Определение влаги в пищевой добавке

Значение влаги в пищевых продуктах

Свободная и связанная влага в продуктах

9.3. Методы определения влажности в пищевых продуктах

Значение влаги в пищевых продуктах

Вода – важная составляющая пищевых продуктов. Она не является питательным веществом, но вода жизненно необходима как стабилизатор температуры тела, переносчик питательных веществ, реагент и реакционная среда во многих биохимических превращениях, стабилизатор биополимеров. Благодаря физическому взаимодействию с белками, полисахаридами, липидами, солями вода вносит большой вклад в текстуру пищевых продуктов. Вода присутствует в растительных и животных продуктах как клеточный и внеклеточный компонент, как диспергирующая среда и растворитель, влияет на консистенцию, структуру, внешний вид, устойчивость продукта при хранении.

Содержание влаги в некоторых продуктах:

– мясо 65-75 %

– фрукты и овощи 70-90 %

– хлеб 35 %

– зерно, мука 12-15 %

– сыр 37 %

– молоко 87 %

– пиво, соки, напитки 87-95 %

Многие продукты содержат большое количество влаги, что отрицательно сказывается на стабильности при хранении. Так как вода непосредственно участвует в гидролитических процессах, ее удаление, связывание за счет увеличения содержания соли, сахара приводит к замедлению и даже к прекращению многих реакций, ингибирует рост микроорганизмов. Все это способствует удлинению сроков хранения продуктов.

Свободная и связанная влага в продуктах

Обеспечение устойчивости при хранении продуктов определяется в большой мере соотношением свободной и связанной влаги.

Свободная влага – это влага не связанная полимером и доступная для протекания биохимических, микробиологических, химических процессов.

Свободная влага является непрерывной средой, в которой растворены компоненты пищи: органические кислоты, минеральные вещества, углеводы, ароматические вещества. Количество свободной воды можно значительно уменьшить высушиванием, замораживанием, сгущением.

Связанная влага – это ассоциированная вода, прочно связанная с компонентами пищи – белками, углеводами, липидами за счет химических и физических связей. По форме связи с компонентами пищи и по мере убывания энергии связи делится на три группы; химическую, физико-химическую и механическую связь.

Влага химически связанная входит в состав сухих веществ, например в зерне это вода кристаллогидратов полисахаридов (крахмала и др.). Она обладает наибольшей энергией связи, очень прочна, разрушается с большим трудом и при высоких температурах.

Физико-химическая влага образуется в результате притяжения диполей воды полярными группировками молекул белка, липидов. Такая вода образует гидратную оболочку вокруг гидрофильных групп белка и липидов. Физико-химическая связь оказывает влияние на стабильность белковых и липидных систем в продуктах. Физико-химическая влага не замерзает при низких температурах (-40ºС), не растворает нутриенты продукта, почти не удаляется из продукта при высушивании, недоступна микроорганизмам.

Механически связанная влага – это влага, удерживаемая в капиллярах и матричных структурах составных частей продукта. Большинство пищевых продуктов имеет довольно большой диаметр капилляров и плохо удерживает такую влагу. Вода удерживается макромолекулярными матрицами таких структур как пектин, крахмал, белок. Эта вода удерживается за счет водородных связей, не выделяется из пищевого продукта, но в некоторых технологических процессах она ведет себя как свободная вода. Ее можно удалить высушиванием, можно заморозить. Эта вода влияет на сохранность гелеобразных продуктов, например, потеря такой физически связанной воды (синерезис) приводит к резкому ухудшению качества.

Издавна было замечено, что продукты с одинаковым содержанием влаги по-разному портятся. Оказалось, что большое значение имеет то, насколько ассоциирована (связана) вода с компонентами продукта. Чем сильнее связана вода, тем она менее способна участвовать в гидролитических и других процессах, разрушающих и портящих продкут.

В связи с этим было введено понятие Активность воды.

Активность воды (аw)- это отношение давления паров воды над продуктом (Рw) к давлению паров над чистой водой (Ро) при той же температуре. То есть аw = Рw/Ро. Активность воды равна относительной влажности в состоянии равновесия (ψ) при которой продукт не впитывает влагу и не теряет ее в атмосферу, уменьшенной в сто раз, то есть активность воды определяется по формуле 9.1:

аw = ψ/100, ( 9.1)

Где: aw – активность воды в продукте,

Ψ – относительная влажность,

100 – коэффициент

Значение активности воды (аw) в пищевых продуктах: фрукты 0,97, хлеб 0,95, мука, зерно 0,80, сахар 0,1, мясо 0,97.

9.3 Методы определения влаги в пищевых продуктах

На пищевых предприятиях обычно контролируется массовая доля влаги в сырье т продуктах, независимо от формы ее связи, то есть определяется влажность. Влажность выражается в процентах. При определении влажности чаще всего используют термогравиметрический метод и рефрактометрический метод.

Термогравиметрический метод определения влажности основан на удалении влаги из продукта путем высушивания до постоянной (неизменяющейся при дальнейшей сушке) влажности. Навеску взвешивают до сушки и после получения сухого остатка. По убыли массы определяют влагу, выражая ее в процентах. К термогравиметрическим методам относят методы высушивания до постоянной массы при 105 ºС, экспресс-метод высушивания на приборе Чижовой (метод ВНИИХП-ВЧ).

Читайте также:  Е 516 пищевая добавка опасна или нет

Рефрактометрическое определение влажности основано на определении сухих веществ в объекте по показателю преломления, измеряемому с помощью рефрактометра. Влажность рассчитывается по разности массы анализируемого вещества и доли в ней сухих веществ. Напимер, если пивное сусло содержит 11 % сухих веществ, то влаги в нем содержится: 100 – 11 = 89 %. Этот метод прост, удобен, быстро выполняется и хорошо воспроизводится.

Перечисленными методами определяется не вся влага продуктов, а свободная и незначительная часть связанной влаги. Для полного определения влаги применяют следующие методы:

– дифференциальной сканирующей калориметрии (определяется разница между общей и замерзающей или связанной водой);

метод ядерно-магнитного резонанса (определяется две линии: свободной и связанной влаги, в спектре ядерно-магнитного резонанса):

диэлектрические методы (определяется разница диэлектрической проницаемости свободной и связанной воды);

метод измерения теплоемкости (теплоемкость свободной воды значительно превышает теплоемкость связанной воды).

ТЕМА 10 ФЕРМЕНТЫ

Свойства ферментов

Классификация ферментов

Применение ферментов в пищевых технологиях

Свойства ферментов

Ферменты являются биологическими катализаторами белковой природы. Ферменты способны значительно (в десятки тысяч раз) повышать скорость различных реакций, в том числе и биохимических, которые непрерывно протекают в живых организмах, которые наблюдаются в ходе технологических процессов переработки сырья. Ферменты обладают специфичностью действия, то есть действуют на определенный субстрат, тип связи. Ферменты характеризуются также высокой лабильностью, то есть, подвержены влиянию внешних факторов, таких как температура, концентрация субстрата, рН среды, присутствие активаторов или ингибиторов. Во многом лабильность ферментов связана с их белковой природой, сложной пространственной конфигурацией.

Ферменты повышают скорость реакций за счет значительного снижения энергетического уровня проведения реакции. Ферментативная реакция проходит в две стадии. На первой стадии происходит образование фермент-субстратного комплекса, образованию которого соответствует значительно низкая энергия активации. На второй стадии комплекс распадается на продукты реакции и свободный фермент, который может взаимодействовать с новой молекулой субстрата. Это выражается уравнением:

Е + S ↔ ЕS → Р + Е , (10.1)

Где: Е- фермент, S- субстрат, ЕS- фермент-субстратный комплекс, Р продукты реакции.

Ферменты, как уже отмечалось, имеют белковую природу и обладают третичной и четвертичной структурой. Многие ферменты являются двухкомпонентными, то есть имеют белковую часть в виде апофермента и небелковую составляющую в виде кофермента. В качестве кофермента могут выступать витамины, ароматические и алифатические углеводороды, гетероциклические соединения, нуклеотиды и нуклеозиды. Ферменты имеют некоторые специфические свойства, наиболее важные из них:

– высокая каталитическая активность (повышают скорость реакций в миллионы раз);

– специфичность действия (фермент катализирует превращение одного субстрата, реже группу родственных субстратов);

– лабильность (изменение активности под действием различных факторов: рН, температура, присутствие активаторов и ингибиторов, что связано с белковой природой и сложной пространственной конфигурацией фермента).

Классификация ферментов

В основе классификации лежат три положения:

А) ферменты делятся на 6 классов по типу акатализируемой реакции;

Б) Каждый фермент получает систематическое название, включающее название субстрата, на который он действует, тип катализируемой реакции и окончаниие «аза». В некоторых случаях сохранены тривиальные названия ферментов;

В) каждому ферменту присвоен четырехзначный шифр (код). Первое число указывает на класс фермента, второе на подкласс, третье на подкласс, четвертое на порядковый номер фермента в подклассе.

Например, алкогольдегидрогеназа (Н.Ф.1.1.1.1): первая цифра 1- означает класс оксидоредуктаз, вторая цифра 1- подкласс дегидрогеназ (действует на СН-ОН – группу), третья цифра 1- подкласс анаэробные дегидрогеназы (акцептором служит НАД или НАДФ), четвертая цифра 1- порядковый номер алкогольдегидрогеназы.

Например, ά -амилаза (Н.Ф.3.2.1.1): первая цифра 3- клаа гидролаз, вторая цифра 2 – подкласс карбогидраз, третья цифра 1- подкласс полиаз, четвертая цифпа 1- порядковый номер фермента ά-амилаза.

Классификация по типу катализируемой реакции:

Все ферменты делятся на шесть классов по типу катализируемой реакции:

1 клас с– оксидоредуктазы- ферменты, катализирующие окислительно-восстановительные реакции ( присоединение кислорода, отнятие и перенос водорода, перенос электронов);

2 клас с трансферазы- ферменты, катализирующие перенос атомных группировок от одного соединения к другому (остатков моносахаридов, аминокислот, фосфорной кислоты, метильные группировки и т.д.);

3 класс – гидролазы – ферменты, катализирующие реакции гидролиза сложных органических соединений на более простые. Реакции гидролиза проходят с участием воды. Эти реакции могут быть выражены следующим уравнением (10.2):

А1•А2 +НОН → А1-ОН + А2-Н, (10.2)

4 класс – лиазы – ферменты, катализирующие реакции негидролитического отщепления каких-либо групп от субстрата с образованием кратной связи или присоединение группировок по месту разрыва кратных связей (отщепление воды, углекислого газа, аммиака);

Читайте также:  Пищевые добавки яичный желток

5 клас с– изомеразы – ферменты, катализирующие реакции изомеризации или образование изомерных форм молекул органических веществ в результате переноса химических группировок внутри молекулы (переход глюкозы во фруктозу);

6 класс – лигазы или синтетазы – ферменты, катализирующие реакции синтеза, сопряженные с разрывом одних связей и образованием других ( С-С, С- S , С- N , С- О связей).

При переработке пищевого сырья чаще всего приходится иметь дело с ферментами 1 класса – оксидоредуктазами, такими как каталаза, полифенолоксидаза; с ферментами 3 класса – гидролазами, такими как амилазы – ферменты гидролизующие крахмал, протеиназы – ферменты, гидролизующие белок, липазы – ферменты гидролизующие липиды.

В пищевой промышленности широко применяются ферментные препараты, полученные биохимическим путем при выращивании специфических микроорганизмов, способных вырабатывать определенные ферменты. Различают бактериальные ферментные препараты, полученные путем глубинного культивирования бактерий, и поверхностные, полученные путем поверхностного культивирования плесневых грибов.

Название ферментного препарата включает название основного активного фермента и название микроорганизма-продуцента, с окончанием «-ин». Например: Протосубтилин Г10Х имеет основной фермент- протеазу, продуцентом является бактериальная палочка Bacillus subtilis. Г- глубинное культивирование или выращивание, 10Х- степень очистки ферментного препарата, чем больше число, тем выше степень очистки ( бывает очистка 2Х, 3Х, 10Х, 15Х, 20Х).

Применение ферментных препаратов в пищевой промышленности позволяет интенсифицировать технологические процессы, улучшать качество готовой продукции, увеличивать ее выход, экономить ценное пищевое сырье.



Источник

ГОСТ 15113.4-77

Группа Н39

MКC 67.050
ОКСТУ 9109

Дата введения 1979-01-01

Постановлением Государственного комитета стандартов Совета Министров СССР от 24 августа 1977 г. N 2025 дата введения установлена 01.01.79

Ограничение срока действия снято по протоколу N 3-93 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 5-6-93)

ВЗАМЕН ГОСТ 15113.7-69

ИЗДАНИЕ (август 2011 г.) с Изменением N 1, утвержденным в апреле 1984 г. (ИУС 8-84).

Настоящий стандарт распространяется на пищевые концентраты и устанавливает метод определения влаги.

1. ОТБОР И ПОДГОТОВКА ПРОБ

1.1. Отбор проб и подготовку аналитических проб проводят по ГОСТ 15113.0-77.

2. ОПРЕДЕЛЕНИЕ ВЛАГИ МЕТОДОМ ВЫСУШИВАНИЯ ДО ПОСТОЯННОЙ МАССЫ

2.1. Сущность метода

Метод основан на способности исследуемого продукта, помещенного в сушильный шкаф, отдавать гигроскопическую влагу при температуре 100-105 °С.

Метод применяется при разногласиях, возникающих в оценке качества.

2.2. Аппаратура, реактивы и материалы

Бюксы стеклянные или металлические по ГОСТ 25336-82, диаметром 45-50 мм, высотой 40-50 мм.

Весы лабораторные общего назначения по ГОСТ 24104-88*.
_______________
* С 1 июля 2002 г. введен в действие ГОСТ 24104-2001. На территории Российской Федерации действует ГОСТ Р 53228-2008 (здесь и далее).

Термометр технический стеклянный ртутный на 150 °С по ГОСТ 28498-90.

Шкаф сушильный электрический.

Эксикатор по ГОСТ 25336-82.

Кальций хлористый технический по ГОСТ 450-77.

Кислота серная по ГОСТ 4204-77, плотностью 1,84 г/см.

Палочки стеклянные длиной 55-60 мм.

Песок очищенный прокаленный.

Щипцы тигельные.

2.3. Проведение испытания

Чистую пустую бюксу или бюксу с помещенными в нее стеклянной палочкой и 5-10 г прокаленного песка сушат вместе с крышкой в открытом виде при температуре 100-105 °С в сушильном шкафу до постоянной массы.

Определение влаги концентратов, в рецептуру которых входит сахар, проводят с добавлением 5-10 г прокаленного песка. Влажность концентратов, не содержащих сахар, допускается определять без добавления песка.

Из аналитической пробы концентрата берут в высушенную бюксу навеску массой 5 г с погрешностью не более ±0,001 г, осторожно перемешивают с песком и помещают в открытом виде вместе с крышкой в сушильный шкаф с температурой 100-105 °С на 4 ч. После этого бюксу вынимают из сушильного шкафа тигельными щипцами, закрывают крышкой, охлаждают в эксикаторе 20-30 мин и взвешивают. При дальнейшем высушивании навески взвешивают через каждый час. При высушивании навесок с песком содержимое бюксы периодически осторожно перемешивают стеклянной палочкой. Навеску высушивают до тех пор, пока разница между двумя последующими взвешиваниями превышает 0,004 г или масса навески увеличивается; в последнем случае для расчета принимают наименьшую массу бюксы с навеской.

2.1-2.3. (Измененная редакция, Изм. N 1).

2.4. Обработка результатов

Массовую долю влаги , %, вычисляют по формуле

,

где – масса навески испытуемого концентрата, г;

– масса бюксы с навеской до высушивания, г;

– масса бюксы с навеской после высушивания, г.

За результат испытания принимают среднеарифметическое двух параллельных определений.

Вычисления проводят с погрешностью не более ±0,01%.

Расхождение между двумя параллельными определениями не должно превышать 0,25%.

3. ОПРЕДЕЛЕНИЕ ВЛАГИ МЕТОДОМ УСКОРЕННОГО ВЫСУШИВАНИЯ

3.1. Сущность метода

Метод основан на высушивании исследуемого продукта в сушильном шкафу при температуре 130 °С.

3.2. Аппаратура, реактивы и материалы

Для проведения испытания применяют аппаратуру, реактивы и материалы по п.2.2.

Читайте также:  Химия пищевые добавки кратко

3.3. Проведение испытания

Чистую пустую бюксу или бюксу с 5-10 г прокаленного песка и стеклянную палочку сушат вместе с крышкой (в открытом виде) в течение 30 мин в сушильном шкафу при температуре 130 °С, охлаждают в эксикаторе и взвешивают.

Из аналитической пробы концентрата в высушенную бюксу берут навеску массой 5 г с погрешностью не более ±0,01 г. Открытую бюксу с навеской вместе с крышкой помещают в сушильный шкаф, предварительно нагретый до 140-145 °С. Температуру шкафа при установке бюкс доводят до 130 °С в течение 10 мин и этот момент считают началом сушки.

Продолжительность сушки при температуре (130±2) °С установлена: 40 мин для молочных концентратов и продуктов детского питания; 45 мин для остальных видов концентратов.

После высушивания навески бюксу вынимают из сушильного шкафа тигельными щипцами, закрывают крышкой, охлаждают в эксикаторе и взвешивают с погрешностью не более ±0,01 г.

3.2, 3.3. (Измененная редакция, Изм. N 1).

3.4. Обработка результатов – по п.2.4.

4. ОПРЕДЕЛЕНИЕ ВЛАГИ НА ПРИБОРЕ ВЧ

4.1. Сущность метода

Метод основан на обезвоживании исследуемого продукта на приборе ВЧ с помощью тепловой энергии инфракрасного излучения, которая, проникая внутрь тонкого слоя (2-3 мм) продукта, быстро удаляет имеющуюся в нем влагу.

4.2. Аппаратура, реактивы и материалы

Прибор ВЧ.

Весы лабораторные общего назначения по ГОСТ 24104-88.

Термометры стеклянные ртутные на 250 °С по ГОСТ 28498-90.

Часы песочные на 1, 2, 3 и 5 мин.

Эксикатор по ГОСТ 25336-82.

Кальций хлористый технический по ГОСТ 450-77.

Бумага фильтровальная лабораторная по ГОСТ 12026-76.

Бумага газетная по ГОСТ 6445-74.

Ножницы.

4.3. Подготовка к испытанию

Перед определением влаги прибор ВЧ нагревают до температуры, указанной в таблице, и подсушивают в нем бумажные пакеты в течение 3 мин. После высушивания пакеты помещают в эксикатор для охлаждения на 2-3 мин.

Вид концентрата

Масса навески,
г

Температура высушивания, °С

Продолжи-
тельность высушивания,
мин

Суп-пюре гороховый, крупеник гречневый, лапшевник молочный, суп-пюре картофельный с копченостями, суп вермишелевый с мясом, борщ с мясом, суп московский, оладьи

3

155

3

Пудинг пшенный, рисовый, пшеничный

5

155

4

Крупеник пшенный, рисовый, пшеничный

5

155

5

Каша пшеничная

3

165

3

Каша пшенная, ячневая, гречневая и перловая

3

165

5

Каша рисовая, каша пшенная с сахаром

3

165

7

Каша рисовая и пшеничная с сахаром

3

165

10

Каши молочные: гречневая, рисовая, манная

4

140

2

Продукты для детского питания:

Отвары крупяные и мука из круп

4

140

10

Смеси молочные на отварах и на муке, кисель молочный

4

130

3

Сухие завтраки:

Хлопья, кукурузные палочки

3

155

3

Воздушные зерна

3

155

1

Кофе натуральный жареный, напитки кофейные

4

160

2

Примечание. Допускается отклонение от температуры высушивания ±1 °С.

Для изготовления пакетов берут лист газетной бумаги размером 20х14 см, складывают его пополам, а затем открытые с трех сторон края пакета загибают на 1,5 см; размер готовых пакетов 8х11 см.

Можно пользоваться пакетами треугольной формы из бумаги размером 15х15 см, с шириной загиба краев 1,5 см.

При испытании концентратов, содержащих в рецептуре жир, в пакет помещают дополнительно вкладыш из фильтровальной бумаги размером 11х24 мм, сложенный в три слоя таким образом, чтобы два слоя бумаги находились на нижней стороне пакета, а один слой на верхней; навеску помещают на два слоя фильтровальной бумаги, образующей вкладыш.

4.2, 4.3. (Измененная редакция, Изм. N 1).

4.4. Проведение испытания

Из аналитической пробы концентрата в предварительно высушенный и взвешенный пакет берут с погрешностью не более ±0,01 г навеску в количестве 3, 4 или 5 г, в зависимости от вида концентрата (см. таблицу).

Для получения правильных результатов испытания навеску берут быстро и распределяют ровным слоем по всей поверхности пакета или вкладыша.

Пакет закрывают, помещают в прибор ВЧ и сушат навеску по режимам, указанным в таблице.

В прибор помещают одновременно два пакета с навесками (параллельные определения).

После высушивания пакеты охлаждают в эксикаторе в течение 5 мин и взвешивают с погрешностью не более ±0,01 г.

4.5. Обработка результатов

Массовую долю влаги , %, вычисляют по формуле

,

где – масса навески испытуемого концентрата, г;

– масса пакета с навеской до высушивания, г;

– масса пакета с навеской после высушивания, г.

За результат испытания принимают среднеарифметическое результатов двух параллельных определений.

Вычисления проводят с погрешностью не более ±0,01%.

Расхождение между параллельными определениями не должно превышать 0,3%.

Электронный текст документа
подготовлен АО “Кодекс” и сверен по:
официальное издание
Концентраты пищевые. Технические условия.
Методы анализа. Упаковка. Маркировка:
Сб. ГОСТов. – М.: Стандартинформ, 2011

Источник