На свойстве веществ какая функция основная

Живое вещество играет огромную роль в развитии нашей планеты.

К такому выводу пришёл русский учёный В. И. Вернадский, исследовав состав и эволюцию земной коры. Он доказал, что полученные данные не могут быть объяснены лишь геологическими причинами, без учёта роли живого вещества в геохимической миграции атомов.

Начиная с момента зарождения, жизнь постоянно развивается и усложняется, оказывая воздействие на окружающую среду, изменяя её. Таким образом, эволюция биосферы протекает параллельно с историческим развитием органической жизни.

Время жизни на Земле измеряется примерно (6)–(7) миллиардами лет. Возможно, что примитивные формы жизни появились ещё раньше. Но первые следы своего пребывания они оставили (2,5)–(3) млрд лет назад. С этого времени произошли коренные изменения поверхности планеты и сформировалось до (5) млн видов животных, растений и микроорганизмов. На Земле возникло живое вещество, заметно отличающееся от неживой материи.

Развитие жизни привело к появлению новой общепланетной структурной оболочки биосферы, тесно взаимосвязанной единой системы геологических и биологических тел и процессов преобразования энергии и вещества.

Биосфера — не только сфера распространения жизни, но и результат её деятельности.

Особое место среди живых организмов заняли растения, потому что они обладают способностью к фотосинтезу. Они продуцируют практически всё органическое вещество на планете (растений насчитывается почти (300) тыс. видов).

В. И. Вернадский дал представление об основных биогеохимических функциях живого вещества.

1. Энергетическая функция связана с запасанием энергии в процессе фотосинтеза, передачей её по цепям питания, рассеиванием.

Эта функция — одна из важнейших. В её основе лежит процесс фотосинтеза, в результате которого происходит аккумуляция солнечной энергии и её последующее перераспределение между компонентами биосферы.

Биосферу можно сравнить с огромной машиной, работа которой зависит от одного решающего фактора — энергии: не будь её, всё немедленно остановилось бы.
В биосфере роль основного источника энергии играет солнечное излучение.

Биосфера аккумулирует энергию, приходящую из Космоса на нашу планету.

Живые организмы не просто зависят от лучистой энергии Солнца, они выступают как гигантский аккумулятор (накопитель) и уникальный трансформатор (преобразователь) этой энергии.

Это происходит следующим образом. Растения-автотрофы (и микроорганизмы-хемотрофы) создают органическое вещество. Все остальные организмы планеты — гетеротрофы. Они используют созданное органическое вещество в пищу, что приводит к возникновению сложных последовательностей синтеза и распада органических веществ. Это-то и является основой биологического круговорота химических элементов в биосфере.

Стало быть, живые организмы есть важнейшая биохимическая сила, преобразующая земную кору.

Миграция и разделение химических элементов на земной поверхности, в почве, в осадочных породах, атмосфере и гидросфере осуществляются при непосредственном участии живого вещества. Поэтому в геологическом разрезе живое вещество, атмосфера, гидросфера и литосфера — это взаимосвязанные части единой, непрерывно развивающейся планетарной оболочки — биосферы.

2. Газовая функция — способность изменять и поддерживать определённый газовый состав среды обитания и атмосферы в целом.

Преобладающая масса газов на планете имеет биогенное происхождение.

Пример:

кислород атмосферы накоплен за счёт фотосинтеза.

3. Концентрационная функция — способность организмов концентрировать в своём теле рассеянные химические элементы, повышая их содержание по сравнению с окружающей организмы средой на несколько порядков.

Организмы накапливают в своих телах многие химические элементы.

Пример:

среди них на первом месте стоит углерод. Содержание углерода в углях по степени концентрации в тысячи раз больше, чем в среднем для земной коры. Нефть — концентратор углерода и водорода, так как имеет биогенное происхождение. Среди металлов по концентрации первое место занимает кальций. Целые горные хребты сложены из остатков животных с известковым скелетом. Концентраторами кремния являются диатомовые водоросли, радиолярии и некоторые губки, йода — водоросли ламинарии, железа и марганца — особые бактерии. Позвоночными животными накапливается фосфор, сосредотачиваясь в их костях.

Результат концентрационной деятельности — залежи горючих ископаемых, известняки, рудные месторождения и т. п.

4. Окислительно-восстановительная функция связана с интенсификацией под влиянием живого вещества процессов как окисления благодаря обогащению среды кислородом, так и восстановления прежде всего в тех случаях, когда идёт разложение органических веществ при дефиците кислорода.

Пример:

восстановительные процессы обычно сопровождаются образованием и накоплением сероводорода, а также метана. Это, в частности, делает практически безжизненными глубинные слои болот, а также значительные придонные толщи воды (например, в Чёрном море).

Подземные горючие газы являются продуктами разложения органических веществ растительного происхождения, захороненных ранее в осадочных толщах.

5. Деструктивная функция — разрушение организмами и продуктами их жизнедеятельности как самих остатков органического вещества, так и косных веществ.

Основной механизм этой функции связан с круговоротом веществ. Наиболее существенную роль в этом отношении выполняют низшие формы жизни — грибы, бактерии (деструкторы, редуценты).

6. Транспортная функция — перенос вещества и энергии в результате активной формы движения организмов.

Часто такой перенос осуществляется на колоссальные расстояния, например, при миграциях и кочёвках животных. С транспортной функцией в значительной мере связана концентрационная роль сообществ организмов, например в местах их скопления (птичьи базары и другие колониальные поселения).

7. Средообразующая функция является в значительной мере интегративной (результат совместного действия других функций).

С ней в конечном счёте связано преобразование физико-химических параметров среды. Подробнее о ней см. в разделе «Средообразующая роль живых организмов».

Источники:

Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. 9 класс // ДРОФА.
Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. Общая биология (базовый уровень) 10–11 класс // ДРОФА.

https://ecodelo.org

https://lib4all.ru/base/B3337/B3337Content.php

Источник

Химия – наука о веществах, их свойствах, превращениях и явлениях, сопровождающих эти превращения.

Вещества – это то, из чего состоят предметы (физические тела) окружающего мира. Вещества, существующие в природе, постоянно претерпевают различные изменения.

Явления – различные изменения, которые происходят с веществами.

Физические явления – явления, не сопровождающиеся превращениями одних веществ, в другие (обычно изменяется агрегатное состояние веществ или их форма).

Химические явления – явления, в результате которых из данных веществ образуются другие.

Иначе химические явления называют химическими реакциями.

Каждое вещество обладает строго определёнными свойствами.

Свойства веществ – признаки, позволяющие отличить одни вещества от других, или установить сходство между ними.

Физические свойства:

m – масса, V – объём, ρ – плотность.

Масса может быть выражена в граммах, объем в миллилитрах (если это жидкость) или литрах (если это газ).

1 мл = 1 см3, 1 л = 1 дм3, 1000 л = 1 м3

Поэтому плотность измеряют в г/мл, г/см3 (если это жидкость), или в г/л, г/дм3 (если это газ).

Если принять V = 1, то плотность – это масса единичного объёма вещества.

Химические свойства – это те химические реакции, в которые вступает данное вещество.

Так же можно сказать, что химические свойства – это те химические реакции, которые характеризуют группу веществ (класс веществ). Например, мы будем в дальнейшем изучать свойства воды, свойства класса оксидов, свойства класса алканов и т.д.

ООсновы атомно – молекулярного учения

Идея о том, что вещества состоят из мельчайших частиц возникла в Древней Греции в философских учениях Левкиппа и его ученика Демокрита. Эти частицы они назвали атомами (неделимые).

Существование атомов было доказано эмпирическим путём в конце 16 – начале 17 века Джоном Дальтоном и М. В. Ломоносовым. Ими же были заложены основы атомно – молекулярного учения.

В настоящее время, в связи с открытием делимости атома и появлением теории химической связи, основные положения атомно – молекулярного учения существенно изменились. Его суть можно свести к ряду важных положений, которые необходимо запомнить.

Все вещества, существующие в природе, представляют собой совокупность очень большого числа частиц (атомов, молекул или ионов). В зависимости от типа частиц все вещества условно подразделяют на две группы: вещества молекулярного строения и вещества немолекулярного строения (атомного или ионного).

Вещества молекулярного строения – вещества, основной структурной единицей которых является молекула.

Вещества немолекулярного строения – вещества, основными структурными единицами которых являются атомы или ионы.

Частицы, из которых состоит данное вещество, взаимодействуют между собой посредством электромагнитных (кулоновских) сил и находятся в постоянном движении. Движение частиц ограничено силами взаимодействия между ними.Каждое вещество, в зависимости от условий (температуры, давления) может находиться в определённом агрегатном состоянии.

В твёрдом агрегатном состоянии вещества, составляющие его частицы находятся относительно упорядоченно (кристаллическое состояние), их кинетическая энергия (энергия движения) существенно меньше чем потенциальная (энергия покоя). В газообразном состоянии, частицы свободно движутся в предоставленном им объёме и их кинетическая энергия существенно выше чем потенциальная.

В жидкости же потенциальная энергия частиц примерно равна их кинетической энергии. Это связано с тем, что часть частиц жидкости находится относительно упорядоченно в составе так называемых кластеров(англ. cluster— скопление). Другие же частицы свободно перемещаются по объёму жидкости. Чем ниже температура жидкости, тем больше в ней кластеров и наоборот.

Рис. Кластеры воды, где число молекул 20-220

Следует отметить, что существуют еще два дополнительные “состояния”. Это жидкокристаллическое состояние и состояние плазмы.

Цитоплазматическая мембрана клетки – типичный пример жидкого кристалла. Молекулы фосфолипидов в биологической мембране относительно упорядоченно распределяются в двух слоях, но при этом могут в пределах слоя свободно перемещаться, а также “перескакивать” из одного слоя в другой.

Жидкие кристаллы имеют широкое применение в технике (напр., ЖК-мониторы компьютеров).

Плазма (от греч. πλάσμα «вылепленное», «оформленное») — ионизованный газ.

Плазма в своём составе содержит свободные электроны, катионы (положительно заряженные ионы) и анионы (отрицательно заряженные ионы).

Так как плазма содержит заряженные частицы, то она проводит электрический ток и на неё можно воздействовать внешним магнитным полем. Различают низкотемпературную и высокотемпературную плазму.

Изучает свойства плазмы наука физика.

Вещество из одного агрегатного состояния может переходить в другие агрегатные состояния при изменении внешних условий – температуры (T) и давления (P). Такие переходы принято называть фазовыми переходами.

Так, при повышении температуры, твердое вещество превращается в жидкость, а жидкость при ещё большей температуре превращается в газ. Дальнейшее повышение температуры переводит газ в плазму. При таких переходах вещество в другие вещества не превращается. Напомним, что такие явления мы называем физическими. Поэтому фазовые переходы – это физические явления.

При понижении температуры происходят обратные фазовые переходы – газ превращается в жидкость, а жидкость переходит в твердое состояние.

Фазовые переходы имеют названия.

Твердое —> Жидкое (плавление, обратный переход – кристаллизация)

Жидкое —> Газообразное (испарение, обратный переход – конденсация)

Газообразное —> Плазма (ионизация, обратный переход – деионизация)

Твердое —> Газообразное (сублимация или возгонка, обратный переход – десублимация)

Вещество – совокупность большого числа частиц, находящаяся в определённом агрегатном состоянии в зависимости от условий (температуры и давления).

Поэтому, например, такая фраза как: “Вода – жидкое вещество”, является некорректной. Если мы говорим об агрегатном состоянии вещества, то следует обязательно уточнить условия в которых находится вещество – температуру и давление. Такая фраза как: “При нормальном атмосферном давлении и комнатной температуре, вода – жидкое по агрегатному состоянию вещество”, является правильной.

С точки зрения физики, что более точно, вещество – это форма материи, состоящая из частиц, обладающих массой покоя. Существуют частицы, не обладающие массой покоя, например, фотоны. Материя, состоящая из частиц, не обладающих массой покоя называется поле.

Протоны, нейтроны, электроны – это частицы, обладающие массой покоя, следовательно это частицы вещества. Но химия не изучает вещество, состоящее, к примеру, из электронов (электронный газ), или вещество, состоящее из нейтронов (нейтронный газ). Это удел физики.

Химия изучает вещества, состоящие из атомов, молекул или ионов.

Ввиду этого вещество условно можно подразделить на физическое (электронный газ в проводнике, нейтронный газ и т.д.) и химическое (состоящее из атомов, молекул, ионов, свободных радикалов).

Источник

С точки зрения современной науки, живое вещество обладает некоторыми специфическими свойствами и выполняет в биосфе­ре определенные биогеохимические функции.

Специфические свойства и особенности живого вещества:

• Живое вещество биосферы характеризуется большим запасом энергии.

• Резкое различие между живым и неживым веществом наблюдается в скорости протекания химических реакций (в живом веществе реакции идут в тысячи, а иногда в миллионы раз быстрее).

• Отличительной особенностью живого вещества является то, что слагающие его индивидуальные химические соединения – белки, ферменты и др. – устойчивы только в живых организмах.

• Произвольное движение, в значительной степени саморегулируемое, является общим признаком всякого живого вещества в биосфере.

• Живое вещество обнаруживает значительно большее морфологическое и химическое разнообразие, чем неживое. Известно свыше 2 млн. органических соединений, входящих в состав живого вещества, в то время как количество природных соединений (минералов) неживого вещества составляет около 2 тыс., т. е. на три порядка меньше.

• Живое вещество представлено в биосфере в виде индивидуальных организмов, размеры которых колеблются в огромных пределах. Величина самых мелких вирусов не превышает 20 нм (1 нм = 10~9м), самые крупные животные – киты – достигают 33 м в длину, самое большое растение – секвойя – 100 м в высоту.

Основные биогеохимические функции живого вещества:

Энергетическая функция заключается в осуществлении связи биосферно-планетарных явлений с космическим излучением, преимущественно с солнечной радиацией. В основе этой функции лежит фотосинтетическая деятельность зеленых растений, в процессе которой происходит аккумуляция (накопление) солнечной энергии и ее перераспределение между отдельными компонентами биосферы. За счет накопленной солнечной энергии протекают все жизненные явления на Земле.

Газовая функция обусловливает миграцию газов и их превращения, обеспечивает газовый состав биосферы. Преобладающая масса газов на Земле имеет биогенное происхождение. В процессе функционирования живого вещества создаются основные газы: азот, кислород, углекислый газ, сероводород, метан и др.

Концентрационная функция проявляется в извлечении и накоплении живыми организмами биогенных элементов окружающей среды. В составе живого вещества преобладают атомы легких элементов: водорода, углерода, азота, кислорода, натрия, магния, алюминия, кремния, серы, хлора, калия, кальция. Концентрация этих элементов в теле живых организмов в сотни и тысячи раз выше, чем во внешней среде. Этим объясняется неоднородность химического состава биосферы и ее существенное отличие от состава неживого вещества планеты.

Транспортная функция – это осуществление переноса вещества против силы тяжести и в горизонтальном направлении. Живое вещество – единственный (помимо поверхностного натяжения) фактор, обусловливающий обратное перемещение вещества – снизу вверх (из океана – на континенты, реализующий тем самым «восходящую» ветвь биогеохимических циклов).

Окислительно-восстановительная функция заключается в химическом превращении главным образом тех веществ, которые содержат атомы с переменной степенью окисления (соединения железа, марганца и др.) При этом на поверхности Земли преобладают биогенные процессы окисления и восстановления.

Деструктивная функция обусловливает процессы, связанные с разложением организмов после их смерти, вследствие которой происходит минерализация органического вещества, т. е. превращение живого вещества в косное. В результате образуются также биогенное и биокосное вещество биосферы.

Средообразующая функция заключается в преобразовании физико-химических параметров среды в результате процессов жизнедеятельности. В.И. Вернадский писал: «Организм имеет дело со средой, к которой он не только приспособлен, но которая приспособлена к нему».

Источник

Деструктивная

Заключается в минерализации мертвой органики, биохимическом разрушении горных пород, вовлечении составляющих их минералов в биотический круговорот. Способствует трансформации живого вещества в косное, а также образованию биогенного и биокосного вещества. При этом разложение горных пород происходит избирательно, с включением в круговорот важнейших питательных элементов.

Готовые работы на аналогичную тему

  • Курсовая работа Функции живого вещества 420 руб.
  • Реферат Функции живого вещества 280 руб.
  • Контрольная работа Функции живого вещества 200 руб.

Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость

Концентрационная функция

Если говорить о раскрытии понятия данной роли вещества, то следует указать на ее близкое родство с предыдущей. Проще говоря, концентрационная функция живого вещества заключается в накоплении внутри тела тех или иных элементов, атомов, соединений. В результате происходит формирование тех самых горных пород, полезных ископаемых и минералов, о которых упоминалось выше.

Накапливать в себе какие-то соединения способно каждое существо. Однако для всех степень выраженности этого разная. Например, все накапливают в себе углерод. Но далеко не каждый организм способен концентрировать около 20% железа, как это делают железобактерии.

Можно привести еще несколько примеров, четко иллюстрирующих данную функцию живого вещества.

  1. Диатомовые водоросли, радиолярии — кремний.
  2. Ржавчинные грибы — марганец.
  3. Растение лобелия вздутая — хром.
  4. Растение солянка — бор.

Помимо элементов, многие представители живых существ способны после отмирания формировать целые комплексы веществ.

Концентрационная

Заключается в селективном накоплении в организмах определенных видов веществ. Большая часть живых организмов накапливает в своих телах биогенные элементы, благодаря чему химический состав живого вещества весьма специфичен. Концентрация биогенных элементов в нем на порядки выше, чем во внешней среде.

Противоположна по результатам концентрационной рассеивающая функция, выраженная в трофической и транспортной деятельности организмов, через процессы выделения, гибели организмов при миграциях, линьке.

Три функции живого вещества биосферы

Какие функции живое вещество выполняет в биосфере, Вы узнаете из этой статьи.

Три функции живого вещества биосферы

Живое вещество биосферы планеты — это совокупность всех живых организмов, вне зависимости от систематической принадлежности. Живым веществом биосферы называется мощный энергетический и геохимический фактор, а также ведущая сила планетарного развития. Основным источником его активности выступает солнечная энергия, которой пользуются растения в процессе фотосинтеза и некоторые микроорганизмы для создания органических веществ. Последние выступают энергией и пищей для остальных организмов. Благодаря ему на нашей планете образовались минеральное органическое топливо (торф, уголь, нефть) и почвы.

Основные 3 функции живого вещества биосферы:

  • Газовая функция живого вещества в биосфере. Осуществляется зелеными растениями. Так, для синтеза веществ растения поглощают углекислый газ, выделяя при этом кислород атмосферу. Остальной органический мир его использует для дыхания и при этом пополняет атмосферу запасами углекислого газа. Благодаря увеличению зеленой биомассы в эволюции биосферы постоянно изменяет газовый состав атмосферы — содержание углекислого газа постепенно снижалось, и увеличивалась концентрация кислорода. Можно сказать, что живое вещество изменило атмосферный газовый состав.
  • Концентрационная функция живого вещества биосферы. Концентрационная функция живого вещества биосферы состоит в способности живых организмов накапливать в себе разные химические элементы. Так, в растениях-накопителях (осоки, хвощи) много кремния, в щавеле и морской капусте – йода и кальция, скелетах позвоночных животных — кальция, фосфора, магния. Благодаря этой функции создалось много осадочных пород .
  • окислительно восстановительная функция живого вещества в биосфере, энергетическая функция живого вещества биосферы,

Живое вещество биосферы еще выполняет функции такого характера:

Окислительно-восстановительная функция. Так, некоторые микроорганизмы непосредственно участвуют в окислении железа, что привело к образованию осадочных железных руд, другие восстанавливают сульфаты, образуя биогенные месторождения серы.

Биохимическая функция — определяется как размножение, рост и перемещение в пространстве живого вещества. Все это приводит к круговороту химических элементов в природе, их биогенной миграции;

Функция биогеохимической деятельности человека — связана с биогенной миграцией атомов, многократно усиливающейся под влиянием хозяйственной деятельности человека. Человек разрабатывает и использует для своих нужд большое количество веществ земной коры, в том числе таких, как уголь, газ, нефть, торф, сланцы, многие руды. Одновременно происходит антропогенное поступление в биосферу чужеродных веществ, причем в количествах, превышающих допустимое значение. Это привело к кризисному противостоянию человека и природы. Главной причиной надвигающегося экологического кризиса считается технократическая концепция, рассматривающая биосферу, с одной стороны, как источник физических ресурсов, с другой — как сточную трубу для удаления отходов.

Надеемся, что из этой статьи Вы узнали, какие функции живого вещества биосферы.

Средообразующая

Состоит в преобразовании физико-химических аспектов неорганической среды в благоприятном направлении для существования организмов. Эта функция служит совместным результатом всех предыдущих. В частности, результатом выполнения средообразующей функции были: изменение газового состава первичной атмосферы, химизма вод океана, формирование осадочных горных пород в литосфере, почвенного покрова.

Замечание 1

В.И. Вернадский характеризовал данную функцию живого вещества, как способность не только приспосабливаться к среде, но и приспосабливать саму среду к своим требованиям.

Биосфера и ее структура

Биосферой ученый предложил называть всю ту область живого и неживого, которая находится в тесном контакте и в результате совместной деятельности способствует формированию определенных геохимических компонентов природы.

То есть в биосферу входят следующие структурные части Земли:

  • нижняя часть атмосферы до озонового слоя;
  • вся гидросфера;
  • верхний уровень литосферы — почва и ниже расположенные слои, до грунтовых вод включительно.

То есть это все те области, которые способны заселяться живыми организмами. Все они, в свою очередь, представляют собой совокупную биомассу, которая носит название живого вещества биосферы. Сюда относятся представители всех царств природы, а также человек. Свойства и функции живого вещества являются определяющими при характеристике биосферы в целом, так как именно оно — основной ее компонент.

Однако помимо живого, выделяют еще несколько типов веществ, составляющих рассматриваемую нами оболочку Земли. Это такие, как:

  • биогенное;
  • косное;
  • биокосное;
  • радиоактивное;
  • космическое;
  • свободные атомы и элементы.

Все вместе данные виды соединений и формируют окружающую среду для биомассы, условия жизни для нее. При этом представители царств природы сами оказывают немалое влияние на формирование многих видов перечисленных веществ.

В целом, все обозначенные компоненты биосферы являются совокупной массой складывающих природу элементов. Именно они вступают в тесные взаимодействия, осуществляя круговорот энергии, веществ, накапливая и перерабатывая многие соединения. Основная же единица — живое вещество. Функции живого вещества различны, но все очень важны и нужны для поддержания естественного состояния планеты.

Энергетическая функция

Энергия — это самый главный источник силы, за счет которого существует живое вещество. Функции живого вещества проявляются, прежде всего, в способности перерабатывать энергию биосферы в разные формы, начиная с солнечной и заканчивая тепловой и электрической.

Больше никто так аккумулировать и изменять излучение от Солнца не может. Первым звеном здесь стоят, конечно, растения. Именно они поглощают солнечный свет непосредственно всей поверхностью зеленых частей тела. Затем преобразуют его в энергию химических связей, доступную для животных. Последние же переводят ее в разные формы:

  • тепловую;
  • электрическую;
  • механическую и другие.

Функции

Роль живых организмов в биосфере заключается в выполнении ими нескольких функций. Основными из них являются: энергетическая, деструктивная, концентрационная и средообразующая.

Энергетическая функция. Она связана со способностью зеленых хлорофилльных организмов к фотосинтезу. С помощью полученной ими солнечной энергии, они преобразовывают простейшие соединения такие как, вода, углекислый газ и минералы, в сложные органические вещества, которые, в свою очередь, являются необходимыми для существования других живых существ. Такой способностью обладают растения. Для процесса фотосинтеза они используют всего лишь 1% солнечной энергии, попадающей на Землю. Ежегодно они производят порядка 145 млрд. тонн кислорода, для чего потребляют около 200 млрд. тонн углекислого газа. Органического вещества при этом вырабатывается более 100 млрд. тонн. Так растения пополняют атмосферу свободным кислородом. Если бы растения не делали это постоянного, то кислород, как активный химический элемент, вступал в реакции и образовывал различные соединения и в итоге совершенно исчез из атмосферы Земли. А с ним прекратила бы существование и жизнь. Кроме растений, органическое вещество в очень небольшом количестве – не более 0,5% от общего количества, производят некоторые бактерии. Этот процесс называется хемосинтез. В нем задействована не солнечная энергия, а энергия, выделяющаяся в процессе реакций окисления серных и азотных соединений.

Синтезированные таким образом органические соединения – белок, сахар и так далее, — вместе с заключенной в них энергией, являются пищей и распространяются по трофической цепи. Кроме того, синтезированная растениями энергия рассеивается как тепло или накапливаться в отмершем органическом веществе, переходя в ископаемое состояние. И в этом следующая функция — деструктивная.

Эта роль живых организмов в биосфере еще носит название минерализация органических веществ. В результате разложения, отмершее органическое вещество преобразовывается в простые неорганические соединения. В этом процессе участвуют живые организмы, выполняющие деструктивную или разрушительную функцию. В трофической цепи они получили название «редуценты». Это грибы, бактерии, черви и микроорганизмы. Результатом разложения являются: углекислый газ, воды, сероводород, метан, аммиак и так далее. Которые, в свою очередь, являются «пищей» для растений. И процесс начинается вновь. Важную роль играет процесс разложения, проходящий в литосфере. Благодаря ему из горных пород высвобождается такие элементы, как кремний, алюминий, магний и железо.

Редуценты, с помощью имеющихся в их распоряжении кислот, «добывают» и «отправляют» в биотический оборот такие важнейшие химические элементы, как кальций, калий, натрий, фосфор, кремний и различные микроэлементы. Благодаря деструкторам, почва обретает свою плодородность.

Еще одна функция живых организмов – концентрационная. Под нею подразумевается процесс, в ходе когда некоторые их виды извлекают, а затем накапливают у себя определенные химические элементы. В этом случае концентрация таких элементов, как: углерод, водород, азот, натрий, магний, кремний, сера, хлор, калий, кальций и кислород, может быть в сотни и тысячи раз выше, чем в окружающей среде. Например, марганца в 1200000 раз, серебра – 240000, а железа – в 65000. Яркими примерами такого накопления могут быть раковины, панцири и скелеты. С элементами «пригодными» для накопления, некоторые виды накапливают в себе ядовитые, отравляющие и радиоактивные вещества. И попадание их в пищевую цепь явно не носит положительного характера.

Противоположностью концентрационной функции является рассеивающая. Она проявляется при различных выделениях, перемещениях и тому подобное. Например, происходит рассеивание железа из крови, при укусах различных насекомых или кровососущих.

Биосфера — это не только взаимодействие между живыми организмами и обмен между ними энергией. Существенная роль живых организмов в биосфере – это ее преобразование. Живые организмы меняют физико-химические параметры окружающей их среды, а такая их функция получила название «средооразующей». Она, как результат всех ранее рассмотренных функций в совокупности. Извлечение химических элементов, накопление их, а затем, с помощью полученной энергии, «отправление» в путь по биологическому кругообороту, привело к существенным изменениям природной среды. За миллиарды лет изменился газовый состав атмосферы, химический – вод, появились осадочные породы и донные отложения, возник плодородный почвенный покров. И в настоящее время мы сталкиваемся с этим влиянием.

Преобразовывая внешнюю среду, организмы создают оптимальный баланс энергии и «питательного» вещества для своего существования и всей биосферы в целом. Этот баланс в результате многочисленных внутренних и внешних воздействий, всегда находится под угрозой разрушения. И вещество, за счет перечисленных своих качеств, сопротивляется такому влиянию, восстанавливает нарушенное и приводит систему в стабильное состояние.

Рассматриваемые функции живых организмов в биосфере касались двух этапов преобразования органического вещества в неорганическое и наоборот. На этих этапах свою роль играют растения, как продуценты, и бактерии, грибы и микроорганизмы, как редуценты. Какова же роль консументов или потребителей, основными видами которых являются животные?

Источник