Механические свойства какие есть

Механические свойства характеризуют способность материа­лов сопротивляться действию внешних сил. К основным механичес­ким свойствам относятся прочность, твердость, ударная вязкость, упругость, пластичность, хрупкость и др.

Прочность — это способность материала сопротивляться раз­рушающему воздействию внешних сил.

Твердость — это способность материала сопротивляться вне­дрению в него другого, более твердого тела под действием нагрузки.

Вязкостью называется свойство материала сопротивляться раз­рушению под действием динамических нагрузок.

Упругость — это свойство материалов восстанавливать свои раз­меры и форму после прекращения действия нагрузки.

Пластичностью называется способность материалов изменять свои размеры и форму под действием внешних сил, не разрушаясь при этом.

Хрупкость — это свойство материалов разрушаться под дей­ствием внешних сил без остаточных деформаций.

При статических испытаниях на растяжение определяют вели­чины, характеризующие прочность, пластичность и упругость мате­риала. Испытания производятся на цилиндрических (или плоских) образцах с определенным соотношением между длиной l0 и диа­метром d0. Образец растягивается под действием приложенной силы Р (рис. 1, а) до разрушения. Внешняя нагрузка вызывает в образце напряжение и деформацию. Напряжение σ — это отношение силы Р к площади поперечного сечения F0, МПа:

σ = P/F0,

Деформация характеризует изменение размеров образца под дей­ствием нагрузки, %:

ε = [(l1-l0)/l0] · 100,

где l1 — длина растянутого образца.

Деформация может быть упру­гой (исчезающей после снятия нагрузки) и пластической (остаю­щейся после снятия нагрузки).

При испытаниях стоится диаграмма растяжения, представляющая собой зависимость напряжения от деформации. На рис. 1 приведена такая диаграмма для низкоуглеродистой стали. После проведения ис­пытаний определяются следующие характеристики механических свойств.

Предел упругости σу — это максимальное напряжение при кото­ром в образце не возникают пластические деформации.

Предел текучести σт — это напряжение, соответствующее площадке текучести на диаграмме растяжения (рис. 1). Если на диаграмме нет площадки текучести (что наблюдается для хрупких материалов), то определяют условный предел текучести σ0,2— напряжение, вызывающее пластическую деформацию, равную 0,2 %. Предел прочности (или временное сопротивление) σв — это на­пряжение, отвечающее максимальной нагрузке, которую выдержи­вает образец при испытании.

Относительное удлинение после разрыва δ — отношение при­ращения длины образца при растяжении к начальной длине l0, %:

δ = [(lk-l0)/l0] · 100,

где lк — длина образца после разрыва.

Рис. 1. Статические испытания на растяжение: а – схема испытания;

б – диаграмма растяжения

Относительным сужением после разрыва ψ называется умень­шение площади поперечного сечения образца, отнесенное к началь­ному сечению образца, %:

ψ = [(F0-Fk)/F0] · 100,

где Fк — площадь поперечного сечения образца в месте разрыва. Относительное удлинение и относительное сужение характеризуют пластичность материала.

Твердость металлов измеряется путем вдавливания в испытуе­мый образен твердого наконечника различной формы/

Метод Бринелля основан на вдавливании в поверхность металла стального закаленного шарика под действием определенной нагрузки. После снятия нагрузки в образце остается отпечаток. Число твердо­сти по Бринеллю НВ определяется отношением нагрузки, действую­щей на шарик, к площади поверхности полученного отпечатка.

Метод Роквелла основан на вдавливании в испытуемый образец закаленного стального шарика диаметром 1,588 мм (шкала В) или алмазного конуса с углом при вершине 120° (шкалы А и С). Вдавли­вание производится под действием двух нагрузок — предваритель­ной равной 100 Н и окончательной равной 600, 1000. 1500 Н для шкал А, В и С соответственно. Число твердости по Роквеллу HRA, HRB и HRC определяется по разности глубин вдавливания.

В методе Виккерса применяют вдавливание алмазной четырех­гранной пирамиды с углом при вершине 136°. Число твердости по Виккерсу HV определяется отношением приложенной нагрузки к площади поверхности отпечатка.

Ударная вязкость определяется работой A, затраченной на разрушение образца, отнесенной к площади его поперечною сече­ния F; Дж/м2:

KC A/F

Испытания проводятся ударом специального маятникового коп­ра. Для испытания применяется стандартный надрезанный образец, устанавливаемый на опорах копра. Маятник определенной массы наносит удар по стороне противоположной надрезу.

Источник

К основным механическим
свойствам
металлов относятся прочность,
вязкость, пластичность,
твердость, выносливость, ползучесть, износостойкость. Они
являются главными характеристиками металла или
сплава.

Рассмотрим некоторые термины, применяемые при характеристике механических
свойств. Изменения размеров и формы, происходящие в твердом теле под действием
внешних сил, называются деформациями, а процесс, их вызывающий,—
деформированием. Деформации, исчезающие при разгрузке, называются упругими, а не
исчезающие после снятия нагрузки — остаточными или пластическими.

Напряжением  называется величина внутренних сил,
возникающих в твердом теле под влиянием внешних сил.

Под прочностью материала понимают его способность сопротивляться
деформации или разрушению под действием статических или динамических нагрузок. О
прочности судят по характеристикам механических свойств, которые получают при
механических испытаниях. К статическим испытаниям на прочность относятся
растяжение, сжатие, изгиб, кручение, вдавливание. К динамическим относятся
испытания на ударную вязкость, выносливость и износостойкость. Эластичностью
называется способность материалов упруго деформироваться, а пластичностью —
способность пластически деформироваться без разрушения.

Читайте также:  На каком уровне организации проявляются все свойства живого

Вязкость — это свойство материала, которое определяет его
способность к поглощению механической энергии при постепенном увеличении
пластической деформации вплоть до разрушения материала. Материалы должны быть
одновременно прочными и пластичными.

Твердость — это способность материала сопротивляться
проникновению в него других тел.

Выносливость — это способность материала выдерживать, не
разрушаясь, большое число повторно-переменных нагрузок.

Износостойкость — это способность материала сопротивляться
поверхностному разрушению под действием внешнего трения.

Ползучесть — это способность материала медленно и непрерывно
пластически деформироваться (ползти) при постоянном напряжении (особенно при
высоких температурах).

Поведение некоторых металлов (например, отожженной стали) при испытании на
растяжение показано на рис. 3. При увеличении нагрузки в металле сначала
развиваются процессы упругой деформации, удлинение образца при этом
незначительно. Затем наблюдается пластическое течение металла без повышения
напряжения, этот период называется текучестью. Напряжение, при котором
продолжается деформация образца без заметного увеличения нагрузки, называют
пределом текучести. При дальнейшем повышении нагрузки происходит развитие в
металле процессов наклепа (упрочнения под нагрузкой). Наибольшее напряжение,
предшествующее разрушению образца, называют пределом прочности при
растяжении.

Рис. 3. Диаграмма деформации при испытании металлов на
растяжение.

Напряженное состояние — это состояние тела, находящегося под
действием уравновешенных сил, при установившемся упругом равновесии всех его
частиц. Остаточные напряжения — это напряжения, остающиеся в теле, после
прекращения действия внешних сил, или возникающие при быстром нагревании и
охлаждении, если линейное расширение или усадка слоев металла и частей тела
происходит неравномерно.

Внутренние напряжения образуются при быстром охлаждении или нагревании в
температурных зонах перехода от пластического к упругому состоянию металла. Эти
температуры для стали соответствую 400—600°. Если образующиеся внутренние
напряжения превышают предел прочности, то в деталях образуются трещины, если они
превышают предел упругости, то происходит коробление детали.

Предел прочности при растяжении в кг/мм2 определяется на
разрывной машине как отношение нагрузки Р в кГ, необходимой для разрушения
стандартного образца (рис. 4, а), к площади поперечного сечения образца в
мм2.

    

Рис. 4. Методы испытания прочности материалов: а – на растяжение; б – на
изгиб; в – на ударную вязкость; г – на твёрдость

Предел прочности при изгибе в кГ/мм2 определяется разрушением
образца, который устанавливаете» на двух опорах (рис. 4, б), нагруженного
по середине сосредоточенной нагрузкой Р.

Для установления пластичности материала определяют относительное удлинение δ
при растяжении или прогиб ƒ при изгибе.

Относительное удлиненней δ в % определяется на образцах,
испытуемых на растяжение. На образец наносят деления (рис. 4, а) и измеряют
между ними расстояние до испытания (l0) и после разрушения (l) и определяют
удлинение

δ = l-lo / lo · 100%

Прогиб при изгибе в мм определяется при помощи прогибомера машины,
указывающего прогиб ƒ, образующийся на образце в момент его разрушения (рис. 4,
б).

Ударная вязкость в кГм/см2 определяется на образцах
(рис. 4, в), подвергаемых на копре разрушению ударом отведенного в
сторону маятника. Для этого работу деформации в кГм делят на площадь поперечного
сечения образца в см 2.

Твердость по Бринелю (НВ) определяют на зачищенной поверхности
образца, в которую вдавливают стальной шарик (рис. 4, г) диаметром 5 или
10 мм под соответствующей нагрузкой в 750 или 3000 кГ и замеряют диаметр d
образовавшейся лунки. Отношение нагрузки в кГ к площади лунки πd2 / 4 в
мм2 дает число твердости.

Показатели для механических свойств для основных сплавов приведены в табл.
1
.

Таблица.1. Механические свойства основных промышленных сплавов

Техническое железо

23

30

90

Мембраны

Чугун серый

12—38

до 0,25

143—220

Отливки фасонные

Чугун высокопрочный

30—60

0,5—10

170—262

Ответственные отливки

Сталь малоуглеродистая (мягкая)

32 — 70

11 — 28

100—130

Котельное железо трубы, котлы

Сталь среднеуглеродистая (средней твердости)

50—70

12 — 16

170 — 200

Оси, шатуны, валы, рельсы

Сталь твердая после закалки и отпуска

110—140

до 9

400—600

Инструмент ударный и режущий

Бронза оловянистая

15 — 25

3—10

70—80

Детали, работающие на истирание и подверженные коррозии

Бронза алюминиевая

40—50

10

120

То же

Латунь однофазная

25 — 35

30-60

42—60

Патронно-гильзовое производство

Латунь двухфазная

35—45

30—40

_

Детали, изготовленные горячей штамповкой

Силумин

21—23

1 — 3

65—100

Детали в авиастроении и автостроении

Сплавы магния

24 — 32

10—16

60—70

То же

Источник

         (у цилиндрических образцов надрез обычно выполняют в виде круговой выточки, у полос — в виде центрального отверстия или боковых вырезов). Для многих конструкционных материалов это отношение при статической нагрузке больше единицы, что связано со значительной местной пластической деформацией в вершине надреза. Чем острее надрез, тем меньше локальная пластическая деформация и тем больше доля прямого излома в разрушенном сечении. Хорошо развитый прямой излом можно получить при комнатной температуре у большинства конструкционных материалов в лабораторных условиях, если растяжению или изгибу подвергать образцы массивного сечения (тем толще, чем пластичнее материал), снабдив эти образцы специальной узкой прорезью с искусственно созданной трещиной (рис. 3). При растяжении широкого, плоского образца пластическая деформация затруднена и ограничивается небольшой областью размером 2ry (на рис. 3, б заштрихована), непосредственно примыкающей к кончику трещины. Прямой излом обычно характерен для эксплуатационных разрушений элементов конструкций.

Читайте также:  Какими свойствами обладает молекула

         Широкое распространение получили предложенные американским учёным Дж. Р. Ирвином в качестве констант для условий хрупкого разрушения такие показатели, как критический коэффициент интенсивности напряжений при плоской деформации K1C и вязкость разрушения

        

         При этом процесс разрушения рассматривается во времени и показатели K1C(G1C) относятся к тому критическому моменту, когда нарушается устойчивое развитие трещины; трещина становится неустойчивой и распространяется самопроизвольно, когда энергия, необходимая для увеличения её длины, меньше энергии упругой деформации, поступающей к вершине трещины из соседних упруго напряжённых зон металла.

         При назначении толщины образца t и размеров трещины 2lтр исходят из следующего требования

        

         Коэффициент интенсивности напряжений К учитывает не только значение нагрузки, но и длину движущейся трещины:

        

         (λ учитывает геометрию трещины и образца), выражается в кгс/мм3/2 или Мн/м3/2. По K1C или G1C можно судить о склонности конструкционных материалов к хрупкому разрушению в условиях эксплуатации.

         Для оценки качества металла весьма распространены испытания на ударный о изгиб призматических образцов, имеющих на одной стороне надрез. При этом оценивают ударную вязкость (См. Ударная вязкость) (в кгсм/см2 или Мдж/м2)работу деформации и разрушения образца, условно отнесённую к поперечному сечению в месте надреза. Широкое распространение получили испытания на ударный изгиб образцов с искусственно полученной в основании надреза трещиной усталости. Работа разрушения таких образцов ату находится в целом в удовлетворительном соответствии с такой характеристикой разрушения, как K1C, и ещё лучше с отношением

        

         Временна́я зависимость прочности. С увеличением времени действия нагрузки сопротивление пластической деформации и сопротивление разрушению понижаются. При комнатной температуре у металлов это становится особенно заметным при воздействии коррозионной (коррозия под напряжением) или др. активной (эффект Ребиндера) среды. При высоких температурах наблюдается явление ползучести (См. Ползучесть), т. е. прироста пластической деформации с течением времени при постоянном напряжении (рис. 4, а). Сопротивление металлов ползучести оценивают условным пределом ползучести — чаще всего напряжением, при котором пластическая деформация за 100 ч достигает 0,2 %, и обозначают его σ0,2/100. Чем выше температура t, тем сильнее выражено явление ползучести и тем больше снижается во времени сопротивление разрушению металла (рис. 4, б). Последнее свойство характеризуют т. н. пределом длительной прочности, т. е. напряжением, которое при данной температуре вызывает разрушение материала за заданное время (например, σt100, σt1000 и т. д.). У полимерных материалов температурно-временная зависимость прочности и деформации выражена сильнее, чем у металлов. При нагреве пластмасс наблюдается высокоэластическая обратимая деформация; начиная с некоторой более высокой температуры развивается необратимая деформация, связанная с переходом материала в вязкотекучее состояние. С ползучестью связано и др. важное механическое свойство материалов — склонность к релаксации напряжений, т. е. к постепенному падению напряжения в условиях, когда общая (упругая и пластическая) деформация сохраняет постоянную заданную величину (например, в затянутых болтах). Релаксация напряжений обусловлена увеличением доли пластической составляющей общей деформации и уменьшением её упругой части.

         Если на металл действует нагрузка, периодически меняющаяся по какому-либо закону (например, синусоидальному), то с увеличением числа циклов N нагрузки его прочность уменьшается (рис. 4, в) — металл «устаёт». Для конструкционной стали такое падение прочности наблюдается до N = (2—5) ․106 циклов. В соответствии с этим говорят о пределе усталости конструкционной стали, понимая под ним обычно амплитуду напряжения

        

         ниже которой сталь при повторно-переменной нагрузке не разрушается. При |σmin| = |σmax| предел усталости обозначают символом σ-1. Кривые усталости алюминиевых, титановых и магниевых сплавов обычно не имеют горизонтального участка, поэтому сопротивление усталости этих сплавов характеризуют т. н. ограниченными (соответствующими заданному N) пределами усталости. Сопротивление усталости зависит также от частоты приложения нагрузки. Сопротивление материалов в условиях низкой частоты и высоких значений повторной нагрузки (медленная, или малоцикловая, усталость) не связано однозначно с пределами усталости. В отличие от статической нагрузки, при повторно-переменных нагрузках всегда проявляется чувствительность к надрезу, т. е. предел усталости при наличии надреза ниже предела усталости гладкого образца. Для удобства чувствительность к надрезу при усталости выражают отношением

        

        характеризует асимметрию цикла). В процессе уставания можно выделить период, предшествующий образованию очага усталостного разрушения, и следующий за ним, иногда довольно длительный, период развития трещины усталости. Чем медленнее развивается трещина, тем надёжнее работает материал в конструкции. Скорость развития трещины усталости dl/dN связывают с коэффициентом интенсивности напряжений степенной функцией:

Читайте также:  Какие металлы проявляют амфотерные свойства

        

         Различают сопротивление термической усталости, когда появляющиеся в материале напряжения обусловлены тем, что в силу тех или иных причин, например из-за формы детали или условий её закрепления, возникающие при циклическом изменении температуры тепловые перемещения не могут быть реализованы. Сопротивление термической усталости зависит и от многих других свойств материала — коэффициентов линейного расширения и температуропроводности, модуля упругости, предела упругости и др.

         Лит.: Давиденков Н. Н., Динамические испытания металлов, 2 изд., Л. — М., 1936; Ратнер С. И., Разрушение при повторных нагрузках, М., 1959; Серенсен С. В., Когаев В. П., Шнейдерович Р. М., Несущая способность и расчеты деталей машин на прочность, 2 изд., М., 1963; Прикладные вопросы вязкости разрушения, пер. с англ., М., 1968; Фридман Я. Б., Механические свойства металлов, 3 изд., М., 1974; Методы испытания, контроля и исследования машиностроительных материалов, под ред. А. Т. Туманова, т. 2, М., 1974.

         С. И. Кишкина.

        

        Рис. 1. Схемы деформации при разных способах нагружения: а — растяжение, б — сжатие, в — изгиб, г — кручение (пунктиром показана начальная форма образцов).

        

        Рис. 2. Типичная диаграмма деформации при растяжении конструкционных металлов.

        

        Рис. 3. Образец со специально созданной в вершине надреза трещиной усталости для определения K1C. Испытания на внецентренное (а) и осевое (б) растяжение.

        

        Рис. 4. Изменение механических свойств конструкционных материалов в функции времени (или числа циклов).

Большая советская энциклопедия. — М.: Советская энциклопедия.
1969—1978.

Смотреть что такое “Механические свойства материалов” в других словарях:

  • Механические свойства материалов — Механические свойства материалов, такие как прочность, сопротивление разрушению, твёрдость и др. являются во многих случаях определяющими для принятия решения о применении материала. Методы проверки механических свойств Следует отметить следующие …   Википедия

  • МЕХАНИЧЕСКИЕ СВОЙСТВА — материалов реакция материала на приложенные механич. нагрузки. Осн. характеристиками механич. свойств являются напряжения и деформации. Напряжения характеристики сил, к рые относят к единице сечения образца материала или изделия, конструкции из… …   Физическая энциклопедия

  • Механические свойства — материалов, такие как прочность, сопротивление разрушению, твёрдость и др. являются во многих случаях определяющими для принятия решения о применении материала. Методы проверки механических свойств Следует отметить следующие основные методы… …   Википедия

  • Механические свойства — – отражают способность материала сопротивляться силовым, тепловым, усадочным или другим внутренним напряжениям без нарушения установившейся структуры. К механическим относят деформативные свойства: прочность, твердость, истираемость,… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Механические свойства горной породы — – свойства, характеризующие возникновение, распределение и изменение механических напряжений и деформаций в горной породе при воздействии механических нагрузок. [ГОСТ Р 50544 93] Рубрика термина: Свойства горной породы Рубрики энциклопедии …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Свойства материалов — Термины рубрики: Свойства материалов Агрегация материала Активация материалов Активность вещества Анализ вещественный …   Энциклопедия терминов, определений и пояснений строительных материалов

  • СВОЙСТВА МАТЕРИАЛОВ — совокупность показателей, характеризующих все стороны материала. Различают следующие свойства материалов (например, для металлов): механические, физические (плотность, тепловые, электрические, магнитные и тому подобные свойства), химические… …   Металлургический словарь

  • МЕХАНИЧЕСКИЕ СВОЙСТВА — материалов, определяют их поведение под действием мех. нагрузки. Основные М. с. твердых тел деформационные (жесткость, пластичность, ползучесть, твердость, предельные деформации при разрушении e), прочностные (предел прочности s, долговечность,… …   Химическая энциклопедия

  • Механические свойства некоторых керметных материалов — Составные части Предел прочности на растяжение, МПа Относительное удлинение при 20 °С, % Металлическая Неметалл …   Химический справочник

  • МЕТАЛЛОВ МЕХАНИЧЕСКИЕ СВОЙСТВА — Когда на металлический образец действует сила или система сил, он реагирует на это, изменяя свою форму (деформируется). Различные характеристики, которыми определяются поведение и конечное состояние металлического образца в зависимости от вида и… …   Энциклопедия Кольера

Книги

  • Исследования больших пластических деформаций и разрыва. Влияние высокого гидростатического давления на механические свойства материалов, Бриджмен П.У.. Настоящая книга, написанная выдающимся американским ученым, основоположником физики высоких давлений П. У. Бриджменом, посвящена в основном вопросу о влиянии высоких давлений на механические… Подробнее  Купить за 630 руб
  • Исследования больших пластических деформаций и разрыва. Влияние высокого гидростатического давления на механические свойства материалов, П. У. Бриджмен. Настоящая книга, написанная выдающимся американским ученым, основоположником физики высоких давлений П. У. Бриджменом, посвящена в основном вопросу о влиянии высоких давлений на механические… Подробнее  Купить за 505 грн (только Украина)
  • Механические свойства материалов под высоким давлением (комплект из 2 книг), . Данная книга, являющаяся первой частью фундаментальной монографии “Механические свойства материалов под высоким давлением”, посвящена общим вопросам воздействиявысоких давлений на… Подробнее  Купить за 490 руб

Другие книги по запросу «Механические свойства материалов» >>

Источник