От каких факторов зависят свойства оксидов
Оксиды — это сложные вещества, состоящие из атомов двух элементов, один из которых — кислород со степенью окисления -2. При этом кислород связан только с менее электроотрицательным элементом.
В зависимости от второго элемента оксиды проявляют разные химические свойства. В школьном курсе оксиды традиционно делят на солеобразующие и несолеобразующие. Некоторые оксиды относят к солеобразным (двойным).
Двойные оксиды — это некоторые оксиды , образованные элементом с разными степенями окисления.
Солеобразующие оксиды делят на основные, амфотерные и кислотные.
Основные оксиды — это оксиды, обладающие характерными основными свойствами. К ним относят оксиды, образованные атомами металлов со степень окисления +1 и +2.
Кислотные оксиды — это оксиды, характеризующиеся кислотными свойствами. К ним относят оксиды, образованные атомами металлов со степенью окисления +5, +6 и +7, а также атомами неметаллов.
Амфотерные оксиды — это оксиды, характеризующиеся и основными, и кислотными свойствами. Это оксиды металлов со степенью окисления +3 и +4, а также четыре оксида со степенью окисления +2: ZnO, PbO, SnO и BeO.
Несолеобразующие оксиды не проявляют характерных основных или кислотных свойств, им не соответствуют гидроксиды. К несолеобразующим относят четыре оксида: CO, NO, N2O и SiO.
Классификация оксидов
Тренировочные тесты по теме Классификация оксидов.
Получение оксидов
Общие способы получения оксидов:
1. Взаимодействие простых веществ с кислородом:
1.1. Окисление металлов: большинство металлов окисляются кислородом до оксидов с устойчивыми степенями окисления.
Например, алюминий взаимодействует с кислородом с образованием оксида:
4Al + 3O2 → 2Al2O3
Не взаимодействуют с кислородом золото, платина, палладий.
Натрий при окислении кислородом воздуха образует преимущественно пероксид Na2O2,
2Na + O2 → 2Na2O2
Калий, цезий, рубидий образуют преимущественно пероксиды состава MeO2:
K + O2 → KO2
Примечания: металлы с переменной степенью окисления окисляются кислородом воздуха, как правило, до промежуточной степени окисления (+3):
4Fe + 3O2 → 2Fe2O3
4Cr + 3O2 → 2Cr2O3
Железо также горит с образованием железной окалины — оксида железа (II, III):
3Fe + 2O2 → Fe3O4
1.2. Окисление простых веществ-неметаллов.
Как правило, при окислении неметаллов образуется оксид неметалла с высшей степенью окисления, если кислород в избытке, или оксид неметалла с промежуточной степенью окисления, если кислород в недостатке.
Например, фосфор окисляется избытком кислорода до оксида фосфора (V), а под действием недостатка кислорода до оксида фосфора (III):
4P + 5O2(изб.) → 2P2O5
4P + 3O2(нед.) → 2P2O3
Но есть некоторые исключения.
Например, сера сгорает только до оксида серы (IV):
S + O2 → SO2
Оксид серы (VI) можно получить только окислением оксида серы (IV) в жестких условиях в присутствии катализатора:
2SO2 + O2 = 2SO3
Азот окисляется кислородом только при очень высокой температуре (около 2000оС), либо под действием электрического разряда, и только до оксида азота (II):
N2 + O2 = 2NO
Не окисляется кислородом фтор F2 (сам фтор окисляет кислород). Не взаимодействуют с кислородом прочие галогены (хлор Cl2, бром и др.), инертные газы (гелий He, неон, аргон, криптон).
2. Окисление сложных веществ (бинарных соединений): сульфидов, гидридов, фосфидов и т.д.
При окислении кислородом сложных веществ, состоящих, как правило, из двух элементов, образуется смесь оксидов этих элементов в устойчивых степенях окисления.
Например, при сжигании пирита FeS2 образуются оксид железа (III) и оксид серы (IV):
4FeS2 + 11O2 → 2Fe2O3 + 8SO2
Сероводород горит с образованием оксида серы (IV) при избытке кислорода и с образованием серы при недостатке кислорода:
2H2S + 3O2(изб.) → 2H2O + 2SO2
2H2S + O2(нед.) → 2H2O + 2S
А вот аммиак горит с образованием простого вещества N2, т.к. азот реагирует с кислородом только в жестких условиях:
4NH3 + 3O2 →2N2 + 6H2O
А вот в присутствии катализатора аммиак окисляется кислородом до оксида азота (II):
4NH3 + 5O2 → 4NO + 6H2O
3. Разложение гидроксидов. Оксиды можно получить также из гидроксидов — кислот или оснований. Некоторые гидроксиды неустойчивы, и самопроизвольную распадаются на оксид и воду; для разложения некоторых других (как правило, нерастворимых в воде) гидроксидов необходимо их нагревать (прокаливать).
гидроксид → оксид + вода
Самопроизвольно разлагаются в водном растворе угольная кислота, сернистая кислота, гидроксид аммония, гидроксиды серебра (I), меди (I):
H2CO3 → H2O + CO2
H2SO3 → H2O + SO2
NH4OH → NH3 + H2O
2AgOH → Ag2O + H2O
2CuOH → Cu2O + H2O
При нагревании разлагаются на оксиды большинство нерастворимых гидроксидов — кремниевая кислота, гидроксиды тяжелых металлов — гидроксид железа (III) и др.:
H2SiO3 → H2O + SiO2
2Fe(OH)3 → Fe2O3 + 3H2O
4. Еще один способ получения оксидов — разложение сложных соединений — солей.
Например, нерастворимые карбонаты и карбонат лития при нагревании разлагаются на оксиды:
Li2CO3 → CO2 + Li2O
CaCO3 → CaO + CO2
Соли, образованные сильными кислотами-окислителями (нитраты, сульфаты, перхлораты и др.), при нагревании, как правило, разлагаются с с изменением степени окисления:
2Zn(NO3)2 → 2ZnO + 4NO2 + O2
Более подробно про разложение нитратов можно прочитать в статье Окислительно-восстановительные реакции.
Химические свойства оксидов
Значительная часть химических свойств оксидов описывается схемой взаимосвязи основных классов неорганических веществ.
Химические свойства основных оксидов
Подробно про химические свойства оксидов можно прочитать в соответствующих статьях:
Химические свойства основных оксидов.
Химические свойства кислотных оксидов.
Химические свойства амфотерных оксидов.
Источник
Подробно про оксиды, их классификацию и способы получения можно прочитать здесь.
1. Взаимодействие с водой. С водой способны реагировать только основные оксиды, которым соответствуют растворимые гидроксиды (щелочи). Щелочи образуют щелочные металлы (литий, натрий, калий, рубидий и цезий) и щелочно-земельные (кальций, стронций, барий). Оксиды остальных металлов с водой химически не реагируют. Оксид магния реагирует с водой при кипячении.
CaO + H2O → Ca(OH)2
CuO + H2O ≠ (реакция не идет, т.к. Cu(OH)2 — нерастворимый гидроксид)
2. Взаимодействие с кислотными оксидами и кислотами. При взаимодействии основным оксидов с кислотами образуется соль этой кислоты и вода. При взаимодействии основного оксида и кислотного образуется соль:
основный оксид + кислота = соль + вода
основный оксид + кислотный оксид = соль
При взаимодействии основных оксидов с кислотами и их оксидами работает правило:
Хотя бы одному из реагентов должен соответствовать сильный гидроксид (щелочь или сильная кислота).
Иными словами, основные оксиды, которым соответствуют щелочи, реагируют со всеми кислотными оксидами и их кислотами. Основные оксиды, которым соответствуют нерастворимые гидроксиды, реагируют только с сильными кислотами и их оксидами (N2O5, NO2, SO3 и т.д.).
Основные оксиды, которым соответствуют щелочи | Основные оксиды, которым соответствуют нерастворимые основания |
Реагируют со всеми кислотами и их оксидами | Реагируют только с сильными кислотами и их оксидами |
Na2O + SO2 → Na2SO3 | CuO + N2O5 → Cu(NO3)2 |
3. Взаимодействие с амфотерными оксидами и гидроксидами.
При взаимодействии основных оксидов с амфотерными образуются соли:
основный оксид + амфотерный оксид = соль
С амфотерными оксидами при сплавлении взаимодействуют только основные оксиды, которым соответствуют щелочи. При этом образуется соль. Металл в соли берется из более основного оксида, кислотный остаток — из более кислотного. В данном случае амфотерный оксид образует кислотный остаток.
K2O + Al2O3 → 2KAlO2
CuO + Al2O3 ≠ (реакция не идет, т.к. Cu(OH)2 — нерастворимый гидроксид)
(чтобы определить кислотный остаток, к формуле амфотерного или кислотного оксида добавляем молекулу воды: Al2O3 + H2O = H2Al2O4 и делим получившиеся индексы пополам, если степень окисления элемента нечетная: HAlO2. Получается алюминат-ион AlO2—. Заряд иона легко определить по числу присоединенных атомов водорода — если атом водорода 1, то заряд аниона будет -1, если 2 водорода, то -2 и т.д.).
Амфотерные гидроксиды при нагревании разлагаются, поэтому реагировать с основными оксидами фактически не могут.
4. Взаимодействие оксидов металлов с восстановителями.
При оценке окислительно-восстановительной активности металлов и их ионов можно использовать электрохимический ряд напряжений металлов:
Восстановительные свойства (способность отдавать электроны) у простых веществ-металлов здесь увеличиваются справа налево, окислительные свойства ионов металлов — увеличиваются наоборот, слева направо. При этом некоторые ионы металлов в промежуточных степенях окисления могут проявлять также восстановительные свойства (например ион Fe2+ можно окислить до иона Fe3+).
Более подробно про окислительно-восстановительные реакции можно прочитать здесь.
Таким образом, ионы некоторых металлов — окислители (чем правее в ряду напряжений, тем сильнее). При взаимодействии с восстановителями металлы переходят в степень окисления 0.
4.1. Восстановление углем или угарным газом.
Углерод (уголь) восстанавливает из оксидов до простых веществ только металлы, расположенные в ряду активности после алюминия. Реакция протекает только при нагревании.
FeO + C = Fe + CO
Активные металлы, расположенные в ряду активности левее алюминия, активно взаимодействуют с углеродом, поэтому при взаимодействии их оксидов с углеродом образуются карбиды и угарный газ:
CaO + 3C = CaC2 + CO
Угарный газ также восстанавливает из оксидов только металлы, расположенные после алюминия в электрохимическом ряду:
Fe2O3 + CO = Al2O3 + CO2
CuO + CO = Cu + CO2
4.2. Восстановление водородом.
Водород восстанавливает из оксидов только металлы, расположенные в ряду активности правее алюминия. Реакция с водородом протекает только в жестких условиях – под давлением и при нагревании.
CuO + H2 = Cu + H2O
4.3. Восстановление более активными металлами (в расплаве или растворе, в зависимости от металла)
При этом более активные металлы вытесняют менее активные. То есть добавляемый к оксиду металл должен быть расположен левее в ряду активности, чем металл из оксида. Реакции, как правило, протекают при нагревании.
Например, оксид цинка взаимодействует с алюминием:
3ZnO + 2Al = Al2O3 + 3Zn
но не взаимодействует с медью:
ZnO + Cu ≠
Восстановление металлов из оксидов с помощью других металлов — это очень распространенный процесс. Часто для восстановления металлов применяют алюминий и магний. А вот щелочные металлы для этого не очень подходят – они слишком химически активны, что создает сложности при работе с ними.
Например, цезий взрывается на воздухе.
Алюмотермия – это восстановление металлов из оксидов алюминием.
Например: алюминий восстанавливает оксид меди (II) из оксида:
3CuO + 2Al = Al2O3 + 3Cu
Магниетермия – это восстановление металлов из оксидов магнием.
CuO + Mg = Cu + MgO
Железо можно вытеснить из оксида с помощью алюминия:
2Fe2O3 + 4Al → 4Fe + 2Al2O3
При алюмотермии образуется очень чистый, свободный от примесей углерода металл.
4.4. Восстановление аммиаком.
Аммиаком можно восстанавливать только оксиды неактивных металлов. Реакция протекает только при высокой температуре.
Например, аммиак восстанавливает оксид меди (II):
3CuO + 2NH3 = 3Cu + 3H2O + N2
5. Взаимодействие оксидов металлов с окислителями.
Под действием окислителей некоторые основные оксиды (в которых металлы могут повышать степень окисления, например Fe2+, Cr2+, Mn2+ и др.) могут выступать в качестве восстановителей.
Например, оксид железа (II) можно окислить кислородом до оксида железа (III):
4FeO + O2 = 2Fe2O3
Источник
Оксидами называют сложные вещества, состоящие из двух химических элементов, одним из которых является кислород.
В оксидах химический элемент кислород находится в степени окисления (–2).
Оксиды — весьма распространённый в природе класс соединений. Они находятся в воздухе, распространены в гидросфере и литосфере.
Примеры оксидов:
H2O — оксид водорода, или вода.
На Земле вода встречается во всех трёх агрегатных состояниях — газообразном (водяной пар), жидком и твёрдом (лёд, снег). На долю воды также приходится большая часть массы живых организмов.
CO2 — оксид углерода((IV)), двуокись углерода или углекислый газ.
Как вы уже знаете, углекислый газ нужен зелёным растениям для фотосинтеза. Оксид углерода((IV)), находящийся в твёрдом агрегатном состоянии, называют сухим льдом.
CO — оксид углерода((II)), угарный газ.
Примесь этого очень ядовитого вещества может содержаться в воздухе. Основным источником загрязнения является транспорт. Угарный газ образуется в результате неполного сгорания топлива. Этот же оксид образуется и во время пожаров.
Fe2O3 — оксид железа((III)).
В природе этот оксид встречается в виде минерала гематита. Он составляет основу руды, называемой красным железняком.
SiO2 — оксид кремния.
В природе встречается в виде кварцевого песка, кварца, горного хрусталя.
Оксиды принято группировать в зависимости от их способности реагировать с кислотами и основаниями. Различают три важнейшие группы оксидов: основные, кислотные и амфотерные. Их относят к солеобразующим оксидам. Существуют также оксиды, которые называют несолеобразующими.
- Основные оксиды.
Основными называют оксиды, которые реагируют с кислотами, образуя соль и воду.
Основные оксиды образуются химическими элементами — металлами. Как правило, степень окисления элемента, образующего основный оксид, является невысокой: (+1) или (+2).
Примеры основных оксидов:
оксид натрия Na2O, оксид меди((II)) CuO.
- Кислотные оксиды.
Кислотными называют оксиды, которые реагируют с основаниями, образуя соль и воду.
Кислотные оксиды образуют элементы — неметаллы. Например, оксид серы((VI)) SO3, оксид азота((IV)) NO2.
Также кислотные оксиды могут быть образованы металлическими химическими элементами, в которых те проявляют степень окисления от (+5) до (+8). Например, оксид хрома((VI)) CrO3 и оксид марганца((VII)) Mn2O7.
- Амфотерные оксиды.
Амфотерными называют оксиды, которые реагируют как с кислотами, так и с основаниями, образуя соли.
Амфотерные свойства проявляет оксид цинка ZnO, оксид алюминия Al2O3, оксид бериллия BeO.
Если металлический элемент имеет переменную валентность (проявляет несколько степеней окисления), то из всех образуемых им оксидов амфотерными свойствами обладают те, в которых этот элемент имеет промежуточную валентность (промежуточную степень окисления).
Например, хром может быть двухвалентен, трёхвалентен и шестивалентен.
Амфотерными свойствами обладает именно оксид хрома ((III)) Cr2O3.
- Несолеобразующие оксиды.
Несолеобразующими называют оксиды, которые при обычных условиях не взаимодействуют ни с кислотами, ни с основаниями.
Примеры несолеобразующих оксидов: оксид углерода((II)), или угарный газ CO, оксид азота((I)), или веселящий газ N2O, и оксид азота((II)) NO.
Номенклатура оксидов
В соответствии с номенклатурой ИЮПАК, оксиды называют словом «оксид», после которого следует наименование химического элемента в родительном падеже.
Например: Na2O — оксид натрия, Al2O3 — оксид алюминия.
Если элемент, образующий оксид, имеет переменную степень окисления (или валентность), то в названии оксида указывается его степень окисления римской цифрой в скобках сразу после названия (без пробела).
Например: Cu2O — оксид меди((I)), CuO — оксид меди((II)), FeO — оксид железа((II)), Fe2O3 — оксид железа((III)), Cl2O7 — оксид хлора((VII)).
Часто используют и другие наименования оксидов по числу атомов кислорода: если оксид содержит только один атом кислорода, то его называют монооксидом, или моноокисью, если два — диоксидом, или двуокисью, если три — то триоксидом, или трёхокисью и т. д.
Например: монооксид углерода CO, диоксид углерода CO2, триоксид серы SO3.
Также распространены исторически сложившиеся (тривиальные) названия оксидов, например, угарный газ CO, серный ангидрид SO3 и т. д.
Источник
Сегодня мы начинаем
знакомство с важнейшими классами неорганических соединений. Неорганические
вещества по составу делятся, как вы уже знаете, на простые и сложные.
ОКСИД | КИСЛОТА | ОСНОВАНИЕ | СОЛЬ |
ЭхОу | НnA А | Ме(ОН)b ОН | MenAb |
Сложные неорганические
вещества подразделяют на четыре класса: оксиды, кислоты, основания, соли. Мы
начинаем с класса оксидов.
ОКСИДЫ
Оксиды
– это сложные вещества, состоящие из двух химических элементов, один из которых
кислород, с валентность равной 2. Лишь один химический элемент – фтор,
соединяясь с кислородом, образует не оксид, а фторид кислорода OF2.
Называются они просто – “оксид + название элемента” (см. таблицу). Если
валентность химического элемента переменная, то указывается римской цифрой,
заключённой в круглые скобки, после названия химического элемента.
Формула | Название | Формула | Название |
CO | оксид | Fe2O3 | оксид |
NO | оксид | CrO3 | оксид |
Al2O3 | оксид | ZnO | оксид |
N2O5 | оксид | Mn2O7 | оксид |
Классификация
оксидов
Все
оксиды можно разделить на две группы: солеобразующие (основные, кислотные, амфотерные)
и несолеобразующие или безразличные.
Оксиды металлов МехОу | Оксиды | |||
Основные | Кислотные | Амфотерные | Кислотные | Безразличные |
I, II Ме | V-VII Me | ZnO,BeO,Al2O3, Fe2O3, Cr2O3 | >II неМе | I, II неМе CO, NO, N2O |
1). Основные оксиды – это оксиды, которым
соответствуют основания. К основным оксидам относятся оксиды металлов
1 и 2 групп, а также металлов побочных подгрупп с валентностью I и II
(кроме ZnO
–
оксид цинка и BeO – оксид берилия):
2). Кислотные оксиды – это оксиды, которым
соответствуют кислоты. К кислотным оксидам относятся оксиды неметаллов (кроме
несолеобразующих – безразличных), а также оксиды металлов побочных подгрупп с
валентностью от V
до VII (Например, CrO3-оксид
хрома (VI), Mn 2O7 – оксид марганца (VII)):
3). Амфотерные
оксиды – это оксиды, которым соответствуют основания и кислоты. К ним
относятся оксиды металлов главных и побочных подгрупп с валентностью III, иногда IV,
а также цинк и бериллий (Например, BeO, ZnO, Al2O3, Cr2O3).
4). Несолеобразующие оксиды – это оксиды
безразличные к кислотам и основаниям. К ним относятся оксиды неметаллов с валентностью I и II
(Например,N2O, NO, CO).
Вывод: характер свойств оксидов в первую очередь
зависит от валентности элемента.
Например,
оксиды хрома:
CrO
(II
– основный);
Cr
2O3 (III – амфотерный);
CrO3
(VII
– кислотный).
Классификация оксидов
(по растворимости в воде)
Кислотные оксиды | Основные оксиды | Амфотерные оксиды |
Растворимы в воде. Исключение –SiO2 (не | В воде растворяются только оксиды щелочных и (это металлы I «А» и II «А» групп, исключение Be ,Mg) | С водой не взаимодействуют. В воде не растворимы |
Выполните задания:
1. Выпишите отдельно химические формулы солеобразующих кислотных и основных оксидов.
NaOH, AlCl3, K2O, H2SO4, SO3, P2O5, HNO3, CaO, CO.
2. Даны вещества: CaO, NaOH, CO2, H2SO3, CaCl2, FeCl3, Zn(OH)2, N2O5, Al2O3, Ca(OH)2, N2O, FeO, SO3, Na2SO4, ZnO, CaCO3, Mn2O7, CuO, KOH, CO, Fe(OH)3
Выпишите оксиды и классифицируйте их.
Получение
оксидов
Тренажёр “Взаимодействие кислорода с простыми веществами”
1. | а) Тренажёр “Взаимодействие | 2Mg |
б) | 2H2S+3O2=2H2O+2SO2 | |
2.Разложение (используйте таблицу кислот, см. приложения) | а) СОЛЬt= | СaCO3=CaO+CO2 |
б) Нерастворимых Ме(ОН)bt= MexOy+ H2O | Cu (OH)2 t=CuO+H2O | |
в) НnA = КИСЛОТНЫЙ | H2SO3=H2O+SO2 |
Физические
свойства оксидов
При комнатной температуре большинство оксидов –
твердые вещества (СаО, Fe2O3 и др.), некоторые – жидкости
(Н2О, Сl2О7 и др.) и газы (NO, SO2
и др.).
Химические
свойства оксидов
ХИМИЧЕСКИЕ СВОЙСТВА ОСНОВНЫХ ОКСИДОВ 1. CaO + SO2 = CaSO3 2. 3K2O + 2H3PO4 = 2K3PO4 + 3H2O 3. Основной оксид + Вода = Щёлочь Na2O + H2O = 2NaOH |
ХИМИЧЕСКИЕ СВОЙСТВА КИСЛОТНЫХ ОКСИДОВ 1. СO2 + H2O = H2CO3, SiO2 – не реагирует 2. P2O5 + 6KOH = 2K3PO4 + 3H2O 3. CaO + SO2 = CaSO3 4. CaCO3 + |
ХИМИЧЕСКИЕ СВОЙСТВА АМФОТЕРНЫХ ОКСИДОВ Взаимодействуют ZnO + 2 HCl = ZnCl2 + H2O ZnO + 2 NaOH + H2O = Na2[Zn(OH)4] ZnO + 2 NaOH = Na2ZnO2 + H2O |
Применение
оксидов
Некоторые
оксиды не растворяются в воде, но многие вступают с водой в реакции соединения:
SO3 + H2O
= H2SO4
CaO + H2O = Ca(OH)2
В
результате часто получаются очень нужные и полезные соединения. Например, H2SO4
– серная кислота, Са(ОН)2 – гашеная известь и т.д.
Если
оксиды нерастворимы в воде, то люди умело используют и это их свойство.
Например, оксид цинка ZnO – вещество белого цвета, поэтому используется для
приготовления белой масляной краски (цинковые белила). Поскольку ZnO
практически не растворим в воде, то цинковыми белилами можно красить любые
поверхности, в том числе и те, которые подвергаются воздействию атмосферных
осадков. Нерастворимость и неядовитость позволяют использовать этот оксид при
изготовлении косметических кремов, пудры. Фармацевты делают из него вяжущий и
подсушивающий порошок для наружного применения.
Такими
же ценными свойствами обладает оксид титана (IV) – TiO2. Он тоже
имеет красивый белый цвет и применяется для изготовления титановых белил. TiO2
не растворяется не только в воде, но и в кислотах, поэтому покрытия из этого
оксида особенно устойчивы. Этот оксид добавляют в пластмассу для придания ей
белого цвета. Он входит в состав эмалей для металлической и керамической
посуды.
Оксид
хрома (III) – Cr2O3 – очень прочные кристаллы
темно-зеленого цвета, не растворимые в воде. Cr2O3
используют как пигмент (краску) при изготовлении декоративного зеленого стекла
и керамики. Известная многим паста ГОИ (сокращение от наименования
“Государственный оптический институт”) применяется для шлифовки и полировки
оптики, металлических
изделий, в ювелирном
деле.
Благодаря
нерастворимости и прочности оксида хрома (III) его используют и в
полиграфических красках (например, для окраски денежных купюр). Вообще, оксиды
многих металлов применяются в качестве пигментов для самых разнообразных
красок, хотя это – далеко не единственное их применение.
Задания для закрепления
1. Закончите УХР, укажите тип реакции, назовите
продукты реакции
Na2O + H2O
=
N2O5
+ H2O =
CaO + HNO3
=
NaOH + P2O5
=
K2O + CO2
=
Cu(OH)2 = ?
+ ?
2. Осуществите превращения по схеме:
1) K→K2O→KOH→K2SO4
2) S→SO2→H2SO3→Na2SO3
3) P→P2O5→H3PO4→K3PO4
Источник