Механические свойства какие есть
Механические свойства характеризуют способность материалов сопротивляться действию внешних сил. К основным механическим свойствам относятся прочность, твердость, ударная вязкость, упругость, пластичность, хрупкость и др.
Прочность — это способность материала сопротивляться разрушающему воздействию внешних сил.
Твердость — это способность материала сопротивляться внедрению в него другого, более твердого тела под действием нагрузки.
Вязкостью называется свойство материала сопротивляться разрушению под действием динамических нагрузок.
Упругость — это свойство материалов восстанавливать свои размеры и форму после прекращения действия нагрузки.
Пластичностью называется способность материалов изменять свои размеры и форму под действием внешних сил, не разрушаясь при этом.
Хрупкость — это свойство материалов разрушаться под действием внешних сил без остаточных деформаций.
При статических испытаниях на растяжение определяют величины, характеризующие прочность, пластичность и упругость материала. Испытания производятся на цилиндрических (или плоских) образцах с определенным соотношением между длиной l0 и диаметром d0. Образец растягивается под действием приложенной силы Р (рис. 1, а) до разрушения. Внешняя нагрузка вызывает в образце напряжение и деформацию. Напряжение σ — это отношение силы Р к площади поперечного сечения F0, МПа:
σ = P/F0,
Деформация характеризует изменение размеров образца под действием нагрузки, %:
ε = [(l1-l0)/l0] · 100,
где l1 — длина растянутого образца.
Деформация может быть упругой (исчезающей после снятия нагрузки) и пластической (остающейся после снятия нагрузки).
При испытаниях стоится диаграмма растяжения, представляющая собой зависимость напряжения от деформации. На рис. 1 приведена такая диаграмма для низкоуглеродистой стали. После проведения испытаний определяются следующие характеристики механических свойств.
Предел упругости σу — это максимальное напряжение при котором в образце не возникают пластические деформации.
Предел текучести σт — это напряжение, соответствующее площадке текучести на диаграмме растяжения (рис. 1). Если на диаграмме нет площадки текучести (что наблюдается для хрупких материалов), то определяют условный предел текучести σ0,2— напряжение, вызывающее пластическую деформацию, равную 0,2 %. Предел прочности (или временное сопротивление) σв — это напряжение, отвечающее максимальной нагрузке, которую выдерживает образец при испытании.
Относительное удлинение после разрыва δ — отношение приращения длины образца при растяжении к начальной длине l0, %:
δ = [(lk-l0)/l0] · 100,
где lк — длина образца после разрыва.
Рис. 1. Статические испытания на растяжение: а – схема испытания;
б – диаграмма растяжения
Относительным сужением после разрыва ψ называется уменьшение площади поперечного сечения образца, отнесенное к начальному сечению образца, %:
ψ = [(F0-Fk)/F0] · 100,
где Fк — площадь поперечного сечения образца в месте разрыва. Относительное удлинение и относительное сужение характеризуют пластичность материала.
Твердость металлов измеряется путем вдавливания в испытуемый образен твердого наконечника различной формы/
Метод Бринелля основан на вдавливании в поверхность металла стального закаленного шарика под действием определенной нагрузки. После снятия нагрузки в образце остается отпечаток. Число твердости по Бринеллю НВ определяется отношением нагрузки, действующей на шарик, к площади поверхности полученного отпечатка.
Метод Роквелла основан на вдавливании в испытуемый образец закаленного стального шарика диаметром 1,588 мм (шкала В) или алмазного конуса с углом при вершине 120° (шкалы А и С). Вдавливание производится под действием двух нагрузок — предварительной равной 100 Н и окончательной равной 600, 1000. 1500 Н для шкал А, В и С соответственно. Число твердости по Роквеллу HRA, HRB и HRC определяется по разности глубин вдавливания.
В методе Виккерса применяют вдавливание алмазной четырехгранной пирамиды с углом при вершине 136°. Число твердости по Виккерсу HV определяется отношением приложенной нагрузки к площади поверхности отпечатка.
Ударная вязкость определяется работой A, затраченной на разрушение образца, отнесенной к площади его поперечною сечения F; Дж/м2:
KC = A/F
Испытания проводятся ударом специального маятникового копра. Для испытания применяется стандартный надрезанный образец, устанавливаемый на опорах копра. Маятник определенной массы наносит удар по стороне противоположной надрезу.
Источник
РоÑновнÑм меÑ
аниÑеÑким
ÑвойÑÑвам
меÑаллов оÑноÑÑÑÑÑ Ð¿ÑоÑноÑÑÑ,
вÑзкоÑÑÑ, плаÑÑиÑноÑÑÑ,
ÑвеÑдоÑÑÑ, вÑноÑливоÑÑÑ, ползÑÑеÑÑÑ, изноÑоÑÑойкоÑÑÑ. Ðни
ÑвлÑÑÑÑÑ Ð³Ð»Ð°Ð²Ð½Ñми Ñ
аÑакÑеÑиÑÑиками меÑалла или
Ñплава.
РаÑÑмоÑÑим некоÑоÑÑе ÑеÑминÑ, пÑименÑемÑе пÑи Ñ
аÑакÑеÑиÑÑике меÑ
аниÑеÑкиÑ
ÑвойÑÑв. ÐÐ·Ð¼ÐµÐ½ÐµÐ½Ð¸Ñ ÑазмеÑов и ÑоÑмÑ, пÑоиÑÑ
одÑÑие в ÑвеÑдом Ñеле под дейÑÑвием
внеÑниÑ
Ñил, назÑваÑÑÑÑ Ð´ÐµÑоÑмаÑиÑми, а пÑоÑеÑÑ, иÑ
вÑзÑваÑÑий,â
деÑоÑмиÑованием. ÐеÑоÑмаÑии, иÑÑезаÑÑие пÑи ÑазгÑÑзке, назÑваÑÑÑÑ ÑпÑÑгими, а не
иÑÑезаÑÑие поÑле ÑнÑÑÐ¸Ñ Ð½Ð°Ð³ÑÑзки â оÑÑаÑоÑнÑми или плаÑÑиÑеÑкими.
ÐапÑÑжением назÑваеÑÑÑ Ð²ÐµÐ»Ð¸Ñина внÑÑÑенниÑ
Ñил,
возникаÑÑиÑ
в ÑвеÑдом Ñеле под влиÑнием внеÑниÑ
Ñил.
Ðод пÑоÑноÑÑÑÑ Ð¼Ð°ÑеÑиала понимаÑÑ ÐµÐ³Ð¾ ÑпоÑобноÑÑÑ ÑопÑоÑивлÑÑÑÑÑ
деÑоÑмаÑии или ÑазÑÑÑÐµÐ½Ð¸Ñ Ð¿Ð¾Ð´ дейÑÑвием ÑÑаÑиÑеÑкиÑ
или динамиÑеÑкиÑ
нагÑÑзок. Ð
пÑоÑноÑÑи ÑÑдÑÑ Ð¿Ð¾ Ñ
аÑакÑеÑиÑÑикам меÑ
аниÑеÑкиÑ
ÑвойÑÑв, коÑоÑÑе полÑÑаÑÑ Ð¿Ñи
меÑ
аниÑеÑкиÑ
иÑпÑÑаниÑÑ
. Ð ÑÑаÑиÑеÑким иÑпÑÑаниÑм на пÑоÑноÑÑÑ Ð¾ÑноÑÑÑÑÑ
ÑаÑÑÑжение, ÑжаÑие, изгиб, кÑÑÑение, вдавливание. РдинамиÑеÑким оÑноÑÑÑÑÑ
иÑпÑÑÐ°Ð½Ð¸Ñ Ð½Ð° ÑдаÑнÑÑ Ð²ÑзкоÑÑÑ, вÑноÑливоÑÑÑ Ð¸ изноÑоÑÑойкоÑÑÑ. ÐлаÑÑиÑноÑÑÑÑ
назÑваеÑÑÑ ÑпоÑобноÑÑÑ Ð¼Ð°ÑеÑиалов ÑпÑÑго деÑоÑмиÑоваÑÑÑÑ, а плаÑÑиÑноÑÑÑÑ â
ÑпоÑобноÑÑÑ Ð¿Ð»Ð°ÑÑиÑеÑки деÑоÑмиÑоваÑÑÑÑ Ð±ÐµÐ· ÑазÑÑÑениÑ.
ÐÑзкоÑÑÑ â ÑÑо ÑвойÑÑво маÑеÑиала, коÑоÑое опÑеделÑÐµÑ ÐµÐ³Ð¾
ÑпоÑобноÑÑÑ Ðº поглоÑÐµÐ½Ð¸Ñ Ð¼ÐµÑ
аниÑеÑкой ÑнеÑгии пÑи поÑÑепенном ÑвелиÑении
плаÑÑиÑеÑкой деÑоÑмаÑии вплоÑÑ Ð´Ð¾ ÑазÑÑÑÐµÐ½Ð¸Ñ Ð¼Ð°ÑеÑиала. ÐаÑеÑÐ¸Ð°Ð»Ñ Ð´Ð¾Ð»Ð¶Ð½Ñ Ð±ÑÑÑ
одновÑеменно пÑоÑнÑми и плаÑÑиÑнÑми.
ТвеÑдоÑÑÑ â ÑÑо ÑпоÑобноÑÑÑ Ð¼Ð°ÑеÑиала ÑопÑоÑивлÑÑÑÑÑ
пÑÐ¾Ð½Ð¸ÐºÐ½Ð¾Ð²ÐµÐ½Ð¸Ñ Ð² него дÑÑгиÑ
Ñел.
ÐÑноÑливоÑÑÑ â ÑÑо ÑпоÑобноÑÑÑ Ð¼Ð°ÑеÑиала вÑдеÑживаÑÑ, не
ÑазÑÑÑаÑÑÑ, болÑÑое ÑиÑло повÑоÑно-пеÑеменнÑÑ
нагÑÑзок.
ÐзноÑоÑÑойкоÑÑÑ â ÑÑо ÑпоÑобноÑÑÑ Ð¼Ð°ÑеÑиала ÑопÑоÑивлÑÑÑÑÑ
повеÑÑ
ноÑÑÐ½Ð¾Ð¼Ñ ÑазÑÑÑÐµÐ½Ð¸Ñ Ð¿Ð¾Ð´ дейÑÑвием внеÑнего ÑÑениÑ.
ÐолзÑÑеÑÑÑ â ÑÑо ÑпоÑобноÑÑÑ Ð¼Ð°ÑеÑиала медленно и непÑеÑÑвно
плаÑÑиÑеÑки деÑоÑмиÑоваÑÑÑÑ (ползÑи) пÑи поÑÑоÑнном напÑÑжении (оÑобенно пÑи
вÑÑокиÑ
ÑемпеÑаÑÑÑаÑ
).
Ðоведение некоÑоÑÑÑ
меÑаллов (напÑимеÑ, оÑожженной ÑÑали) пÑи иÑпÑÑании на
ÑаÑÑÑжение показано на ÑиÑ. 3. ÐÑи ÑвелиÑении нагÑÑзки в меÑалле ÑнаÑала
ÑазвиваÑÑÑÑ Ð¿ÑоÑеÑÑÑ ÑпÑÑгой деÑоÑмаÑии, Ñдлинение обÑазÑа пÑи ÑÑом
незнаÑиÑелÑно. ÐаÑем наблÑдаеÑÑÑ Ð¿Ð»Ð°ÑÑиÑеÑкое ÑеÑение меÑалла без повÑÑениÑ
напÑÑжениÑ, ÑÑÐ¾Ñ Ð¿ÐµÑиод назÑваеÑÑÑ ÑекÑÑеÑÑÑÑ. ÐапÑÑжение, пÑи коÑоÑом
пÑодолжаеÑÑÑ Ð´ÐµÑоÑмаÑÐ¸Ñ Ð¾Ð±ÑазÑа без замеÑного ÑвелиÑÐµÐ½Ð¸Ñ Ð½Ð°Ð³ÑÑзки, назÑваÑÑ
пÑеделом ÑекÑÑеÑÑи. ÐÑи далÑнейÑем повÑÑении нагÑÑзки пÑоиÑÑ
Ð¾Ð´Ð¸Ñ ÑазвиÑие в
меÑалле пÑоÑеÑÑов наклепа (ÑпÑоÑÐ½ÐµÐ½Ð¸Ñ Ð¿Ð¾Ð´ нагÑÑзкой). ÐаиболÑÑее напÑÑжение,
пÑедÑеÑÑвÑÑÑее ÑазÑÑÑÐµÐ½Ð¸Ñ Ð¾Ð±ÑазÑа, назÑваÑÑ Ð¿Ñеделом пÑоÑноÑÑи пÑи
ÑаÑÑÑжении.
РиÑ. 3. ÐиагÑамма деÑоÑмаÑии пÑи иÑпÑÑании меÑаллов на
ÑаÑÑÑжение.
ÐапÑÑженное ÑоÑÑоÑние â ÑÑо ÑоÑÑоÑние Ñела, наÑ
одÑÑегоÑÑ Ð¿Ð¾Ð´
дейÑÑвием ÑÑавновеÑеннÑÑ
Ñил, пÑи ÑÑÑановивÑемÑÑ ÑпÑÑгом ÑавновеÑии вÑеÑ
его
ÑаÑÑиÑ. ÐÑÑаÑоÑнÑе напÑÑÐ¶ÐµÐ½Ð¸Ñ â ÑÑо напÑÑжениÑ, оÑÑаÑÑиеÑÑ Ð² Ñеле, поÑле
пÑекÑаÑÐµÐ½Ð¸Ñ Ð´ÐµÐ¹ÑÑÐ²Ð¸Ñ Ð²Ð½ÐµÑниÑ
Ñил, или возникаÑÑие пÑи бÑÑÑÑом нагÑевании и
оÑ
лаждении, еÑли линейное ÑаÑÑиÑение или ÑÑадка Ñлоев меÑалла и ÑаÑÑей Ñела
пÑоиÑÑ
Ð¾Ð´Ð¸Ñ Ð½ÐµÑавномеÑно.
ÐнÑÑÑенние напÑÑÐ¶ÐµÐ½Ð¸Ñ Ð¾Ð±ÑазÑÑÑÑÑ Ð¿Ñи бÑÑÑÑом оÑ
лаждении или нагÑевании в
ÑемпеÑаÑÑÑнÑÑ
зонаÑ
пеÑеÑ
ода Ð¾Ñ Ð¿Ð»Ð°ÑÑиÑеÑкого к ÑпÑÑÐ³Ð¾Ð¼Ñ ÑоÑÑоÑÐ½Ð¸Ñ Ð¼ÐµÑалла. ÐÑи
ÑемпеÑаÑÑÑÑ Ð´Ð»Ñ ÑÑали ÑооÑвеÑÑÑвÑÑ 400â600°. ÐÑли обÑазÑÑÑиеÑÑ Ð²Ð½ÑÑÑенние
напÑÑÐ¶ÐµÐ½Ð¸Ñ Ð¿ÑевÑÑаÑÑ Ð¿Ñедел пÑоÑноÑÑи, Ñо в деÑалÑÑ
обÑазÑÑÑÑÑ ÑÑеÑинÑ, еÑли они
пÑевÑÑаÑÑ Ð¿Ñедел ÑпÑÑгоÑÑи, Ñо пÑоиÑÑ
Ð¾Ð´Ð¸Ñ ÐºÐ¾Ñобление деÑали.
ÐÑедел пÑоÑноÑÑи пÑи ÑаÑÑÑжении в кг/мм2 опÑеделÑеÑÑÑ Ð½Ð°
ÑазÑÑвной маÑине как оÑноÑение нагÑÑзки Рв кÐ, необÑ
одимой Ð´Ð»Ñ ÑазÑÑÑениÑ
ÑÑандаÑÑного обÑазÑа (ÑиÑ. 4, а), к плоÑади попеÑеÑного ÑеÑÐµÐ½Ð¸Ñ Ð¾Ð±ÑазÑа в
мм2.
РиÑ. 4. ÐеÑÐ¾Ð´Ñ Ð¸ÑпÑÑÐ°Ð½Ð¸Ñ Ð¿ÑоÑноÑÑи маÑеÑиалов: а – на ÑаÑÑÑжение; б – на
изгиб; в – на ÑдаÑнÑÑ Ð²ÑзкоÑÑÑ; г – на ÑвÑÑдоÑÑÑ
ÐÑедел пÑоÑноÑÑи пÑи изгибе в кÐ/мм2 опÑеделÑеÑÑÑ ÑазÑÑÑением
обÑазÑа, коÑоÑÑй ÑÑÑанавливаеÑе» на двÑÑ
опоÑаÑ
(ÑиÑ. 4, б), нагÑÑженного
по ÑеÑедине ÑоÑÑедоÑоÑенной нагÑÑзкой Ð .
ÐÐ»Ñ ÑÑÑÐ°Ð½Ð¾Ð²Ð»ÐµÐ½Ð¸Ñ Ð¿Ð»Ð°ÑÑиÑноÑÑи маÑеÑиала опÑеделÑÑÑ Ð¾ÑноÑиÑелÑное Ñдлинение δ
пÑи ÑаÑÑÑжении или пÑогиб ƒ пÑи изгибе.
ÐÑноÑиÑелÑное Ñдлиненней δ в % опÑеделÑеÑÑÑ Ð½Ð° обÑазÑаÑ
,
иÑпÑÑÑемÑÑ
на ÑаÑÑÑжение. Ðа обÑÐ°Ð·ÐµÑ Ð½Ð°Ð½Ð¾ÑÑÑ Ð´ÐµÐ»ÐµÐ½Ð¸Ñ (ÑиÑ. 4, а) и измеÑÑÑÑ
Ð¼ÐµÐ¶Ð´Ñ Ð½Ð¸Ð¼Ð¸ ÑаÑÑÑоÑние до иÑпÑÑÐ°Ð½Ð¸Ñ (l0) и поÑле ÑазÑÑÑÐµÐ½Ð¸Ñ (l) и опÑеделÑÑÑ
Ñдлинение
δ = l-lo / lo · 100%
ÐÑогиб пÑи изгибе в мм опÑеделÑеÑÑÑ Ð¿Ñи помоÑи пÑогибомеÑа маÑинÑ,
ÑказÑваÑÑего пÑогиб ƒ, обÑазÑÑÑийÑÑ Ð½Ð° обÑазÑе в Ð¼Ð¾Ð¼ÐµÐ½Ñ ÐµÐ³Ð¾ ÑазÑÑÑÐµÐ½Ð¸Ñ (ÑиÑ. 4,
б).
УдаÑÐ½Ð°Ñ Ð²ÑзкоÑÑÑ Ð² кÐм/Ñм2 опÑеделÑеÑÑÑ Ð½Ð° обÑазÑаÑ
(ÑиÑ. 4, в), подвеÑгаемÑÑ
на копÑе ÑазÑÑÑÐµÐ½Ð¸Ñ ÑдаÑом оÑведенного в
ÑÑоÑÐ¾Ð½Ñ Ð¼Ð°ÑÑника. ÐÐ»Ñ ÑÑого ÑабоÑÑ Ð´ÐµÑоÑмаÑии в кÐм делÑÑ Ð½Ð° плоÑÐ°Ð´Ñ Ð¿Ð¾Ð¿ÐµÑеÑного
ÑеÑÐµÐ½Ð¸Ñ Ð¾Ð±ÑазÑа в Ñм 2.
ТвеÑдоÑÑÑ Ð¿Ð¾ ÐÑÐ¸Ð½ÐµÐ»Ñ (ÐÐ) опÑеделÑÑÑ Ð½Ð° заÑиÑенной повеÑÑ
ноÑÑи
обÑазÑа, в коÑоÑÑÑ Ð²Ð´Ð°Ð²Ð»Ð¸Ð²Ð°ÑÑ ÑÑалÑной ÑаÑик (ÑиÑ. 4, г) диамеÑÑом 5 или
10 мм под ÑооÑвеÑÑÑвÑÑÑей нагÑÑзкой в 750 или 3000 кРи замеÑÑÑÑ Ð´Ð¸Ð°Ð¼ÐµÑÑ d
обÑазовавÑейÑÑ Ð»Ñнки. ÐÑноÑение нагÑÑзки в кРк плоÑади лÑнки πd2 / 4 в
мм2 Ð´Ð°ÐµÑ ÑиÑло ÑвеÑдоÑÑи.
ÐоказаÑели Ð´Ð»Ñ Ð¼ÐµÑ
аниÑеÑкиÑ
ÑвойÑÑв Ð´Ð»Ñ Ð¾ÑновнÑÑ
Ñплавов пÑÐ¸Ð²ÐµÐ´ÐµÐ½Ñ Ð² Ñабл.
1.
ТаблиÑа.1. ÐеÑ
аниÑеÑкие ÑвойÑÑва оÑновнÑÑ
пÑомÑÑленнÑÑ
Ñплавов
Ð¢ÐµÑ Ð½Ð¸ÑеÑкое железо | 23 | 30 | 90 | ÐембÑÐ°Ð½Ñ |
ЧÑгÑн ÑеÑÑй | 12â38 | до 0,25 | 143â220 | ÐÑливки ÑаÑоннÑе |
ЧÑгÑн вÑÑокопÑоÑнÑй | 30â60 | 0,5â10 | 170â262 | ÐÑвеÑÑÑвеннÑе оÑливки |
СÑÐ°Ð»Ñ Ð¼Ð°Ð»Ð¾ÑглеÑодиÑÑÐ°Ñ (мÑгкаÑ) | 32 â 70 | 11 â 28 | 100â130 | ÐоÑелÑное железо ÑÑÑбÑ, коÑÐ»Ñ |
СÑÐ°Ð»Ñ ÑÑеднеÑглеÑодиÑÑÐ°Ñ (ÑÑедней ÑвеÑдоÑÑи) | 50â70 | 12 â 16 | 170 â 200 | ÐÑи, ÑаÑÑнÑ, валÑ, ÑелÑÑÑ |
СÑÐ°Ð»Ñ ÑвеÑÐ´Ð°Ñ Ð¿Ð¾Ñле закалки и оÑпÑÑка | 110â140 | до 9 | 400â600 | ÐнÑÑÑÑÐ¼ÐµÐ½Ñ ÑдаÑнÑй и ÑежÑÑий |
ÐÑонза оловÑниÑÑÐ°Ñ | 15 â 25 | 3â10 | 70â80 | ÐеÑали, ÑабоÑаÑÑие на иÑÑиÑание и подвеÑженнÑе коÑÑозии |
ÐÑонза алÑÐ¼Ð¸Ð½Ð¸ÐµÐ²Ð°Ñ | 40â50 | 10 | 120 | То же |
ÐаÑÑÐ½Ñ Ð¾Ð´Ð½Ð¾ÑÐ°Ð·Ð½Ð°Ñ | 25 â 35 | 30-60 | 42â60 | ÐаÑÑонно-гилÑзовое пÑоизводÑÑво |
ÐаÑÑÐ½Ñ Ð´Ð²ÑÑ ÑÐ°Ð·Ð½Ð°Ñ | 35â45 | 30â40 | _ | ÐеÑали, изгоÑовленнÑе гоÑÑÑей ÑÑамповкой |
СилÑмин | 21â23 | 1 â 3 | 65â100 | ÐеÑали в авиаÑÑÑоении и авÑоÑÑÑоении |
Ð¡Ð¿Ð»Ð°Ð²Ñ Ð¼Ð°Ð³Ð½Ð¸Ñ | 24 â 32 | 10â16 | 60â70 | То же |
Источник
(у цилиндрических образцов надрез обычно выполняют в виде круговой выточки, у полос — в виде центрального отверстия или боковых вырезов). Для многих конструкционных материалов это отношение при статической нагрузке больше единицы, что связано со значительной местной пластической деформацией в вершине надреза. Чем острее надрез, тем меньше локальная пластическая деформация и тем больше доля прямого излома в разрушенном сечении. Хорошо развитый прямой излом можно получить при комнатной температуре у большинства конструкционных материалов в лабораторных условиях, если растяжению или изгибу подвергать образцы массивного сечения (тем толще, чем пластичнее материал), снабдив эти образцы специальной узкой прорезью с искусственно созданной трещиной (рис. 3). При растяжении широкого, плоского образца пластическая деформация затруднена и ограничивается небольшой областью размером 2ry (на рис. 3, б заштрихована), непосредственно примыкающей к кончику трещины. Прямой излом обычно характерен для эксплуатационных разрушений элементов конструкций.
Широкое распространение получили предложенные американским учёным Дж. Р. Ирвином в качестве констант для условий хрупкого разрушения такие показатели, как критический коэффициент интенсивности напряжений при плоской деформации K1C и вязкость разрушения
При этом процесс разрушения рассматривается во времени и показатели K1C(G1C) относятся к тому критическому моменту, когда нарушается устойчивое развитие трещины; трещина становится неустойчивой и распространяется самопроизвольно, когда энергия, необходимая для увеличения её длины, меньше энергии упругой деформации, поступающей к вершине трещины из соседних упруго напряжённых зон металла.
При назначении толщины образца t и размеров трещины 2lтр исходят из следующего требования
Коэффициент интенсивности напряжений К учитывает не только значение нагрузки, но и длину движущейся трещины:
(λ учитывает геометрию трещины и образца), выражается в кгс/мм3/2 или Мн/м3/2. По K1C или G1C можно судить о склонности конструкционных материалов к хрупкому разрушению в условиях эксплуатации.
Для оценки качества металла весьма распространены испытания на ударный о изгиб призматических образцов, имеющих на одной стороне надрез. При этом оценивают ударную вязкость (См. Ударная вязкость) (в кгс․м/см2 или Мдж/м2) — работу деформации и разрушения образца, условно отнесённую к поперечному сечению в месте надреза. Широкое распространение получили испытания на ударный изгиб образцов с искусственно полученной в основании надреза трещиной усталости. Работа разрушения таких образцов ату находится в целом в удовлетворительном соответствии с такой характеристикой разрушения, как K1C, и ещё лучше с отношением
Временна́я зависимость прочности. С увеличением времени действия нагрузки сопротивление пластической деформации и сопротивление разрушению понижаются. При комнатной температуре у металлов это становится особенно заметным при воздействии коррозионной (коррозия под напряжением) или др. активной (эффект Ребиндера) среды. При высоких температурах наблюдается явление ползучести (См. Ползучесть), т. е. прироста пластической деформации с течением времени при постоянном напряжении (рис. 4, а). Сопротивление металлов ползучести оценивают условным пределом ползучести — чаще всего напряжением, при котором пластическая деформация за 100 ч достигает 0,2 %, и обозначают его σ0,2/100. Чем выше температура t, тем сильнее выражено явление ползучести и тем больше снижается во времени сопротивление разрушению металла (рис. 4, б). Последнее свойство характеризуют т. н. пределом длительной прочности, т. е. напряжением, которое при данной температуре вызывает разрушение материала за заданное время (например, σt100, σt1000 и т. д.). У полимерных материалов температурно-временная зависимость прочности и деформации выражена сильнее, чем у металлов. При нагреве пластмасс наблюдается высокоэластическая обратимая деформация; начиная с некоторой более высокой температуры развивается необратимая деформация, связанная с переходом материала в вязкотекучее состояние. С ползучестью связано и др. важное механическое свойство материалов — склонность к релаксации напряжений, т. е. к постепенному падению напряжения в условиях, когда общая (упругая и пластическая) деформация сохраняет постоянную заданную величину (например, в затянутых болтах). Релаксация напряжений обусловлена увеличением доли пластической составляющей общей деформации и уменьшением её упругой части.
Если на металл действует нагрузка, периодически меняющаяся по какому-либо закону (например, синусоидальному), то с увеличением числа циклов N нагрузки его прочность уменьшается (рис. 4, в) — металл «устаёт». Для конструкционной стали такое падение прочности наблюдается до N = (2—5) ․106 циклов. В соответствии с этим говорят о пределе усталости конструкционной стали, понимая под ним обычно амплитуду напряжения
ниже которой сталь при повторно-переменной нагрузке не разрушается. При |σmin| = |σmax| предел усталости обозначают символом σ-1. Кривые усталости алюминиевых, титановых и магниевых сплавов обычно не имеют горизонтального участка, поэтому сопротивление усталости этих сплавов характеризуют т. н. ограниченными (соответствующими заданному N) пределами усталости. Сопротивление усталости зависит также от частоты приложения нагрузки. Сопротивление материалов в условиях низкой частоты и высоких значений повторной нагрузки (медленная, или малоцикловая, усталость) не связано однозначно с пределами усталости. В отличие от статической нагрузки, при повторно-переменных нагрузках всегда проявляется чувствительность к надрезу, т. е. предел усталости при наличии надреза ниже предела усталости гладкого образца. Для удобства чувствительность к надрезу при усталости выражают отношением
характеризует асимметрию цикла). В процессе уставания можно выделить период, предшествующий образованию очага усталостного разрушения, и следующий за ним, иногда довольно длительный, период развития трещины усталости. Чем медленнее развивается трещина, тем надёжнее работает материал в конструкции. Скорость развития трещины усталости dl/dN связывают с коэффициентом интенсивности напряжений степенной функцией:
Различают сопротивление термической усталости, когда появляющиеся в материале напряжения обусловлены тем, что в силу тех или иных причин, например из-за формы детали или условий её закрепления, возникающие при циклическом изменении температуры тепловые перемещения не могут быть реализованы. Сопротивление термической усталости зависит и от многих других свойств материала — коэффициентов линейного расширения и температуропроводности, модуля упругости, предела упругости и др.
Лит.: Давиденков Н. Н., Динамические испытания металлов, 2 изд., Л. — М., 1936; Ратнер С. И., Разрушение при повторных нагрузках, М., 1959; Серенсен С. В., Когаев В. П., Шнейдерович Р. М., Несущая способность и расчеты деталей машин на прочность, 2 изд., М., 1963; Прикладные вопросы вязкости разрушения, пер. с англ., М., 1968; Фридман Я. Б., Механические свойства металлов, 3 изд., М., 1974; Методы испытания, контроля и исследования машиностроительных материалов, под ред. А. Т. Туманова, т. 2, М., 1974.
С. И. Кишкина.
Рис. 1. Схемы деформации при разных способах нагружения: а — растяжение, б — сжатие, в — изгиб, г — кручение (пунктиром показана начальная форма образцов).
Рис. 2. Типичная диаграмма деформации при растяжении конструкционных металлов.
Рис. 3. Образец со специально созданной в вершине надреза трещиной усталости для определения K1C. Испытания на внецентренное (а) и осевое (б) растяжение.
Рис. 4. Изменение механических свойств конструкционных материалов в функции времени (или числа циклов).
Большая советская энциклопедия. — М.: Советская энциклопедия.
1969—1978.
Смотреть что такое “Механические свойства материалов” в других словарях:
Механические свойства материалов — Механические свойства материалов, такие как прочность, сопротивление разрушению, твёрдость и др. являются во многих случаях определяющими для принятия решения о применении материала. Методы проверки механических свойств Следует отметить следующие … Википедия
МЕХАНИЧЕСКИЕ СВОЙСТВА — материалов реакция материала на приложенные механич. нагрузки. Осн. характеристиками механич. свойств являются напряжения и деформации. Напряжения характеристики сил, к рые относят к единице сечения образца материала или изделия, конструкции из… … Физическая энциклопедия
Механические свойства — материалов, такие как прочность, сопротивление разрушению, твёрдость и др. являются во многих случаях определяющими для принятия решения о применении материала. Методы проверки механических свойств Следует отметить следующие основные методы… … Википедия
Механические свойства — – отражают способность материала сопротивляться силовым, тепловым, усадочным или другим внутренним напряжениям без нарушения установившейся структуры. К механическим относят деформативные свойства: прочность, твердость, истираемость,… … Энциклопедия терминов, определений и пояснений строительных материалов
Механические свойства горной породы — – свойства, характеризующие возникновение, распределение и изменение механических напряжений и деформаций в горной породе при воздействии механических нагрузок. [ГОСТ Р 50544 93] Рубрика термина: Свойства горной породы Рубрики энциклопедии … Энциклопедия терминов, определений и пояснений строительных материалов
Свойства материалов — Термины рубрики: Свойства материалов Агрегация материала Активация материалов Активность вещества Анализ вещественный … Энциклопедия терминов, определений и пояснений строительных материалов
СВОЙСТВА МАТЕРИАЛОВ — совокупность показателей, характеризующих все стороны материала. Различают следующие свойства материалов (например, для металлов): механические, физические (плотность, тепловые, электрические, магнитные и тому подобные свойства), химические… … Металлургический словарь
МЕХАНИЧЕСКИЕ СВОЙСТВА — материалов, определяют их поведение под действием мех. нагрузки. Основные М. с. твердых тел деформационные (жесткость, пластичность, ползучесть, твердость, предельные деформации при разрушении e), прочностные (предел прочности s, долговечность,… … Химическая энциклопедия
Механические свойства некоторых керметных материалов — Составные части Предел прочности на растяжение, МПа Относительное удлинение при 20 °С, % Металлическая Неметалл … Химический справочник
МЕТАЛЛОВ МЕХАНИЧЕСКИЕ СВОЙСТВА — Когда на металлический образец действует сила или система сил, он реагирует на это, изменяя свою форму (деформируется). Различные характеристики, которыми определяются поведение и конечное состояние металлического образца в зависимости от вида и… … Энциклопедия Кольера
Книги
- Исследования больших пластических деформаций и разрыва. Влияние высокого гидростатического давления на механические свойства материалов, Бриджмен П.У.. Настоящая книга, написанная выдающимся американским ученым, основоположником физики высоких давлений П. У. Бриджменом, посвящена в основном вопросу о влиянии высоких давлений на механические… Подробнее Купить за 630 руб
- Исследования больших пластических деформаций и разрыва. Влияние высокого гидростатического давления на механические свойства материалов, П. У. Бриджмен. Настоящая книга, написанная выдающимся американским ученым, основоположником физики высоких давлений П. У. Бриджменом, посвящена в основном вопросу о влиянии высоких давлений на механические… Подробнее Купить за 505 грн (только Украина)
- Механические свойства материалов под высоким давлением (комплект из 2 книг), . Данная книга, являющаяся первой частью фундаментальной монографии “Механические свойства материалов под высоким давлением”, посвящена общим вопросам воздействиявысоких давлений на… Подробнее Купить за 490 руб
Другие книги по запросу «Механические свойства материалов» >>
Источник