательности. Набравшись опыта в написании ОВР, ребята начинают чувствовать себя ломоносовыми, клапейронами и менделеевыми в одном флаконе. За спиной вырастают крылья и… понеслось! Дальнейшее изучение химии проходит на едином дыхании, профессиональный рост – в геометрической прогрессии. На этой стадии мои ученики уже могут заткнуть за пояс каждого второго школьного преподавателя химии!
Понимая всю серьезность материала статьи, я отключила мобильную связь с внешним миром – с Карлсоном, Алисой (которая из страны Чудес), Сири, Фрекен Бок (тем более, что она работает химичкой в школе, где учится Малыш) и всеми остальными озорниками и хулиганами. Оставила только астральную связь для служебного пользования. Возможно, музы на чаек залетят или еще кто-нибудь забредет. А мы с вами займемся самым интересным делом – будем раскладывать по полочкам все накопленные мною знания по теории и практике окислительно-восстановительных реакций. Долго будем этим заниматься. Пока не надоест. Итак, поехали!
Окислительно-восстановительные реакции (ОВР) – химические реакции, в результате которых происходит изменение степеней окисления элементов.
ОВР протекают с участием двух участников – окислителя и восстановителя, и состоят из двух противоположных процессов:
1) Окисление – процесс отдачи электронов (восстановитель отдает электроны окислителю, восстановитель окисляется – окислитель восстанавливается).
2) Восстановление – процесс присоединения электронов (окислитель присоединяет электроны от восстановителя, окислитель восстанавливается – восстановитель окисляется).
Кто же вы, господа окислители и восстановители? Как вас узнать среди огромного количества химических веществ? Сегодня разберем самые общие характеристики участников ОВР (окислителей и восстановителей) на отдельных примерах. После изучения технологии написания ОВР (в следующей статье), поработаем с целыми семействами окислителей и восстановителей, с неорганическими и органическими веществами, проводя реакции в разных средах. А пока – читаем внимательно!
Окислитель – атом в составе молекулы или иона, который присоединяет электроны от восстановителя. Происходит процесс восстановления окислителя (его степень окисления снижается).
Окислительная активность – способность атома отбирать электроны у других атомов.
Окислительно-восстановительный потенциал (редокс-потенциал) – показатель окислительной активности, мера способности атомов химического элемента присоединять электроны (восстанавливаться). Стандартные потенциалы окислительно-восстановительных пар помещены в таблицу.
Чем выше стандартный потенциал окислительно-восстановительной пары, тем выше окислительная активность атомов элемента, тем он – более сильный окислитель
Окислительную активность определяют два фактора:
1) Электроотрицательность. Чем выше электроотрицательность химического элемента, тем выше окислительная активность простого вещества. В Периодической Системе Элементов электроотрицательность растет в сторону правого верхнего угла (слева направо и снизу вверх). Самый сильный окислитель – фтор, на втором месте – кислород.
2) Степень окисления. Чем выше степень окисления атома в составе молекулы или иона, тем ярче проявляется окислительная активность.
Только свойства окислителя проявляют атомы с максимально возможной степенью окисления (она равна номеру группы). Почему? Да, потому что у такого атома на внешнем уровне вообще нет валентных электронов. Ни одного. Все валентные электроны он где-то потерял (отдал кому-то) и остался гол, как сокол (в чем мать родила). Больше отдавать нечего, поэтому можно только присоединять.
У вас часто возникает вопрос – почему при дефиците электронов формируется положительная степень окисления или положительный заряд иона (т.е. почему у окислителя валентные электроны в дефиците или отсутствуют, а его заряд +n)? Да, потому что электроны заряжены отрицательно, а протоны (в ядре) – положительно. В электронейтральном атоме протоны и электроны уравновешены (сколько протонов, столько электронов). Если электроны убрать, то проявятся положительные заряды протонов, которые никуда не деваются в химических реакциях (их можно сдвинуть с насиженного места только ядерными реакциями). Теперь понятно? Если все еще “ежик в тумане”, читайте эту и следующие статьи. Я буду рассматривать все тяжело понимаемые моменты с разных сторон. В конце концов, все станет на свои места и туман рассеется.
Давайте, придумаем образ окислителя. Кто вы, мистер-окислитель? Это – захватчик, завоеватель, грабитель, который скачет на коне и, угрожая, копьем и ружьем, отбирает электроны у восстановителей (часто, отбирает все, что есть). Окислитель не только безжалостный разбойник, но еще и жадина – очень проблематично вернуть назад электроны, которые забрал окислитель. Как только окислитель ограбит восстановителя (заберет у него электроны) он тут же падает вниз по градационной шкале степеней окисления (“падает в глазах окружающих”).
Пример сильного окислителя – перманганат-ион. Его часто используют в различных ОВР. Обратите внимание, в зависимости от среды реакции, перманганат-ион образует различные продукты.
Ребята, не слушайте училок-химичек, которые заставляют запоминать продукты ВСЕХ окислительно-восстановительных реакций. Если вы забыли образующиеся вещества и просите помочь, они орут, обзывая вас неучами и и бездельниками. При этом, сами срочно хватают спасательный учебник по химии и пафосно зачитывают вам и всему классу продукты конкретной реакции. Вы задайте этим глупым училкам вопрос – помнят ли они дни рождения всех своих родственников? Что касается меня, то после 16-ти часов работы (такое тоже бывает), я часто забываю номер своего телефона. Но… ЛЮБУЮ ОВР напишу за пару минут (как говорят, темной ночью под кроватью)! Потому, что знаю особые секреты окислительно-восстановительных реакций, которые, между прочим, собираюсь раскрыть моим ученикам и всем моим читателям.
Постепенно, статья за статьей, мы будем изучать технологию написания окислительно-восстановительных реакций, знакомиться с целыми семействами окислителей и восстановителей, их особенностями, характером поведения в разных средах, предполагаемыми продукты. Лукавить не буду, кое-что нам, все-таки, придется запомнить. Совсем немного. Чуть-чуть. Примерно 15 точек, включающих продукты ОВР и основные рекомендации. И вы напишите ЛЮБУЮ окислительно-восстановительную реакцию! В ЛЮБОЙ среде!
Первое задание: запомните три продукта восстановления перманганат-иона (выделено красным цветом) в зависимости от среды протекания окислительно-восстановительной реакции (кислая, нейтральная или щелочная).
Восстановитель – атом в составе молекулы или иона, который отдает электроны окислителю. Происходит процесс окисления восстановителя (его степень окисления повышается).
Восстановительная активность – способность атома отдавать электроны другим атомам.
Восстановительную активность определяют два фактора:
1) Радиус атома. Чем больше радиус атома химического элемента, тем выше восстановительная активность простого вещества. В Периодической Системе Элементов радиус атома увеличивается в сторону левого нижнего угла (справа налево и сверху вниз).
2) Степень окисления. Чем ниже степень окисления атома в составе молекулы или иона, тем ярче проявляется восстановительная активность.
Только свойства восстановителя проявляют атомы с минимально возможной степенью окисления. Для неметаллов она равна “восемь минус номер группы”. Для металлов – ноль. Как только восстановитель отдаст электроны окислителю, он поднимется вверх по градационной шкале степеней окисления (“растет в глазах окружающих”).
Посмотрите, как ведет себя сера в роли восстановителя в разных веществах (с разными степенями окисления).
Настало время придумать образ восстановителя. Кто вы, мистер-восстановитель? У меня восстановитель ассоциируется с добрым дедушкой-альтруистом, который одаривает электронами каждого желающего окислителя.
Как же вас различить, господа окислители и восстановители в группе веществ, предложенных для реакций?!
Окислитель можно отыскать по высокой (иногда, максимально высокой) степени окисления, кроме того, мы изучим многие семейные портреты окислителей. Продукты окислителей мы ЗАПОМНИМ (их около 10, не более), кроме того, проведем анализ процесса восстановления окислителя по градационной шкале степеней окисления.
Восстановитель отыщем по низкой (иногда, максимально низкой) степени окисления. Продукт восстановителя будем устанавливать путем анализа с использованием градационных шкал степеней окисления. Хотя… сделаю вам подарок. Читайте мнемоническое стихотворение. Пригодится.
Вы готовитесь к ЕГЭ и хотите поступить в медицинский? Обязательно посетите мой сайт Репетитор по химии и биологии. Здесь вы найдете огромное количество задач, заданий и теоретического материала, познакомитесь с моими учениками, многие из которых уже давно работают врачами. Звоните мне +7 (903) 186-74-55. Приходите ко мне на курс, на Мастер-классы “Решение задач по химии” – и вы сдадите ЕГЭ с высочайшими баллами, и станете студентом престижного ВУЗа!
Репетитор по химии и биологии кбн В.Богунова
Источник
ЛАБОРАТОРНАЯ РАБОТА № 4
«ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ»
Теоретическая часть
Окислительно-восстановительные реакции (ОВР) – это реакции, при протекании которых происходит изменение степени окисления химических элементов, входящих в состав реагентов.
Степень окисления – условный (формальный) заряд атома в химическом соединении, который находят, считая химические связи в соединении чисто ионными.
Окисление потеря электронов, т.е. повышение степени окисления. Окислитель присоединяет электроны, сам восстанавливается, понижает свою степень окисления | Восстановление приобретение электронов, т.е. понижение степени окисления. Восстановитель отдает электроны, сам окисляется, повышает свою степень окисления |
Число электронов, отдаваемых восстановителем, равно числу электронов, присоединяемых окислителем |
Окислителями являются вещества, содержащие элемент, который может приобретать более низкую степень окисления, чем в данном веществе. Например, Fe+3 является окислителем в составе FeCl3, так как существует Fe+2 в составе FeCl2.
Восстановителями являются вещества, содержащие элемент, который может проявлять более высокую степень окисления. Например, Fe+2 в составе FeCl2 является восстановителем, так как существует Fe+3 в составе FeCl3.
В промежуточной степени окисления элемент может выступать как в роли окислителя, так и восстановителя. Например, сера (IV) в составе SO2 – окислитель, так как существует сера S (0) в простом веществе, и, в других обстоятельствах – окислитель, так как существует S (VI) в составе SO3.
Для составления уравнений окислительно-восстановительных реакций используют два метода подбора коэффициентов: электронного баланса и электронно-ионного баланса.
Для реакций, протекающих в водном растворе, предпочтителен метод электронно-ионного баланса. Этим методом составляются уравнения реакций окисления и восстановления реально существующих в растворе ионов (например, MnO42–, SO42–, Cr2O72–) и молекул (например, H2S, SO2, H2O2).
Молекулы растворителя (вода) или ионы среды (H+, OH–) также могут участвовать в процессе окисления-восстановления.
Среда должна учитываться при составлении уравнений ОВР в соответствии со следующими правилами:
- В кислой среде при составлении уравнений полуреакций можно использовать ионы H+ и молекулы H2O
- В щелочной – молекулы H2O и ион OH–
- В нейтральной среде в левой части уравнения полуреакции пишут только молекулы воды, а в правой как ионы H+, так и OH–.
Окислительную способность веществ характеризует окислительно-восстановительный потенциал E. В справочниках приведены стандартные окислительно-восстановительные потенциалы Eo, измеренные относительно обратимого водородного электрода.
В любой окислительно-восстановительной реакции как в исходных веществах, так и в продуктах реакции, имеются сопряженные пары окислитель-восстановитель. Направление окислительно-восстановительной реакции обусловливает тот окислитель, у которого значение электродного потенциала больше.
Например, в смеси веществ: K2Cr2O7, HCl, CrCl3, Cl2 (4.1) окислителями являются K2Cr2O7 и Cl2. Их стандартные окислительно-восстановительные потенциалы соответственно равны:.
Cr2O7 2– + 14H+ +6e = 2Cr 3+ + 7H2O Eo= +1,33 (4.2)
Cl2 +2e = 2Cl–Eo = +1,36 (4.3)
У хлора стандартный электродный потенциал выше, следовательно в стандартных условиях он является более сильным окислителем, чем дихромат калия. Соответственно в смеси веществ (4.1) при стандартных условиях должна идти реакция:
2CrCl3 + 3Cl2 + 7H2O = K2Cr2O7 + 14HCl (4.4)
Уравнения (4.2) и (4.3) называют уравнениями полуреакций.
Если разность стандартных восстановительных потенциалов невелика ( не более 0.3В), направление окислительно-восстановительной реакции можно изменить, изменяя концентрации веществ и температуру.
При изменении концентрации и температуры величина окислительно-восстановительного потенциала определяется уравнением Нернста
E=Eo + ln (4.5)
где R – газовая постоянная, 8,314 Дж/моль.К, Т – температура, К, n– число электронов, принимающих участие в полуреакции
Например, для полуреакции (4.2) для стандартной температуры 298К и с переходом от натурального логарифма к десятичному уравнение Нернста будет иметь вид
E=1,33 + (0,059/6) lg
Окислительно-восстановительные реакции протекают самопроизвольно, если разность стандартных электродных потенциалов окислителя и восстановителя, или э.д.с. окислительно-восстановительной реакции E > 0.
По известному значению Eo можно вычислить rGo и константу равновесия К окислительно-восстановительной реакции
rGo= –mF Eo = –RTlnKp
где m – наименьшее общее кратное числа отданных и принятых в реакции электронов.
E = (RT/mF) lnKр (4.7)
На окислительную способность реагентов влияет pН среды.
Особенно наглядно это видно на примере окислительных свойств перманганат-иона.
Кислая среда
Нейтральная среда
MnO4– + 2H2O + 3e | MnO2 + 4OH– | ( бурый раствор или осадок) |
Eo = + 0,60 В |
Щелочная среда
MnO4– + е | MnO4 2– | (зеленый раствор) |
Eo = + 0,56В |
Манганат ион MnO4 2– неустойчив и легко диспропорционирует
3MnO4 2– +2H2O + 2e 2MnO4– + MnO2 + 4OH–
Для соединений хрома (VI) среда мало влияет на степень окисления продуктов, но вследствие амфотерности гидроксида хрома (III) оказывает влияние на их состав
Кислотная среда Cr2O72– + 6e + 14H+ 2Cr 3++ 7H2O
Щелочная среда CrO4 2– + 3e +4H2O– Cr(OH)4– + 4OH–
Окислительные свойства галогенов ослабевают в ряду F2> Cl2> Br2> I2
F2 + 2e = 2F– | Eo = + 2,87В |
Cl2 + 2e=2Cl– | Eo= +1,36В |
Br2+ 2e= 2Br– | Eo= + 1,06В |
I2 +2e = 2I– | Eo= + 0,54В |
Наглядно это проявляется в реакции кристаллических солей галогенидов с концентрированной серной кислотой.
KCl + H2SO4 = KHSO4 + HCl
8KI + 9H2SO4 = 4I2 +H2S +4H2O+8KHSO4
В случае бромида идут обе реакции.
Убедиться в образовании галогенов можно по окраске бензольного слоя.
Пероксид водорода H2O2 проявляет как окислительные, так и восстановительные свойства. В зависимости от среды ОВР с его участием можно представить в виде следующих полуреакций
Окислитель: | H2O2 +2H+ +2e = 2H2O | Еo=+1,77 |
H2O2 +2e = 2OH– | Eo= 0,94 | |
Восстановитель | H2O2 –2e = O2 + 2H+ | Eo=–0,68 |
H2O2 + 2OH– –2e = O2 + 2H2O | Eo= +0,15 |
Например, пероксид водорода в щелочной среде окисляет Cr(III) до Cr(VI)
2[Cr(OH)4]– +3H2O2 +2OH– = 2CrO4 2– +8H2O и образуется желтый раствор хромата.
В сильно кислой среде под действием дихромата идет окисление пероксида водорода.
K2Cr2O7 + 4H2SO4 + 3H2O2 = 3O2 + Cr2(SO4)3 + K2SO4 +7H2O
В некоторых случаях, действие пероксида водорода на дихромат приводит к образованию различных пероксокомплексов, устойчивых только в органической фазе.
Например, в кислой среде образуются голубого цвета соединения состава
H2Cr2O7 + 4H2O2 =2CrO(O2)2H2O + 3H2O
Образующееся перекисное соединение экстрагируется в органический слой, окрашивая его в синий цвет. Эту реакцию используют в аналитической химии для обнаружения хрома (VI)
Вопросы по теме
1. Что такое окислитель, восстановитель, степень окисления?
- Могут ли данные вещества проявлять в реакциях свойства окислителя: Mg, HNO2, HClO, S, Cr2O3 , KOH? Приведите примеры реакций, подтверждающих Ваш ответ.
- Приведите 3 примера веществ, проявляющих как свойства окислителя, так и восстановителя.
- Можно ли окислить ионы Fe2+ хлором в стандартные условиях? В обосновании ответа приведите стандартные потенциалы полуреакций.
- Можно ли окислить ионы Fe2+ иодом в стандартных условиях? В обосновании ответа приведите стандартные потенциалы полуреакций.
Практическая часть
Лабораторная работа 4/1.
Окислительно-восстановительные свойства веществ в различных степенях окисления».
Цель работы: Исследование окислительных свойств соединений в высших, низших и промежуточных степенях окисления.
Реактивы: 0,1 М KMnO4, 0,5 M K2Cr2O7, 1 M Na2SO3, 1 M NaOH, 1 M H2SO4, H2SO4 (d=1,83), бензол, свежеприготовленные растворы хлорной, бромной, иодной воды и 0,3 M Na2S, кристаллические KCl, KBr, KI.
Оборудование:Пробирки, штативы, шпатели
Порядок выполнения работы:
Опыт 1. Окислительные свойства MnO4– в различных средах
Налейте в три пробирки по 2 капли 0,1 М раствора KMnO4 и по 1 мл дистиллированной воды, затем добавьте в первую пробирку 2 капли 1 М H2SO4, в третью 2 капли 1 M NaOH, потом добавьте во все пробирки по несколько кристаллов KI и по 1 мл бензола. Тщательно встряхните пробирки и дайте им постоять 2–3 минуты.
Внимание:После опыта растворы слейте в емкость “для слива”.
Вопросы и задания
1. Опишите наблюдаемые явления.
- Напишите уравнения химических реакций и расставьте коэффициенты методом электронно-ионного баланса.
3. Как влияет среда раствора на состав продуктов реакции?
Опыт 2.Окислительные свойства Cr2O72– в различных средах
Налейте в две пробирки по 1 капле 0,5 М раствора дихромата калия и по 1 мл дистиллированной воды, затем добавьте в первую пробирку 2 капли концентрированной серной кислоты, а во вторую 2 капли 1 М NaOH. В каждую пробирку внесите на кончике шпателя несколько кристаллов KI или KBr, KCl ( по выбору преподавателя) и по 1 мл бензола. Тщательно встряхните обе пробирки и дайте им постоять 2–3 минуты.
Внимание: После опыта растворы слейте в емкость “для слива”.
Вопросы и задания
1. Опишите наблюдаемые явления.
- Напишите уравнения химических реакций и расставьте коэффициенты методом электронно-ионного баланса.
- Как влияет среда раствора на состав продуктов реакции?
4. На основании значений электродных потенциалов сделайте вывод о возможности протекания реакции дихромата калия в стандартных условиях в кислой и щелочной среде с хлоридом калия
Опыт 3. Окислительные свойства галогенов
В три пробирки налейте по 2–3 капли свежеприготовленного раствора 0,3 М Na2S, затем добавьте в каждую пробирку по 2 капли 1 M H2SO4 . В первую пробирку прилейте 3 капли хлорной воды, во вторую прилейте 3 капли бромной воды, в третью – 3 капли иодной воды и тщательно перемешайте.
Внимание:После опыта растворы слейте в емкость “для слива”.
Вопросы и задания
1. Опишите наблюдаемые явления.
- Напишите уравнения химических реакций и расставьте коэффициенты методом электронно-ионного баланса.
- Каковы возможные продукты окисления сульфид-иона?
Что студент должен представить преподавателю
- Результаты наблюдений в виде таблицы
- Ответы на вопросы
- Уравнения реакций
Лабораторная работа 4/2.
«Определение окислительно-восстановительной способности (Проба на окислитель и проба на восстановитель)»
Цель работы
Определить, являются ли выданные Вам соединения окислителями или восстановителями.
Реактивы
0,1 М K2Cr2O7, 0,01 М KMnO4, раствор дифениламина в серной кислоте, 5% KI, раствор крахмала, H2SO4 (1:4), хлороформ или бензол. Растворы солей (0,1 M) по выбору преподавателя: Cr2(SO4)3 (или другая соль хрома (III)), 0,1 М MnSO4, 1 М FeCl3 (или 1 М Fe2(SO4)3), 1 М FeCl2 (или 1 М FeSO4 или соль Мора), NaNO2 (или KNO2), NaNO3 (или KNO3), KNO3, SnCl2, Na2SO4 (или K2SO4), Na2SO3 (или K2SO3).
Оборудование
Пробирки, (4–5) предметных стекол, стеклянная палочка (на каждого студента) капельные пипетки.
Порядок выполнения работы
Опыт 1. Проба на окислитель
Проба на окислитель I: | На предметное стекло поместите отдельно 1–2 капли исследуемых растворов (KMnO4, FeCl3, NaNO3, K2SO4). Рядом наносят 1–2 капли раствора KI и 1–2 капли крахмала. Соедините капли исследуемого раствора, KI и крахмала стеклянной палочкой. Если раствор содержит окислители, наблюдают появление синей окраски. |
Проба на окислитель II: “дифениламинная” | Дифениламин реагирует с окислителями с образованием дифенилбензидина, а затем синего хиноидного соединения: |
Выполнение: 1 каплю исследуемого раствора (KMnO4, FeCl3, NaNO3, K2SO4) наносят на предметное стекло. Рядом наносят каплю раствора дифениламина. Осторожно! Реактив растворен в концентрированной серной кислоте! Соединяют капли стеклянной палочкой. Если исследуемый раствор содержит окислители, появляется синее окрашивание. Опыт 2. Проба на восстановитель | |
Проба на восстановитель I: | Выполнение: На предметное стекло наносят отдельно по 2–3 капли исследуемого раствора (KNO2, FeCl2, K2SO3, SnCl2 или других по выбору преподавателя) рядом добавляют 1 каплю H2SO4 (1:4) и 1–2 капли раствора KMnO4. Соединяют растворы палочкой. Если раствор содержит восстановители, прибавляемый перманганат обесцвечивается. |
Проба на восстановитель II: | Выполнение: 1–2 капли исследуемого раствора (KNO2, FeCl2, K2SO3, SnCl2 или других по выбору преподавателя) наносят на предметное стекло и к ним добавляют 1 каплю H2SO4 (1:4). Рядом наносят 1–2 капли раствора K2Cr2O7.Соединяют стеклянной палочкой. Если раствор содержит восстановители, желто-оранжевая окраска бихромата переходит в зеленую окраску соли хрома (III) Каким должен быть потенциал восстановителя для обнаружения этой реакцией? Какой окислитель, бихромат или перманганат, позволяет обнаруживать более слабые восстановители? . |
Заполните таблицу:4.2
Таблица 4.2.
Результаты проб | Вывод | ||||
на окислитель | на восстановитель | ||||
I | II | I | II | ||
вещество | |||||
Вопросы и задания
- На основании результатов проб сделайте вывод об окислительно-восстановительной способности исследуемых веществ.
- силу окислителя (восстановителя)? Какие данные нужны для количественной оценки?
- Используя таблицу потенциалов (справочник) подберите вещество, которое будет давать только Как качественно по результатам проб можно оценить одну пробу на окислитель. Какую именно пробу будет давать это вещество, а какую – нет? Это вещество сильный окислитель или слабый?
- Используя таблицу потенциалов (справочник) подберите вещество, которое будет давать только одну пробу на восстановитель. Какую именно пробу будет давать это вещество, а какую – нет? Это вещество сильный восстановитель или слабый?
- Предложите эксперимент, который позволяет проверить, является ли сульфат (нитрат) ион окислителем, или окислителем является только серная (азотная) кислота.
Что студент должен представить преподавателю
- Результаты наблюдений в виде таблицы
- Ответы на вопросы
- Уравнения реакций
Лабораторная работа 4/3.
«Окислительно-востановительные реакции»
Цель работы
Исследование окислительных свойств соединений в высших, низших и промежуточных степенях окисления.
Реактивы
0,1 М растворы Na2SO3 , KI, СuSO4, HCl, 0,05 М растворы KMnO4 и K2Cr2O7, 3 и 30%-ные растворы Н2О2, конц. H2SO4, 40%-ный раствор NaОН (конц.), «Иодная вода» (раствор I2 в KI), KMnO4 (твердый), (NH4)2Cr2O7 (твердый), железный гвоздь (предварительно очищенный наждаком).
Оборудование:Пробирки, штативы, шпатели, глазные пипетки, стеклянные палочки, коническая колба (0.5-1.0 л), сетка асбестовая, стакан (250 мл)
Порядок выполнения работы:
Опыт 1. Влияние среды на окислительные свойства перманганата калия.
В три пробирки налейте по 1 мл раствора перманганата калия. В одну пробирку добавьте 1-2 капли концентрированной серной кислоты, в другую- 1 мл концентрированного раствора щелочи, а в третью – 1 мл воды. Затем во все пробирки добавьте по 1 мл раствора сульфита натрия.
В первой пробирке – наблюдайте обесцвечивание раствора (ионыMn+2).
Во второй пробирке – раствор станет зеленого цвета- (ионы MnO4-2), в котором через 1-2 минуты образуется взвесь буро-коричневого осадка (MnO2).
В третьей пробирке сразу образуется буро-коричневая взвесь (MnO2). Через некоторое время MnO2 осядет на дно пробирки в виде осадка.
Следует помнить, что при использовании в качестве среды разбавленного раствора щелочи и последующем действии сульфита натрия, реакция протекает аналогично реакции с концентрированной щелочью. Только в самый начальный момент реакции может наблюдаться зеленое окрашивание раствора вследствие образования манганата калия, как в опыте с концентрированной щелочью:
KMnO4 + Na2SO3 + NaOH (разб.) → K2MnO4 + Na2MnO4 + Na2SO4 + H2O
Но вскоре цвет раствора начинает меняться, так как образующийся манганат – ион в нейтральной и слабощелочной средах является нестабильным :
K2MnO4 + H2O → MnO2 + KMnO4 + КОН
Так что конечным продуктом восстановления перманганат-иона в слабощелочных растворах, как и в нейтральных, является MnO2.
Сделайте вывод о превращении перманганата калия в зависимости от среды. Напишите уравнения всех проведенных реакций. К какому типу окислительно-восстановительных процессов относятся проведенные Вами реакции?
Дата добавления: 2016-09-03; просмотров: 1227 | Нарушение авторских прав | Изречения для студентов
Читайте также:
Рекомендуемый контект:
Поиск на сайте:
© 2015-2020 lektsii.org – Контакты – Последнее добавление
Источник