На каких физических свойствах основано получение метана в лаборатории

На каких физических свойствах основано получение метана в лаборатории thumbnail

Наиболее удобный лабораторный способ получения метана — взаимодействие ацетата натрия с натронной известью.

Взаимодействие солей карбоновых кислот со щелочью является общим способом получения углеводородов. Реакция в общем виде изображается уравнением:

На каких физических свойствах основано получение метана в лаборатории

если R = СН3, то образуется метан.

Поскольку едкий натр является веществом гигроскопичным, а присутствие влаги мешает успешному прохождению реакции, то к нему добавляют оксид кальция. Смесь едкого натра с оксидом кальция и называется натронной известью.

Для успешного протекания реакции требуется довольно сильное нагревание, однако чрезмерный перегрев смеси ведет к побочным процессам и получению нежелательных продуктов, например ацетона:

На каких физических свойствах основано получение метана в лаборатории

Ацетат натрия до опыта должен быть обезвожен. Натронную известь перед приготовлением смеси также следует прокалить. Если нет готовой натронной извести, ее готовят следующим образом. В железной или фарфоровой чашке обливают хорошо прокаленную измельченную известь СаО вдвое меньшим количеством насыщенного водного раствора щелочи NaOH. Смесь выпаривают досуха, прокаливают и измельчают. Вещества хранят в эксикаторе.

Для демонстрации получения метана лучше всего воспользоваться небольшой колбой с отводной трубкой, а для практического занятия — пробиркой (рис. 1 и 2).

Собирают прибор, как указано на рис. 1 или 2. В промывную склянку, для улавливания примесей, наливают раствор щелочи (рис. I). В реакционную колбу или пробирку помещают смесь ацетата натрия и натронной извести. Для этого тонкоизмельченные вещества тщательно смешивают в объемном отношении 1:3, т.е. со значительным избытком извести, чтобы заставить по возможности полностью прореагировать ацетат натрия.

I. Получение метана в лаборатории (демонстрационный опыт)

Рис. I. Получение метана в лаборатории (демонстрационный опыт)

Колбу нагревают с помощью горелки через асбестовую сетку, а пробирку на голом пламени. Собирают метан в пробирку по способу вытеснения воды. Для проверки чистоты полученного газа пробирку вынимают из воды и не переворачивая поджигают газ.

Так как процесс получения метана нецелесообразно прерывать, а все другие опыты невозможно успеть выполнить, пока идет реакция, то рекомендуется набрать газ для последующих опытов в несколько цилиндров (пробирок) или в газометр.

Наполненные цилиндры оставляют на время в ванне или же закрывают под водой стеклянной пластинкой (пробкой) и ставят на стол вверх дном.

На каких физических свойствах основано получение метана в лаборатории

Метан легче воздуха. Для ознакомления с физическими свойствами метана учитель демонстрирует цилиндр с собранным газом. Учащиеся наблюдают, что метан — газ бесцветный. Собирание метана по способу вытеснения воды дает основание предположить, что этот газ, по-видимому, нерастворим в воде. Учитель подтверждает это заключение.

На весах уравновешивают две одинаковые колбы возможно большей емкости. Одна из колб подвешена вверх дном (рис. 3). В эту колбу пропускают некоторое время метан из прибора. Чашка весов поднимается вверх. Чтобы учащиеся не думали, будто изменение в весе происходит из-за давления струи газа на дно колбы, обращают внимание на то, что нарушение равновесия остается и после того, как прекращено пропускание метана.

После того как весы будут снова приведены в равновесие (для этого на некоторое время перевертывают вверх горловиной склянку с метаном), для сравнения и большей убедительности выводов пропускают метан в нормально стоящую на весах колбу. Равновесие весов не нарушается.

На каких физических свойствах основано получение метана в лаборатории

Показав, что метан легче воздуха, учитель сообщает, сколько весит при нормальных условиях литр метана. Эти сведения будут нужны далее при выводе молекулярной формулы вещества.

Источник

Метан
Систематическое
наименование
метан
Традиционные названия метан, рудничный газ
Хим. формула CH4
Рац. формула CH4
Молярная масса 16,04 г/моль
Плотность газ (0 °C) 0,7168 кг/м³; 0,6682 кг/м³ в стандартных условиях по ГОСТ 2939—63;
жидкость (−164,6 °C) 415 кг/м³[1]
Температура
 • плавления -182,49 °C
 • кипения -161,58 °C
 • самовоспламенения 537,8 °C
Пределы взрываемости 4,4-17,0 %
Энтальпия
 • образования −74 520 Дж/моль[2]
 • сгорания −890,3 кДж/моль[3]
Удельная теплота испарения 460,6 Дж/моль (при 760 мм. рт. ст.)[4]
Растворимость
 • в воде 0,02 г/кг[5]
Рег. номер CAS 74-82-8
PubChem 297
Рег. номер EINECS 200-812-7
SMILES

C

InChI

1S/CH4/h1H4

VNWKTOKETHGBQD-UHFFFAOYSA-N

RTECS PA1490000
ChEBI 16183
Номер ООН 1971
ChemSpider 291
Предельная концентрация 7000 мг/м³
ЛД50 13450-36780 мг/кг
Токсичность Класс опасности IV
Пиктограммы ECB
NFPA 704

4

Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
 Медиафайлы на Викискладе

У этого термина существуют и другие значения, см. Метан (значения).

Мета́н (лат. methanum; болотный газ), CH4 — простейший по составу предельный углеводород, при нормальных условиях бесцветный газ без вкуса и запаха[6].

Малорастворим в воде, почти в два раза легче воздуха.

Метан нетоксичен, но при высокой концентрации в воздухе обладает слабым наркотическим действием (ПДК 7000 мг/м3)[7]. Имеются данные, что метан при хроническом воздействии малых концентраций в воздухе неблагоприятно влияет на центральную нервную систему[8]. Наркотическое действие метана CH4 ослабляется его малой растворимостью в воде и крови и химической инертностью. Класс токсичности — четвёртый[9].

При использовании в быту в метан (природный газ) обычно добавляют одоранты (обычно тиолы) — летучие вещества со специфическим «запахом газа», чтобы человек вовремя заметил аварийную утечку газа по запаху. На промышленных производствах утечки фиксируют датчики и во многих случаях метан для лабораторий и промышленных производств поставляется без добавления одорантов.

Накапливаясь в закрытом помещении в смеси с воздухом метан становится взрывоопасен при концентрации его от 4,4 % до 17 %[10]. Наиболее взрывоопасная концентрация в смеси с воздухом 9,5 об.%.

Метан — третий по значимости парниковый газ в атмосфере Земли (после водяного пара и углекислого газа, его вклад в парниковый эффект оценивается 4—9 %)[11][12].

Читайте также:  Какими лечебными свойствами обладает пустырник

История[править | править код]

В ноябре 1776 года итальянский физик Алессандро Вольта обнаружил метан в болотах озера Лаго-Маджоре на границе Италии и Швейцарии. На изучение болотного газа его вдохновила статья Бенджамина Франклина о «горючем воздухе». Вольта собирал газ, выделяемый со дна болота, и в 1778 году выделил чистый метан. Также он продемонстрировал зажигание газа от электрической искры.

Сэр Гемфри Дэви в 1813 г. изучал рудничный газ и показал, что он является смесью метана с небольшими количествами азота N2 и углекислого газа CO2 — то есть, что он качественно тождествен по составу болотному газу.

Современное название «метан» в 1866 г. газу дал немецкий химик Август Вильгельм фон Гофман[13][14], оно образовано от слова «метанол».

Нахождение в природе[править | править код]

Основной компонент природного газа (77—99 %), попутных нефтяных газов (31—90 %), рудничного и болотного газов (отсюда произошли другие названия метана — болотный или рудничный газ). В анаэробных условиях (в болотах, переувлажнённых почвах, кишечнике жвачных животных) образуется биогенно в результате жизнедеятельности некоторых микроорганизмов.

Большие запасы метана сосредоточены в метаногидратах на дне морей и в зоне вечной мерзлоты[11][12].

Метан также был обнаружен на других планетах, включая Марс, что имеет значение для исследований в области астробиологии[15]. По современным данным, в атмосферах планет-гигантов солнечной системы в заметных концентрациях содержится метан[16].

Предположительно, на поверхности Титана в условиях низких температур (−180 °C) существуют целые озёра и реки из жидкой метано-этановой смеси[17]. Велика доля метановых льдов и на поверхности Седны.

В промышленности[править | править код]

Образуется при коксовании каменного угля, гидрировании угля, гидрогенолизе углеводородов в реакциях каталитического риформинга.

Классификация по происхождению[править | править код]

  • абиогенный — образован в результате химических реакций неорганических соединений, например, при взаимодействии карбидов металлов с водой;
  • биогенный — образован как результат химических превращений органических веществ;
  • бактериальный (микробный) — образован в результате жизнедеятельности бактерий (микроорганизмов);
  • термогенный — образован в ходе термохимических процессов.

Получение[править | править код]

В лаборатории получают нагреванием натронной извести (смесь гидроксидов натрия и кальция) или безводного гидроксида натрия с ледяной уксусной кислотой.

Для этой реакции важно отсутствие воды, поэтому и используется гидроксид натрия, так как он менее гигроскопичен.

Возможно получение метана сплавлением ацетата натрия с гидроксидом натрия[18]:

Также для лабораторного получения метана используют гидролиз карбида алюминия или некоторых металлорганических соединений (например, метилмагнийбромида).

Также возможно биологическое получение метана, см. Биогаз.

Химические свойства[править | править код]

Метан — первый член гомологического ряда насыщенных углеводородов (алканов), наиболее устойчив к химическим воздействиям. Подобно другим алканам вступает в реакции радикального замещения — галогенирования, сульфохлорирования, сульфоокисления, нитрования и других, но обладает меньшей реакционной способностью по сравнению с другими алканами.

Для метана специфична реакция с парами воды, в которой в промышленности применяется в качестве катализатора никель, нанесённый на оксиде алюминия (Ni/Al2O3) при 800—900 °C или без катализатора при 1400—1600 °C. Образующийся в результате реакции синтез-газ может быть использован для последующих синтезов метанола, углеводородов, уксусной кислоты, ацетальдегида и других продуктов.

Горит в воздухе голубоватым пламенем, при этом выделяется энергия около 33,066 МДж на 1 м³, взятый при нормальных условиях. Реакция горения метана в кислороде или воздухе:

.

При комнатной температуре и стандартном давлении метан является бесцветным газом без запаха[19]. Знакомый запах природного газа, который используется дома, обычно достигается добавлением смеси одоранта, содержащей трет-бутилтиол, в качестве меры безопасности. Метан имеет температуру кипения −164 ° C при давлении в одну атмосферу[20]. Как газ, он легко воспламеняется при объёмных концентрациях в воздухе от 4,4 % до 17 % при стандартном давлении.

Твёрдый метан существует в нескольких модификациях. В настоящее время известно девять[21].

Вступает с галогенами в реакции замещения, которые проходят по свободно-радикальному механизму:

,
,
,
.

Выше 1400 °C разлагается по реакции:

.

Окисляется до муравьиной кислоты при 150—200 °C и давлении 30—90 атм. по цепному радикальному механизму:

.

Соединения включения[править | править код]

Метан образует соединения включения — газовые гидраты, широко распространённые в природе.

Применение метана[править | править код]

Метан используется в качестве топлива для печей, водонагревателей, автомобилей[22][23], турбин и др. Для хранения метана может использоваться активированный уголь.

Как основной компонент природного газа, метан важен для производства электроэнергии, сжигая его в качестве топлива в газовой турбине или парогенераторе. По сравнению с другими видами углеводородного топлива метан производит меньше углекислого газа на каждую единицу выделенного тепла. При температуре около 891 кДж/моль теплота сгорания метана ниже, чем у любого другого углеводорода. Тем не менее, он производит больше тепла на массу (55,7 кДж/г), чем любая другая органическая молекула из-за его относительно большого содержания водорода, что составляет 55 % теплоты сгорания[24], но отдаёт только 25 % молекулярной массы метана. Во многих городах метан подаётся в дома для отопления и приготовления пищи. В этом контексте его обычно называют природным газом, содержание энергии в котором составляет 39 мегаджоулей на кубический метр. Сжиженный природный газ (СПГ) представляет собой преимущественно метан (CH4), превращаемый в жидкую форму для удобства хранения или транспортировки.

Рафинированный жидкий метан, в сочетании с жидким кислородом, рассматривается в качестве перспективного ракетного топлива[25][26] и используется в таких двигателях, как BE-4[27] и Raptor. Метан имеет преимущества перед керосином в том, что он:

Читайте также:  Инжир какие полезные свойства

  • даёт бо́льший удельный импульс[28];
  • оставляет меньше продуктов сгорания на внутренних частях ракетных двигателей[27];
  • позволяет легче освободить полости двигателя от остатков топлива[29].

Это уменьшает сложность повторного использования ракет[27][30].

Метан используется в качестве сырья в органическом синтезе, в том числе для изготовления метанола.

Физиологическое действие[править | править код]

Метан является самым физиологически безвредным газом в гомологическом ряду парафиновых углеводородов. Физиологическое действие метан не оказывает и не ядовит (из-за малой растворимости метана в воде и плазме крови и присущей парафинам химической инертности). Погибнуть человеку в воздухе с высокой концентрацией метана можно только от недостатка кислорода в воздухе. Так, при содержании в воздухе 25—30 % метана появляются первые признаки удушья (учащение пульса, увеличение объёма дыхания, нарушение координации тонких мышечных движений и т. д.). Более высокие концентрации метана в воздухе вызывают у человека кислородное голодание — головную боль, одышку, — симптомы, характерные для горной болезни.

Так как метан легче воздуха, он не скапливается в проветриваемых подземных сооружениях. Поэтому случаи гибели людей от удушья при вдыхания смеси метана с воздухом весьма редки.

Первая помощь при тяжёлом удушье: удаление пострадавшего из вредной атмосферы. При отсутствии дыхания немедленно (до прихода врача) искусственное дыхание изо рта в рот. При отсутствии пульса — непрямой массаж сердца.

Хроническое действие метана[править | править код]

У людей, работающих в шахтах или на производствах, где в воздухе присутствуют в незначительных количествах метан и другие газообразные парафиновые углеводороды, описаны заметные сдвиги со стороны вегетативной нервной системы (положительный глазосердечный рефлекс, резко выраженная атропиновая проба, гипотония) из-за очень слабого наркотического действия этих веществ, сходного с наркотическим действием диэтилового эфира.

ПДК метана в воздухе рабочей зоны составляет 7000 мг/м³[7].

Биологическая роль[править | править код]

Показано, что эндогенный метан способен вырабатываться не только метаногенной микрофлорой кишечника, но и клетками эукариот, и что его образование значительно возрастает при экспериментальном вызывании клеточной гипоксии, например, при нарушении работы митохондрий при помощи отравления организма экспериментального животного азидом натрия, известным митохондриальным ядом. Высказывается предположение, что образование метана клетками эукариот, в частности животных, может быть внутриклеточным или межклеточным сигналом испытываемой клетками гипоксии[31].

Также показано увеличение образования метана клетками животных и растений под влиянием различных стрессовых факторов, например, бактериальной эндотоксемии или её имитации введением бактериального липополисахарида, хотя, возможно, этот эффект наблюдается не у всех видов животных (в эксперименте исследователи получили его у мышей, но не получили у крыс)[32]. Возможно, что образование метана клетками животных в подобных стрессовых условиях играет роль одного из стрессовых сигналов.

Предполагается также, что метан, выделяемый кишечной микрофлорой человека и не усваиваемый организмом человека (он не метаболизируется и частично удаляется вместе с кишечными газами, частично всасывается и удаляется при дыхании через лёгкие), не является «нейтральным» побочным продуктом метаболизма бактерий, а принимает участие в регуляции перистальтики кишечника, а его избыток может вызывать не только вздутие живота, отрыжку, повышенное газообразование и боли в животе, но и функциональные запоры[33].

Метан и экология[править | править код]

Спектр поглощения метана в ближней и средней ИК-областях. По вертикальной оси отложено сечение поглощения на 1 молекулу[34].

Является парниковым газом, более сильным в этом отношении, чем углекислый газ, из-за наличия глубоких колебательно-вращательных полос поглощения его молекул в инфракрасном спектре. Если степень воздействия углекислого газа на климат условно принять за единицу, то парниковая активность того же молярного объёма метана составит 21—25 единиц[35][36].

С 1750 года концентрация метана в атмосфере Земли увеличилась примерно на 150 %, и на её долю приходится 20 % от общего радиационного воздействия всех долгоживущих и глобально смешанных парниковых газов[37].

Примечания[править | править код]

  1. ↑ Справочник химика / Редкол.: Никольский Б. П. и др.. — 3-е изд., испр. — Л.: Химия, 1971. — Т. 2. — 1168 с.
  2. Smith J. M., H.C. Van Ness, M.M. Abbott Introduction to Chemical Engineering Thermodynamics (англ.) // J. Chem. Educ. — American Chemical Society, 1950. — Vol. 27, Iss. 10. — P. 789. — ISSN 0021-9584; 1938-1328 — doi:10.1021/ED027P584.3
  3. ↑ https://sites.google.com/site/ellesmerealevelchemistry/module-3-periodic-table-energy/3-2-physical-chemistry-1/3-2-1-enthalpy-changes/3-2-1-d-enthalpy-change-definitions Проверено 28 января 2019.
  4. ↑ Физико-химические свойства индивидуальных углеводородов. Справочник. (рус.) / Под ред. М. Д. Таличева. — Выпуск 4-й. — М.-Л.: ГОСУДАРСТВЕННОЕ НАУЧНО-ТЕХНИЧЕСКОЕ ИЗДАТЕЛЬСТВО НЕФТЯНОЙ И ГОРНО-ТОПЛИВНОЙ ЛИТЕРАТУРЫ, 1953.
  5. ↑ Обзор: Растворимость некоторых газов в воде
  6. ↑ [www.xumuk.ru/encyklopedia/2551.html Статья «Метан» на сайте «Химик»]
  7. 1 2 Гигиенические нормативы ГН 2.2.5.1313-03 «Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны»
  8. Куценко С. А. Основы токсикологии / С. А. Куценко. — СПб.: Фолиант, 2004.
  9. ↑ Газохроматографическое измерение массовых концентраций углеводородов: метана, этана, этилена, пропана, пропилена, н-бутана, альфа-бутилена, изопентана в воздухе рабочей зоны. Методические указания. МУК 4.1.1306-03 (Утв. главным государственным санитарным врачом РФ 30.03.2003) (недоступная ссылка)
  10. ↑ ГОСТ Р 52136-2003
  11. 1 2 Наталья Ржевская Тепло мерзлоты // В мире науки. — 2016. — № 12. — С. 67—73.
  12. 1 2 Леонид Юрганов. Метан над Арктикой (рус.) // Наука и жизнь. — 2017. — № 11. — С. 24.
  13. ↑ A. W. Hofmann (1866) “On the action of trichloride of phosphorus on the salts of the aromatic monoamines, ” Proceedings of the Royal Society of London, 15 : 55—62; see footnote on pp. 57—58.
  14. ↑ James Michael McBride (1999) «Development of systematic names for the simple alkanes». Available online at Chemistry Department, Yale University (New Haven, Connecticut). Архивная копия от 16 марта 2012 на Wayback Machine
  15. Etiope, Giuseppe; Lollar, Barbara Sherwood. Abiotic Methane on Earth (англ.) // Reviews of Geophysics (англ.)русск. : journal. — 2013. — Vol. 51, no. 2. — P. 276—299. — ISSN 1944-9208. — doi:10.1002/rog.20011. — Bibcode: 2013RvGeo..51..276E.
  16. Atreya, S.K.; Mahaffy, P.R.; Niemann, H.B. et al. Composition and origin of the atmosphere of Jupiter—an update, and implications for the extrasolar giant planets (англ.) // Planetary and Space Sciences : journal. — 2003. — Vol. 51. — P. 105—112. — doi:10.1016/S0032-0633(02)00144-7.
  17. ↑ Tidal effects of disconnected hydrocarbon seas on Titan
  18. Б. А. Павлов, А. П. Терентьев. Курс органической химии. — Издание шестое, стереотипное. — M.: Химия, 1967. — С. 58.
  19. Hensher, David A.; Button, Kenneth J. Handbook of transport and the environment (англ.). — Emerald Group Publishing (англ.)русск., 2003. — P. 168. — ISBN 978-0-08-044103-0.
  20. ↑ Methane Phase change data // NIST Chemistry Webbook.
  21. Bini, R.; Pratesi, G. High-pressure infrared study of solid methane: Phase diagram up to 30 GPa (англ.) // Physical Review B : journal. — 1997. — Vol. 55, no. 22. — P. 14800—14809. — doi:10.1103/physrevb.55.14800. — Bibcode: 1997PhRvB..5514800B.

  22. Lumber Company Locates Kilns at Landfill to Use Methane – Energy Manager Today (англ.). Energy Manager Today. Дата обращения 11 марта 2016.

  23. Cornell, Clayton B.. Natural Gas Cars: CNG Fuel Almost Free in Some Parts of the Country (англ.) (29 April 2008). Архивировано 20 января 2019 года. «Compressed natural gas is touted as the ‘cleanest burning’ alternative fuel available, since the simplicity of the methane molecule reduces tailpipe emissions of different pollutants by 35 to 97%. Not quite as dramatic is the reduction in net greenhouse-gas emissions, which is about the same as corn-grain ethanol at about a 20% reduction over gasoline».

  24. Schmidt-Rohr, Klaus. Why Combustions Are Always Exothermic, Yielding About 418 kJ per Mole of O2 (англ.) // Journal of Chemical Education (англ.)русск. : journal. — 2015. — Vol. 92, no. 12. — P. 2094—2099. — doi:10.1021/acs.jchemed.5b00333. — Bibcode: 2015JChEd..92.2094S.

  25. Thunnissen, Daniel P.; Guernsey, C. S.; Baker, R. S.; Miyake, R. N. Advanced Space Storable Propellants for Outer Planet Exploration (англ.) // American Institute of Aeronautics and Astronautics : journal. — 2004. — No. 4—0799. — P. 28.

  26. Чеберко, Иван В России предлагают создать «метановую ракету». Известия (16 мая 2014). Дата обращения 18 июля 2020.
  27. 1 2 3
    Blue Origin BE-4 Engine (англ.). — «We chose LNG because it is highly efficient, low cost and widely available. Unlike kerosene, LNG can be used to self-pressurize its tank. Known as autogenous repressurization, this eliminates the need for costly and complex systems that draw on Earth’s scarce helium reserves. LNG also possesses clean combustion characteristics even at low throttle, simplifying engine reuse compared to kerosene fuels.». Дата обращения 14 июня 2019.
  28. ↑ Известия, 2014: «Удельный импульс у двигателя на СПГ высокий».
  29. ↑ Известия, 2014: «Чтобы освободить полости двигателя, нужно только пройти цикл испарения — то есть двигатель легче освобождается от остатков продуктов.».
  30. ↑ Известия, 2014: «За счет этого метановое топливо более приемлемо с точки зрения создания двигателя многоразового использования и летательного аппарата многоразового применения.».
  31. Tuboly E. et al. Methane biogenesis during sodium azide-induced chemical hypoxia in rats (англ.) // American Physiological Society (англ.)русск.. — 15 January 2013. — Vol. 304, no. 2. — P. 207—214. — doi:10.1152/ajpcell.00300.2012. — PMID 23174561.
  32. Tuboly E, Szabó A, Erős G, Mohácsi A, Szabó G, Tengölics R, Rákhely G, Boros M. Determination of endogenous methane formation by photoacoustic spectroscopy // J Breath Res.. — Dec 2013. — Т. 7, вып. 7(4), № 4. — doi:10.1088/1752-7155/7/4/046004. — PMID 24185326.
  33. Sahakian AB, Jee SR, Pimentel M. Methane and the gastrointestinal tract // Dig Dis Sci. — Aug 2010. — Т. 55, вып. 55(8), № 8. — С. 2135—2143. — doi:10.1007/s10620-009-1012-0. — PMID 19830557.
  34. Вовна А. В., Хламов М. Г. Применение оптико-абсорбционного метода для измерения объёмной концентрации метана в условиях угольных шахт.
  35. ↑ EBRD Methodology for Assessment of Greenhouse Gas Emissions, Version 7, 6 July 2010 Архивная копия от 13 мая 2015 на Wayback Machine (англ.)
  36. ↑ Non-CO2 Greenhouse Gases: Scientific Understanding, Control and Implementation (ed. J. van Ham, Springer 2000, ISBN 978-0-7923-6199-2): 4. Impact of methane on climate, page 30 «On a molar basis, an additional mole of methane in the current atmosphere is about 24 times more effective at absorbing infrared radiation and affecting climate than an additional mole of carbon dioxide (WMO, 1999)»
  37. ↑ Technical summary. Climate Change 2001. United Nations Environment Programme. Архивировано 4 июня 2011 года.
Читайте также:  На каком море целебные свойства

Литература[править | править код]

  • Львов М. Д. Болотный газ или метан // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.

Ссылки[править | править код]

  • [www.xumuk.ru/spravochnik/648.html Термодинамические свойства метана.]
  • Метан

Некоторые внешние ссылки в этой статье ведут на сайты, занесённые в спам-лист.

Эти сайты могут нарушать авторские права, быть признаны неавторитетными источниками или по другим причинам быть запрещены в Википедии. Редакторам следует заменить такие ссылки ссылками на соответствующие правилам сайты или библиографическими ссылками на печатные источники либо удалить их (возможно, вместе с подтверждаемым ими содержимым).

Список проблемных доменов

Источник