Определите какие продукты вулканического извержения

Определите какие продукты вулканического извержения thumbnail

Извержение вулкана Эйяфьятлайокудль на юге Исландии началось в ночь на 14 апреля. Из зоны бедствия было эвакуировано около 800 человек. 15 апреля из-за выбросов вулканического пепла ряд стран на севере Европы вынуждены были закрыть аэропорты.

Ниже приводится справочная информация по составу продуктов извержения вулканов.

Основными продуктами извержения являются лава, пепел, и др. вещества, которые выходят на поверхность земли после деятельности вулкана.

Химический состав вулканических газов: водяной пар, диоксид углерода (CO2), оксид углерода (CO), азот (N2), диоксид серы (SO2), оксид серы (SO), газообразная сера (S2), водород (H2), аммиак (NH3), хлористый водород (HCl), фтористый водород (HF), сероводород (H2S), метан (CH4), борная кислота (H3BO3), хлор (Cl), аргон (Ar), преобразованные H2O и СО2. Также присутствуют хлориды щелочных металлов и железа. Состав газов и их концентрация зависят от температуры и от типа земной коры, поэтому они могут меняться в пределах одного вулкана.

Вулканические газы, выделяемые вулканами любого типа, поднимаются в атмосферу и обычно не причиняют вреда, однако частично они могут возвращаться на поверхность земли в виде кислотных дождей.

Вулканы могут испускать значительное количество ядовитых газов даже в интервалах между извержениями.

Двуокись серы

Одним из самых вредных газов является двуокись серы, которая обладает едким запахом и даже при небольшой концентрации раздражает слизистые оболочки носа, горла и глаз. Двуокись серы может распространяться на значительное расстояние от ее источника. Газ реагирует с влажным воздухом, образуя крошечные капли серной кислоты. Эти капли настолько малы, что содержатся в воздухе в виде тонкой взвеси в течение неопределенно долгого времени. Аэрозоль серной кислоты может образовать вулканический смог, качество воздуха при этом часто опускается ниже стандартов. Растительность высыхает на корню, а дождевая вода становится кислотной, загрязняя питьевую воду.

Фтороводород и сероводород

Несмотря на очевидный вред для здоровья, в мире еще не было доказанных случаев гибели людей из-за непосредственного воздействия двуокиси серы. То же самое относится к фтороводороду, другому распространенному вулканическому газу, который может абсорбироваться в частицы пепла и становиться причиной фторового отравления скота. Так, соединения фтора захватываются пепловыми частицами, а при выпадении последних на земную поверхность заражают пастбища и водоемы, вызывая тяжелые заболевания скота. Таким же образом могут быть загрязнены открытые источники водоснабжения населения.

Вулканогенный сероводород, газ с запахом тухлых яиц, был причиной гибели нескольких людей. Сероводород образуется там, где часть летучих серных паров избегает окисления и не превращается в двуокись серы. Он тяжелее воздуха и собирается в естественных углублениях, где представляет серьезную опасность

Углекислый газ

Большая часть жертв вулканических газов приходится на долю углекислого газа. Как и сероводород, он тяжелее воздуха и при пассивной дегазации может накапливаться в опасной для жизни концентрации. В обычном воздухе содержится около 0,5% углекислого газа, а в воздухе, который мы выдыхаем, примерно в два раза больше. Однако если концентрация углекислого газа в воздухе, которым мы вынуждены дышать, достигает 7,5%, это приводит к сонливости и головной боли. Первый документально подтвержденный смертельный инцидент произошел в 1979 году в районе вулканического комплекса Дьенг на острове Ява (Индонезия). Здесь 149 человек, спасавшихся бегством от фреатического извержения, погибли в невидимом облаке углекислого газа, проплывавшем у них на пути. Считается, что газ вырвался из подземной ловушки из-за сейсмических толчков, связанных с извержением.

Жидкие вулканические продукты представляют собой лаву, вышедшую на поверхность.

Характер эффузивных извержений, форма и протяженность лавовых потоков определяется химическим составом, вязкостью, температурой, содержанием летучих веществ.

Твердые породы, образующиеся при остывании лавы, содержат в основном диоксид кремния, оксиды алюминия, железа, магния, кальция, натрия, калия, титана и воду. Обычно в лавах содержание каждого из этих компонентов превышает один процент, а многие другие элементы присутствуют в меньшем количестве.

Состав лавы вулкана Эйяфьятлайокудль

Диоксид кремния (SiO2) – 46,99

Оксид алюминия (Al2O3) – 15, 91

Оксид железа (FeO)- 12,12

Оксид марганца (MnO) – 0,19

Оксид магния (MgO) – 6,55

Оксид кальция (CaO) – 10,28

Оксид натрия (Na2O) – 3,11

Материал подготовлен на основе информации открытых источников

Оксид калия (K2O) – 0,71

Диоксид титана (TiO2) – 3,32

Оксид фосфора (P2O5) – 0,64

Твердые вулканические продукты образуются при эксклюзивных взрывных извержениях.

При этом образуются вулканические бомбы (застывшие выбросы жидкой лавы), размером 6 см и более. Скопления вулканических бомб – агломераты.

Лапикки (“шарик”) – размеры 1-5 см – более мелкие продукты выброса – вулканический песок, пепел и пыль. Последняя разносится на тысячи км.

Взрывы дробят и выбрасывают уже отвердевшие вулканические породы и распыляют жидкую лаву, образуя туфы, размеры которых от 1-2 долей мм.

Источник

Вулкан Гримсвотн на юго-востоке Исландии начал извергаться 22 мая 2011 года.

Ниже приводится справочная информация по составу продуктов извержения вулканов.

Основными продуктами извержения являются лава, пепел, и др. вещества, которые выходят на поверхность земли после деятельности вулкана.

Химический состав вулканических газов: водяной пар, диоксид углерода (CO2), оксид углерода (CO), азот (N2), диоксид серы (SO2), оксид серы (SO), газообразная сера (S2), водород (H2), аммиак (NH3), хлористый водород (HCl), фтористый водород (HF), сероводород (H2S), метан (CH4), борная кислота (H3BO3), хлор (Cl), аргон (Ar), преобразованные H2O и СО2. Также присутствуют хлориды щелочных металлов и железа. Состав газов и их концентрация зависят от температуры и от типа земной коры, поэтому они могут меняться в пределах одного вулкана.

Вулканические газы, выделяемые вулканами любого типа, поднимаются в атмосферу и обычно не причиняют вреда, однако частично они могут возвращаться на поверхность земли в виде кислотных дождей.

Вулканы могут испускать значительное количество ядовитых газов даже в интервалах между извержениями.

Двуокись серы

Одним из самых вредных газов является двуокись серы, которая обладает едким запахом и даже при небольшой концентрации раздражает слизистые оболочки носа, горла и глаз. Двуокись серы может распространяться на значительное расстояние от ее источника. Газ реагирует с влажным воздухом, образуя крошечные капли серной кислоты. Эти капли настолько малы, что содержатся в воздухе в виде тонкой взвеси в течение неопределенно долгого времени. Аэрозоль серной кислоты может образовать вулканический смог, качество воздуха при этом часто опускается ниже стандартов. Растительность высыхает на корню, а дождевая вода становится кислотной, загрязняя питьевую воду.

Фтороводород и сероводород

Несмотря на очевидный вред для здоровья, в мире еще не было доказанных случаев гибели людей из-за непосредственного воздействия двуокиси серы. То же самое относится к фтороводороду, другому распространенному вулканическому газу, который может абсорбироваться в частицы пепла и становиться причиной фторового отравления скота. Так, соединения фтора захватываются пепловыми частицами, а при выпадении последних на земную поверхность заражают пастбища и водоемы, вызывая тяжелые заболевания скота. Таким же образом могут быть загрязнены открытые источники водоснабжения населения.

Вулканогенный сероводород, газ с запахом тухлых яиц, был причиной гибели нескольких людей. Сероводород образуется там, где часть летучих серных паров избегает окисления и не превращается в двуокись серы. Он тяжелее воздуха и собирается в естественных углублениях, где представляет серьезную опасность

Углекислый газ

Большая часть жертв вулканических газов приходится на долю углекислого газа. Как и сероводород, он тяжелее воздуха и при пассивной дегазации может накапливаться в опасной для жизни концентрации. В обычном воздухе содержится около 0,5% углекислого газа, а в воздухе, который мы выдыхаем, примерно в два раза больше. Однако если концентрация углекислого газа в воздухе, которым мы вынуждены дышать, достигает 7,5%, это приводит к сонливости и головной боли. Первый документально подтвержденный смертельный инцидент произошел в 1979 году в районе вулканического комплекса Дьенг на острове Ява (Индонезия). Здесь 149 человек, спасавшихся бегством от фреатического извержения, погибли в невидимом облаке углекислого газа, проплывавшем у них на пути. Считается, что газ вырвался из подземной ловушки из-за сейсмических толчков, связанных с извержением.

Жидкие вулканические продукты представляют собой лаву, вышедшую на поверхность.

Характер эффузивных извержений, форма и протяженность лавовых потоков определяется химическим составом, вязкостью, температурой, содержанием летучих веществ.

Твердые породы, образующиеся при остывании лавы, содержат в основном диоксид кремния, оксиды алюминия, железа, магния, кальция, натрия, калия, титана и воду. Обычно в лавах содержание каждого из этих компонентов превышает один процент, а многие другие элементы присутствуют в меньшем количестве.

Состав лавы вулкана Эйяфьятлайокудль

Диоксид кремния (SiO2) – 46,99

Оксид алюминия (Al2O3) – 15, 91

Оксид железа (FeO)- 12,12

Оксид марганца (MnO) – 0,19

Оксид магния (MgO) – 6,55

Оксид кальция (CaO) – 10,28

Оксид натрия (Na2O) – 3,11

Оксид калия (K2O) – 0,71

Диоксид титана (TiO2) – 3,32

Оксид фосфора (P2O5) – 0,64

Твердые вулканические продукты образуются при эксклюзивных взрывных извержениях.

При этом образуются вулканические бомбы (застывшие выбросы жидкой лавы), размером 6 см и более. Скопления вулканических бомб – агломераты.

Лапикки (“шарик”) – размеры 1-5 см – более мелкие продукты выброса – вулканический песок, пепел и пыль. Последняя разносится на тысячи км.

Взрывы дробят и выбрасывают уже отвердевшие вулканические породы и распыляют жидкую лаву, образуя туфы, размеры которых от 1-2 долей мм.

Материал подготовлен на основе информации открытых источников

Источник

Вулканические продукты, выбрасываемые вулканами, могут быть трех видов: жидкие, твердые и газообразные.

Жидкие продукты представлены магмой — лавой, излившейся на поверхность и утратившей часть летучих: газов и паров воды. Параметрами, определяющими свойства лавы, являются вязкость и содержание в ней газов. Вязкость лавы, по Е.К. Мархинину, является функцией ее температуры, силикатного состава и количества растворенных в ней летучих компонентов. Вязкость уменьшается с увеличением температуры, относительного количества щелочей и летучих компонентов и уменьшением содержания SiO2 и Al2O3.

Базальтовые лавы обладают наибольшей подвижностью, растекаясь со скоростью до 60 км/ч, температура их при выходе на поверхность составляет 1100—1200 °С. Растекающиеся потоки базальтовых лав имеют самую разнообразную поверхность: канатные волнистые лавы (рис. 11.11), подушечные (при излиянии в подводных условиях), глыбовые. При излиянии лавового потока на дне океана или моря в результате быстрого охлаждения поверхность превращается в вулканическое стекло, которое при растрескивании дает большое количество осколков стекла. Такие потоки называются гиалокластитами. Кислые низкотемпературные вязкие лавы отличаются меньшей подвижностью и образуют короткие и мощные лавовые потоки, которые быстро остывая с поверхности, покрываются глыбовой коркой.

Твердые продукты — это обломочный (пирокластический материал), составляющий основную массу всех вулканических продуктов наземных извержений. Образуются твердые и частично первоначально жидкие вулканические продукты при эксплозивных (взрывных) извержениях, главными их которых являются бомбы, шлаки, пемзы, пеплы и др.

Вулканические бомбы отличаются большим разнообразием и специфичностью форм при образовании из жидкой магмы. Важной особенностью их строения являются формы вращения — круглые, веретеновидные, лимоновидные и др., а размеры их варьируют от нескольких метров при массе в сотни и тысячи килограммов до нескольких миллиметров при массе в миллиграммы. Чем более вязкая лава, тем более крупные размеры и изометричные формы имеют бомбы. Скопления вулканических бомб называют агломератом.

Вулканические шлаки — это сильно пористые обломки, образующиеся при застывании лавы основного состава, насыщенной газами. Размеры их варьируют от первых до нескольких десятков сантиметров. Эти легкие, пористые, хрупкие образования подвержены быстрому разрушению.

Вулканические пемзы — пузыристые породы кислого состава, образующиеся при застывании лавы, насыщенной газами при подводных излияниях. Размеры их обломков варьируют от долей сантиметра до десятков сантиметров. Пемзы не тонут в воде и переносятся морскими течениями на большие расстояния, как и шлаки легко разрушаются.

«Волосы Пеле» — своеобразные тончайшие нити, образующиеся при разбрызгивании жидкой лавы или связаны с вытягиванием нитей при разрыве газами кусков шлака.

Вулканические пеплы — мельчайшие частицы размерами от сотых долей миллиметра часто являются основным продуктом извержения. Сложены они остроугольными обломками пемзы, стекла, различных минералов. Пепел распространяется на большие расстояния с уменьшением размерности его частиц по мере удаления от центра извержения и покрывает огромную площадь. Пепел Кракатау, поднятый взрывом на высоту 80 км, осаждался в разных частях суши и океана всего земного шара. При осаждении, уплотнении и цементации пирокластического материала в наземных условиях образуются туфы, в водной среде — туффиты.

Газообразные, или летучие продукты играют большую роль при вулканических извержениях, а состав их зависит от состава силикатной магмы и ее температуры. Информацию о составе летучих исследователи получают из нескольких источников: анализ проб газов, отобранных из жидкой лавы; анализ газов, сохранившихся в твердой лаве; анализ газа фумарол. Главными среди летучих являются пары воды (H2O), водород (H2), метан (CH4) и другие углеводороды, оксид углерода (CO), диоксид углерода (CO2), азот (N2), аммиак (NH3), хлористый водород (НС1), сероводород (H2S), мышьяковистая и борная кислота, хлориды, фториды металлов, а также гелий, аргон, ксенон. H2O составляет иногда до 95 % молекулярного состава газов. Состав газов, их концентрация в значительной мере зависят от приуроченности вулканов к главным типам земной коры, т. е. от состава и степени дегазации мантии.

Источник

Различают жидкие, твердые и газообразные продукты извержения вулканов.

1) Газообразные (летучие): водяной пар, оксид углерода (CO), азот (N2), оксид серы (SO), газообразная сера (S2), водород (H2), аммиак (NH3), хлористый водород (HCl), сероводород (H2S), метан (CH4), хлор (Cl), аргон (Ar). Также присутствуют хлориды щелочных металлов и железа. Состав газов и их концентрация зависят от температуры и от типа земной коры, поэтому они могут меняться в пределах одного вулкана.

2) Жидкие вулканические продукты представляют собой лаву, вышедшую на поверхность.

3) Твердые вулканические продукты образуются при эксклюзивных взрывных извержениях. При этом образуются вулканические бомбы (застывшие выбросы жидкой лавы), размером 6 см. и более. Скопления вулканических бомб – агломераты.

Поствулканические процессы – это процессы, связанные с затуханием активного вулканизма. Продуктами выделения являются пар и горячая вода. Вылетая из недр, периодически и под большим напором они образуют гейзеры. При отсутствии напора пар а- образуются термальные источники .

География вулканов

Подавляющее большинство вулканов расположено в экваториальной, тропической и умеренной областях. В полярных областях, за Северным и Южным полярными кругами, отмечены чрезвычайно редкие участки относительно слабой вулканической активности, обычно ограничивающиеся выделением газов. Наибольшее количество действующих вулканов в расчете на единицу площади приходится на островные дуги (Камчатка, Курильские острова, Индонезия) и другие горные сооружения (Южная и Северная Америка). Наименьшая плотность вулканов характерна для океанов и континентальных платформ; здесь они связаны с рифтовыми зонами – узкими и протяженными областями расколов и просадки земной коры (Восточно-Африканская рифтовая система), Срединно-Атлантический хребет.

Установлено, что вулканы приурочены к тектонически-активным поясам, где происходит большинство землятресений. Области развития вулканов характеризуются сравнительно большой раздробленностью литосферы, аномально высоким тепловым потоком, повышенными магнитными аномалиями, возрастанием теплопроводности горных пород с глубиной.

18 Метаморфизм.

Типы метаморфизма. Характеристика метаморфических горных пород

Метаморфизм – это процесс преобразования горных пород под воздействием эндогенных факторов при сохранении твердого состояния.

Главными факторами метаморфизма являются: температура, давление и химически активные вещества – растворы и газы.

Типы метаморфизма

По масштабу проявления выделяют региональный и локальный типы. По проявлению отдельных факторов выделяют:

1. Изохимический (когда в результате образования новых минералов не изменяется валовый химический состав пород) и аллохимический или метасоматический (когда происходит привнос одних элементов и вынос других, т.е. изменяется валовый химический состав вновь образованных пород).

2. Динамометаморфизм – (синоним катакластический или дислокационный) происходит в условиях преобладания фактора направленного давления (стресса).

3.Термальный – (или контактово-термальный) происходит как правило за счет тепла остывающего магматического расплава на контакте интрузивных тел с вмещающими их породами. При этом наблюдается температурная зональность- вблизи контакта с интрузивным телом образуются высокотемпературные минеральные ассоциации, а по мере удаления от контакта они сменяются низкотемпературными минералами. Такой тип метаморфизма наблюдается вблизи интрузий ультраосновного и основного составов, температура которых достигает 1200о. Такие магмы практически не сопровождаются выделением химически активных веществ, поэтому метаморфизм пород – изохимический.

19 Контактовый метаморфизм и связанные с ним метаморфические горные породы

Контактовый метаморфизм – Процесс изменения минерального состава, структуры и текстуры горных пород в результате прогрева со стороны магматического расплава и постмагматических флюидов.

Котнактовый метаморфизм проявляется вблизи интрузивных массивов, кристализовавшихся на малых и средних глубинах (до 10 — 12км). На больших глубинах контактовые ореолы сливаются с полями регионально-метаморфических пород и не фиксируются. Контактовому метаморфизму подвергаются также ксенолиты захваченные магматическим расплавом. Мощность контактовых ореолов, составляет обычно несколько десятков, реже – сотен метров, и даже вблизи крупных гранитных батолитов не превышает 2 — 3км.

В результате воздействия алюмосиликатных расплавов на близкие по составу, силикатные или алюмосиликатные осадочные породы (песчаники, алевролиты, аргиллиты, кремнистые сланцы) образуются контактовые роговики. От пород регионального метаморфизма роговики отличаются прежде всего своим геологическим положением — приуроченностью к интрузивным массивом. Преобразования, которым подвергается порода при контактовом метаморфизме связаны главным образом с прогревом, приводящем к отжигу, поэтому для пород контактового метаморфизма характерны однородные массивные текстуры, отсутствие сланцеватости, идиоморфизм зерен и отсутствие внутризерновых дислокаций.

Давление при контактовом метаморфизме изменяется в пределах 0-3 кбар, температура — 300—1200С.

Контактовые ореолы могут служить признаком близости не вскрытого интрузивного тела.

20 Региональный метаморфизм.

Региональный метаморфизм – происходит в крупных блоках земной коры с участием всех основных факторов (т.е. температуры, давления и химически активных веществ). Температурный диапазон от 300о до 10000 , диапазон изменения давления от 2-5тыс.атм. до 25000 атм.

Если процесс метаморфизма идет с нарастанием значений температуры и давления, то минералообразование идет от низкотемпературных к высокотемпературным минеральным ассоциациям. Такой метаморфизм называют прогрессивным. Если же процесс идет при понижении значений давления и температуры и образовании низкотемпературных минералов, то такой метаморфизм называют регрессивным.

основные группы фаций:

Низкие t0 и P-фация зеленых сланцев→минеральные ассоциации: хлорит, серицит, кварц, серпентин → породы: различные сланцы и серпентинит.

Средние t0 и P-амфиболитовая фация →минералы: амфиболы, гранаты, биотит →породы: амфиболиты и гнейсы.

Высокие t0 и P- гранулитовая фация→ минералы: полевой шпат, гранаты, пироксен→ породы: гнейсы, эклогиты, гранулиты.

Минеральный состав метаморфических горных пород весьма разнообразен. Следует однако, иметь в виду, что он зависит: а) от химического состава исходной породы; б)типа метаморфизма и в)от метаморфической фации. Среди наиболее распространенных минералов- это слюды, пироксены, амфиболы, карбонаты, кварц, полевые шпаты и гранат. Кроме того, есть минералы, которые образуются только при метаморфических процессах и являются его индикаторами. Это- тальк, серпентин, актинолит и др.

Наиболее распространенными породами локального метаморфизма являются: тектонические брекчии и милониты; мраморы и роговики; скарны, грейзены, березиты и листвениты (при метасоматозе).

21 Землетрясения

Землетрясения – это сотрясение земной коры, вызванное мгновенной разрядкой напряжений, накапливающихся в разных участках земной коры. Регистрируются землетрясения сейсмографами установленными на сейсмических станциях (в мире их свыше 700). Ежегодно они регистрируют несколько миллионов землетрясений. Среди них около ста разрушительных, одно-два опустошительных.

Для определения силы интенсивности землетрясений на поверхности Земли разработаны сейсмические шкалы. Каждый балл шкалы условно выражается цифрой, соответствующей определенной системе, разрушению построек, почвы, психологическому состоянию людей и т.д.

Землетрясениям обычно предшествуют и сопровождают подземный гул, дефорсиация почвы, разрывы в земной коре, камнепады, обвалы, оползни.

Сейсмические области. Сильные и частые землетрясения наблюдаются в периферической части Тихого океана.

Тихоокеанический сейсмический пояс, где они связаны с глубинными разломами. Очаги здесь сосредоточены в не широкой (70-80 км.) зоне, наклоненной в сторону материков под углом 30-60°: зоны Беньофа-Заварицкого.

Трансевроазиатский или Средиземно-Индонезийский пояс, охватывающий складчатые сооружения от Гибралтара до Малайского архипелага.

Атлантический пояс – приурочен к срединно-океаническому хребту. В нем в последние два десятилетия сильно активизировались сейсмические процессы.

Индийско-Африканский пояс – охватывает хребты Индийского океана, районы, прилегающие к великим грабенам Центральной Африки, к грабенам Красного моря, Палестины, Сирии.

22 Гипергенез и коры выветревания. Процессы физическоно выветревания.

Горные породы, обнажаясь на поверхности Земли, подвергаются постоянному воздействию атмосферы и других природных агентов и претерпевают выветривание,т.е. постепенно превращаются в обломочный или растворенный материал. Известны 2 типа выветривания – физическое и химическое. Оба типа обычно проявляются совместно, причем значимость каждого зависит от климатических условий.

Физическое выветривание.

1) В тех местах, где протекание природных химических реакций ограничено недостатком влаги или тепла, что характерно для пустынь и холодных областей, основную роль в процессе выветривания играют температурные колебания атмосферы (температурное выветривание).

2) В горах и тундре, для которых характерны сильные колебания низких температур. Происходит постоянное чередование процессов замерзания поверхностных вод и последующего таяния льда.

3) Физическому выветриванию нередко способствует разрушение их корнями растений (особенно деревьев), сверлящими животными и даже поражение вершин скал молниями.

Кора выветривания.

Корой выветривания называют комплекс остаточных или несмещенных продуктов выветривания, остающихся на месте разрушения коренных гор-пород (элювий).

Процесс формирования кор выветривания включает:

1) Разрушение и химическое разложение горных пород с образованием продуктов выветривания.

2) Частичный вынос и перераспределение продуктов выветривания.

3) Синтез новых минералов в результате взаимодействия продуктов выветривания в ходе их миграции.

4) Метасамасоматическое замещение минералов материнских пород.

Различают генетические типы коры выветривания.

а) автоморфная – остаточные или несмещенные продукты выветривания, остающиеся на месте разрушения коренных пород (элювий).

б) гидроморфная (вторичная) – образующаяся в результате выноса почвенными и грунтовыми химических элементов в виде и коллоидных растворов при формировании автоморфной коры.

Условиями для образования кор выветривания служат: повышение температуры и влажности, атмосферного давления, выровненный рельеф, обилие растительности и длительность процесса выветривания.

23 Основные процессы химического выветревания

Химическое выветривание.

Более интенсивное и глубокое разложение пород происходит в теплых и очень влажных областях (тропические), где активно идут химические и биохимические реакции. Природные химические реакции очень сложны и в общих чертах сводятся к следующему. Дождевые воды, выпадая на землю и проходя через атмосферу, поглощают из нее некоторые газы (О2, СО2) захватывают и растворяют мельчайшие рассеянные в атмосфере частички различных солей. Достигнув земной поверхности, эти воды растворяют некоторые находящиеся в почве органические кислоты и становятся, т.о., способными вступать в органические реакции с минералами горных пород. Под действием химически активных вод минералы постепенно разлагаются или просто растворяются, причем многие продукты разложения выносятся подземными водами, либо увеличиваются в объеме, тем самым, оказывая давление на окружающие более стойкие минералы.

К процессам химического выветривания относятся окисление, гидратация, растворение и гидролиз.

1) Окисление особенно интенсивно происходит в минералах, содержащих Fe.

Окисление, часто происходит одновременно с гидратацией.

2) Гидратация. В процессе гидратации происходит закрепление молекул воды на поверхности отдельных участков кристаллических структур минералов.

3) Растворение. Под действие стекающей по поверхности горных пород и проникающей через поры и трещины глубины воды происходит растворение некоторых минералов. Этот процесс ускоряется за счет высокой концентрации ионов H2, а также содержания О2,СО2 и органических кислот.

4) Гидролиз – это процесс разрушения кристаллической структуры под действием воды и растворенных в ней ионов. В результате образуется новая структура, существенно отличающаяся от первоначальной. Характерен для силикатов и алюмосиликатов.

26 Литогенез и его стадии. Характеристика осадков в различных зонах Мирового океана

Литогенез – совокупность природных процессов образования и последующих изменений осадочных горных пород.

Гл. факторы Литогенеза — тектонические движения и климат.

В цикле Литогенез различают следующие стадии:

1) образование и мобилизация исходного вещества осадков в процессе физического и химического разрушения материнских пород и его перенос к месту захоронения — поверхностный гипергенез;

2) поступление осадков в конечные водоёмы стока и окончат. осаждение — седиментогенез;

3) физико-химическое уравновешивание насыщенного водой осадка, завершающееся преобразованием его в осадочную породу — диагенез;

4) дальнейшие изменения породы по мере увеличения глубины её захоронения под влиянием возрастающих температуры и давления, а в некоторых случаях и воздействия водных растворов и газов — катагенез

5) последующее преобразование состава пород, особенно глинистых, при дальнейшем их погружении — метагенез, или собственно метаморфизм; чаще всего проявляется в геосинклиналях.

основные типы Литогенез: ледовый, гумидный, аридныий и вулканогенно-осадочный.

1) При ледовом литогенезе процессы осадкообразования происходят на участках материков, покрытых льдом; Литогенез протекает в форме механического породообразования с невыраженной дифференциацией вещества.

2) Гумидный литогенез типичен для породообразования на суше и в морях в условиях влажного климата.

3) При аридном литогенезе породообразование происходит на материках и в морях в условиях засушливого климата.

4) Вулканогенно-осадочный литогенез характеризуется породообразованием на участках с наземным и подводным вулканизмом и на прилежащих к ним территориях .

Первые три типа Литогенез обусловлены климатом, и поэтому они распространены на поверхности Земли зонально, причём наиболее четко они выражены на платформах. Вулканогенно-осадочный Литогенез не зависит от климата и проявляется интразонально, главным образом в геосинклинальных областях, т. е. на площадях, наиболее тектонически активных.

Каждый тип Литогенез обладает характерным сочетанием осадочных пород, выражающих специфический ход механической и химической осадочной дифференциации, а также биогенных процессов и вулканизма.

С Литогенез как процессом осадочного породообразования связано формирование очень многих самых различных полезных ископаемых, в том числе углей ископаемых, нефти, природных горючих газов, железных и марганцевых руд, бокситов, фосфоритов, россыпей и мн. др.

30 Преобразование осадков в осадочные породы. Процессы диагенезп и катагенеза. Эпигенез

Рекомендуемые страницы:

Источник