На какие классы делятся все вещества по магнитным свойствам

На какие классы делятся все вещества по магнитным свойствам thumbnail

По реакции на внешнее магнитное поле и характеру внутреннего магнитного упорядочения все вещества в природе подразделяют на пять групп: диамагнетики, парамагнетики, ферромагнетики, антиферромагнетики и ферримагнетики.

Перечисленным видам магнетиков соответствуют пять разных типов магнитного состояния вещества: диамагнетизм, парамагнетизм, ферромагнетизм, антиферромагнетизм и ферримагнетизм.

1) Диамагнетики.

К диамагнетикам относят вещества, у которых магнитная восприимчивость отрицательна и не зависит от напряженности внешнего магнитного поля.

Диамагнетизм обусловлен небольшим изменением угловой скорости орбитального вращения электронов при внесении атома в магнитное поле. Диамагнитный эффект является проявлением закона электромагнитной индукции на атомном уровне.

Электронную орбиту можно рассматривать как замкнутый контур, не обладающий активным сопротивлением.

Под действием внешнего поля в контуре изменяется сила тока и возникает дополнительный магнитный момент. Согласно закону Ленца, этот момент направлен навстречу внешнему полю.

Если плоскость электронной орбиты расположена не перпендикулярно Н, то внешнее магнитное поле вызывает прецессионное движение орбиты вокруг направления Н.

При этом вектор орбитального магнитного момента (Морб) описывает конус. Угловая скорость прецессии определяет значение отрицательного магнитного момента ДМ.

Рисунок 1. – Прецессия электронной орбиты под действием магнитного поля:

На какие классы делятся все вещества по магнитным свойствам

Диамагнитный эффект является универсальным, присущим всем веществам. Однако в большинстве случаев он, маскируется более сильными магнитными эффектами. Диамагнетизм электронных оболочек выступает на первый план, когда собственный магнитный момент атомов равен нулю (т. е., спиновые магнитные моменты попарно скомпенсированы).

Диамагнетиками являются инертные газы, водород, азот, многие жидкости (вода, нефть и ее производные), ряд металлов (медь, серебро, золото, цинк, ртуть, галлий и др.), большинство полупроводников (кремний, германий) и органических соединений, щелочно-галоидные кристаллы, неорганические стекла и др. Диамагнетиками являются все вещества с ковалентной химической связью и вещества в сверхпроводящем состоянии. Численное значение магнитной восприимчивости диамагнетиков составляет 10-6 – 10-7. Поскольку

диамагнетики намагничиваются против направления поля, для них выполняется неравенство µ1.

Однако относительная магнитная проницаемость незначительно отличается от единицы (за исключением сверхпроводников). Магнитная восприимчивость диамагнетиков незначительно изменяется с температурой. Это объясняется тем, что диамагнитный эффект обусловлен внутриатомными процессами, на которые тепловое движение частиц не оказывает влияния. Внешним проявлением диамагнетизма является выталкивание диамагнетиков из неоднородного магнитного поля.

2) Парамагнетики.

К парамагнетикам относят вещества с положительной магнитной восприимчивостью, не зависящей от напряженности внешнего магнитного поля. В парамагнетиках атомы обладают элементарным магнитным моментом даже в отсутствие внешнего поля, однако из-за теплового движения эти магнитные моменты распределены хаотично так, что намагниченность вещества в целом равна нулю.

Внешнее магнитное поле вызывает преимущественную ориентацию магнитных моментов атомов в одном направлении. Тепловая энергия противодействует созданию магнитной упорядоченности.

Поэтому парамагнитная восприимчивость зависит от температуры. Для большинства твердых парамагнетиков температурное изменение магнитной восприимчивости подчиняется законуКюри-Вейсса:

Где:

Си и – постоянные величины для данного вещества.

При комнатной температуре магнитная восприимчивость парамагнетиков равна 10-3 – 10-6.

Поэтому их магнитная проницаемость незначительно отличается от единицы. Благодаря положительной намагниченности парамагнетики, помещенные в неоднородное магнитное поле, втягиваются в него. В сильных полях и при низких температурах в парамагнетиках наступает состояние магнитного насыщения, при котором все элементарные магнитные моментыориентируются параллельно Н. К парамагнетикам относят кислород, оксид азота, щелочные и щелочноземельные металлы, некоторые переходные металлы, солижелеза, кобальта, никеля и редкоземельных элементов. Парамагнитный эффект по физической природе аналогичен дипольно-релаксационной поляризации диэлектриков.

3) Ферромагнетики.

К ферромагнетикам относят вещества с большой положительной магнитной восприимчивостью (до 106), которая зависит от напряженности магнитного поля и температуры. Ферромагнетикам присуща внутренняя магнитная упорядоченность, выражающаяся в существовании макроскопических областей с параллельно ориентированными магнитными моментами атомов. Важнейшая особенность ферромагнетиков заключается в их способности намагничиваться до насыщения в относительно слабых магнитных полях.

Читайте также:  Какие свежевыжатые соки полезные свойства

4) Антиферромагнетики.

Антиферромагнетиками являются вещества, в которых ниже некоторой температуры спонтанновозникает антипараллельная ориентация элементарных магнитных моментов одинаковых атомов или ионов кристаллической решетки. Для антиферромагнетиков характерна небольшая положительная магнитная восприимчивость 10-3 – 10-5, которая значительно зависит от температуры. При нагревании антиферромагнетик испытывает фазовый переход в парамагнитное состояние. Температура перехода, при которой исчезает магнитная упорядоченность, получила название точки Нееля (или антиферромагнитной точки Кюри).

Антиферромагнетизм обнаружен у хрома, марганца и ряда редкоземельных элементов (Се, Nd, Sm, Tmи др.). Типичными антиферро-магнетикамн являются простейшие химические соединения на основе металлов переходной группытипа оксидов, галогенидов, сульфидов, карбонатов и т. п.

5) Ферримагнетики.

К ферримагнетикам относят вещества, магнитные свойства которых обусловлены нескомпенсированвым антиферромагнетизмом. Подобно ферромагнетикам они обладают высокой магнитной восприимчивостью, которая существенно зависит от напряженности магнитного поля и температуры. Свойствами ферримагнетиков обладают некоторые металлические сплавы, но, главным образом – оксидные соединения, среди которых наибольший практический интерес представляют ферриты.

Диа-, пара- и антиферромагнетики можно объединить в группу слабомагнитных веществ, тогда как ферро- и ферримагнетики представляют сильномагнитные материалы.

Источник

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 22 сентября 2016;
проверки требуют 16 правок.

Магнитные материалы, Магнетики — материалы, вступающие во взаимодействие с магнитным полем, выражающееся в его изменении, а также в других физических явлениях — изменение физических размеров, температуры, проводимости, возникновению электрического потенциала и т. д. В этом смысле к магнетикам относятся практически все вещества (поскольку ни у какого из них магнитная восприимчивость не равна нулю), большинство из них относится к классам диамагнетиков (имеющие небольшую отрицательную магнитную восприимчивость — и несколько ослабляющие магнитное поле) или парамагнетиков (имеющие небольшую положительную магнитную восприимчивость — и несколько усиливающие магнитное поле); более редко встречаются ферромагнетики (имеющие большую положительную магнитную восприимчивость — и намного усиливающие магнитное поле), о ещё более редких классах веществ по отношению к действию на них магнитного поля — см. ниже.

Магнитными материалами могут быть различные сплавы, химические соединения, жидкости.

Ферромагнетики делятся на две большие группы — Магнитотвёрдые материалы и Магнитомягкие материалы.

Также существуют другие типы магнитных материалов: магнитострикционные материалы, магнитооптические материалы, термомагнитные материалы.

Природа и строение магнитных материалов[править | править код]

Известно два различных механизма магнетизма:

  • зонный магнетизм;
  • молекулярный магнетизм.

Выделяют несколько основных типов магнетиков, различимых по конфигурации их магнитных структур:

  • диамагнетики
  • парамагнетики
  • ферромагнетики,
  • неколлинеарные ферромагнетики,
  • антиферромагнетики,
  • ферримагнетики,
  • аромагнетики[1],
  • гелимагнетики,
  • спиновые стёкла,
  • сперомагнетики,
  • асперомагнетики,
  • миктомагнетики,
  • сперимагнетики,
  • пьезомагнетики,
  • спиновая жидкость,
  • альсифер.

Области применения магнитных материалов[править | править код]

Некоторые области применения полимерных магнитов:

  1. Акустические системы, реле и бесконтактные датчики
  2. Электромашины, магнитные сепараторы, холодильники
  3. Магнитные элементы кодовых замков и охранной сигнализации
  4. Тахогенераторы, датчики положения, электроизмерительные приборы
  5. Медицина ( магнитотерапия, магнитные матрацы)
  6. Автоматизированное шоссе, где в США предусматривается разместить до полутонны ферритовых магнитопластов на одну милю шоссе для автоматического управления движением автомобиля, оснащенного специальным компьютером и системой слежения
  7. Магнитное покрытие для полов офисов и промышленных помещений
  8. Магнитные компоненты для глушителей автомобилей (в Европе на эти цели уходит 23000 тонн магнитопластов)
  9. Периферийные устройства компьютеров, мобильные телефоны, фотоаппараты, кинокамеры
  10. Магнитные устройства для обработки воды, углеводородного топлива, масел; магнитные фильтры
  11. Магнитные устройства для использования в рекламе, торговле, при оснащении выставок, конференций, спортивных мероприятий и так далее
  12. Неразрушающие методы контроля ( Магнитопорошковый контроль)
Читайте также:  Какие свойства белка определяют его растворимость

Примечания[править | править код]

Литература[править | править код]

  • Магнитомягкие материалы для современной силовой электроники
  • Наиболее часто задаваемые вопросы по магнитомягким магнитным материалам

Источник

СОДЕРЖАНИЕ

1. Основы классификации магнитных материалов………………………..  
1.1. Классификация веществ по магнитным свойствам………………….  
1.2. Классификация магнитных материалов………………………………….  
1.3. Особенности ферримагнетиков……………………………………………….  
2. Сведения о магнитомягких материалах…………………………………….  
2.1. Магнитомягкие материалы для постоянных и низкочастотных магнитных полей……………………………………………………………………  
2.2. Ферриты………………………………………………………………………………….  
2.3. Магнитные материалы специализированного назначения……..  
3. Применение ферритов……………………………………………………………….  
3.1. Ферритовые сердечники………………………………………………………….  
3.2. Запоминающие и переключающиеся цепи………………………………  
4. Получение ферритов………………………………………………………………….  
Выводы…………………………………………………………………………………………  
   
   
   
  
   
   
   
   
   

ОСНОВЫ КЛАССИФИКАЦИИ МАГНИТНЫХ МАТЕРИАЛОВ

Классификация веществ по магнитным свойствам

По реакции на внешнее магнитное поле и характеру внутреннего магнитного упорядочения все вещества в природе можно подразделить на пять групп: диамагнетики, парамагнетики, ферромагнетики, антиферромагнетики и ферримагнетики. Перечисленным видам магнетиков соответствуют пять различных видов магнитного состояния вещества: диамагнетизм, парамагнетизм, ферромагнетизм, антиферромагнетизм и ферримагнетизм.

К диамагнетикам относят вещества, у которых магнитная восприимчивость отрицательна и не зависит от напряженности внешнего магнитного поля. К диамагнетикам относятся инертные газы, водород, азот, многие жидкости (вода, нефть и ее производные), ряд металлов (медь, серебро, золото, цинк, ртуть, галлий и др.), большинство полупроводников (кремний, германий, соединения А3В5, А2В6) и органических соединений, щелочно-галоидные кристаллы, неорганические стекла и др. Диамагнетиками являются все вещества с ковалентной химической связью и вещества в сверхпроводящем состоянии.

К парамагнетикам относят вещества с положительной магнитной восприимчивостью, не зависящей от напряженности внешнего магнитного поля. К числу парамагнетиков относят кислород, окись азота, щелочные и щелочноземельные металлы, некоторые переходные металлы, соли железа, кобальта, никеля и редкоземельных элементов.

К ферромагнетикам относят вещества с большой положительной магнитной восприимчивостью (до 106), которая сильно зависит от напряженности магнитного поля и температуры.

Антиферромагнетиками являются вещества, в которых ниже некоторой температуры спонтанно возникает антипараллельная ориентация элементарных магнитных моментов одинаковых атомов или ионов кристаллической решетки. При нагревании антиферромагнетик испытывает фазовый переход в парамагнитное состояние. Антиферромагнетизм обнаружен у хрома, марганца и ряда редкоземельных элементов (Ce, Nd, Sm, Tm и др.). Типичными антиферромагнетиками являются простейшие химические соединения на основе металлов переходной группы типа окислов, галогенидов, сульфидов, карбонатов и т.п.

К ферримагнетикам относят вещества, магнитные свойства которых обусловлены нескомпенсированным антиферромагнетизмом. Подобно ферромагнетикам они обладают высокой магнитной восприимчивостью, которая существенно зависит от напряженности магнитного поля и температуры. Наряду с этим ферримагнетики характеризуются и рядом существенных отличий от ферромагнитных материалов.

Свойствами ферримагнетиков обладают некоторые упорядоченные металлические сплавы, но, главным образом,- различные оксидные соединения, среди которых наибольший практический интерес представляют ферриты.[1]

1.2. Классификация магнитных материалов

Применяемые в электронной технике магнитные материалы подразделяют на две основные группы: магнитотвердые и магнитомягкие. В отдельную группу выделяют материалы специального назначения.

К магнитотвердым относят материалы с большой коэрцитивной силой Нс. Они перемагничиваются лишь в очень сильных магнитных полях и служат дл

К магнитомягким относят материалы с малой коэрцитивной силой и высокой магнитной проницаемостью. Они обладают способностью намагничиваться до насыщения в слабых магнитных полях, характеризуются узкой петлей гистерезиса и малыми потерями на перемагничивание. Магнитомягкие материалы используются в основном в качестве различных магнитопроводов: сердечников дросселей, трансформаторов, электромагнитов, магнитных систем электроизмерительных приборов и т. п.

Читайте также:  Какой треугольник называется равносторонним свойство углов равностороннего треугольника

Условно магнитомягкими считают материалы, у которых Нс < 800 А/м, а магнитотвердыми – с Нс > 4 кА/м. Необходимо, однако, отметить, что у лучших магнитомягких материалов коэрцитивная сила может составлять менее 1 А/м, а лучших магнитотвердых материалах ее значение превышает 500 кА/м. По масштабам применения в электронной технике среди материалов специального назначения следует выделить материалы с прямоугольной петлей гистерезиса (ППГ), ферриты для устройств сверхвысокочастотного диапазона и магнитострикционные материалы.

Внутри каждой группы деление магнитных материалов по родам и видам отражает различия в их строении и химическом составе, учитывает технологические особенности и некоторые специфические свойства.

Рис.2 Классификация магнитных материалов

Свойства магнитных материалов определяются формой кривой намагничивания и петли гистерезиса. Магнитомягкие материалы применяются для получения больших значений магнитного потока. Величина магнитного потока ограничена магнитным насыщением материала, а потому основным требованием к магнитным материалам сильноточной электротехники и электроники является высокая индукция насыщения. Свойства магнитных материалов зависят от их химического состава, от чистоты используемого исходного сырья и технологии производства. В зависимости от исходного сырья и технологии производства магнитомягких материалов делятся на три группы: монолитные металлические материалы, порошковые металлические материалы (магнитодиэлектрические) и оксидные магнитные материалы, кратко называемые ферритами.[1]

1.Монолитные металлические материалы.

Основными компонентами монолитных металлических магнитомягких материалов является железо с низким содержанием углерода, никель или кобальт. Для цепей техники связи важнейшими из этой группы материалов являются:

а) сплавы и стали с гарантированной малой коэрцитивной силой;

б) листовая сталь с гарантированными потерями при высоких значениях магнитной индукции;

в) сплавы с гарантированной индукцией насыщения;

г) сплавы и стали с гарантированной высокой проницаемостью;

д) материалы со специальными свойствами.

Материалы первой подгруппы предназначены, например, для реле. К ним относятся сталь с минимальным содержанием углерода, низколегированная кремнистая сталь и сплавы железа с никелем.

Вторую подгруппу материалов образует кремнистая сталь, применяемая для сердечников сетевых трансформаторов.

Материалы третьей подгруппы включают в себя сплавы железа с кобальтом.

Материалами с гарантированной проницаемостью являются низкоуглеродистые стали с присадкой 3-4,5% кремния и сплавы на основе никеля.

К подгруппе специальных материалов относятся материалы с прямоугольной петлей гистерезиса, магнитострикционные материалы и т.п.[4]

2.Порошковые металлические материалы.

Применение порошковых материалов, т.е. так называемых магнитодиэлектриков, основывается на технических и экономических соображениях. Магнитодиэлектрические сердечники имеют некоторые свойства, которых нельзя достичь у материалов первой группы. Они пригодны для высокочастотной техники. Прокатка листовых материалов толщиной менее 0,05 мм обходится очень дорого, а при толщине 0,03 мм цена таких материалов превышает цену золота.

Для уменьшения потерь на вихревые токи и увеличения стабильности магнитных свойств применяются порошковые магнитные материалы. Увеличение удельного электрического сопротивления достигается здесь изоляцией магнитных зерен друг от друга. Окончательная форма придается изделию прессованием. К этой группе относятся:

а) магнитодиэлектрические сердечники;

б) материалы со специальными свойствами.

В зависимости от исходного сырья магнитодиэлектрические сердечники делятся на сердечники из железных порошковых материалов и сердечники из легированного железа. Основу железных порошковых материалов составляет железо, получаемое обычно карбонильным способом. Легированные материалы представляют собой сплавы железа, и алюминия (альсифер) и сплавы железа и никеля или железа, никеля и молибдена (пермаллой и молибденовый пермаллой).

К специальным порошковым металлическим материалам относятся, например, магнитный порошок для магнитофоной ленты и других магнитных носителей информации.[4]

Источник