Магнитные свойства выше у сплава с какой структурой

Перминвар – тройной сплав (25%Со, 45%Ni, остальное – Fe). Магнитная проницаемость перминвара после специальной термической обработки в вакууме становится равной 300А/м. Индукция насыщения достигает 1,55Тл. Применение его ограничивается сложностью технологии получения и высокой стоимостью.

Пермендюр – сплав Fe-Со, который со­стоит из 30-50% кобальта, 1,5-2%V и остальное – Fe. Этот сплав может работать в магнитных полях с напряженностью 24000А/м и обладает наивысшей из всех известных ферромаг­нетиков индукцией насыщения до 2,43Тл.

Пермендюр из-за высокой стоимости применяется только в специализированной аппаратуре: для изготовления мембран телефонов, осциллографах и т. д.

В качестве термомагнитных материалов для магнитных шунтов применяют следующие сплавы: медно-никелевый сплав – кальмаллой, железоникелевый – термаллой, железоникель-хромовый компенсатор.

В этих материалах с увеличением температуры магнитный поток в рабочем зазоре магнита падает. Недо­статком кальмаллоя является низкая индукция насыщения, для повышения ее в кальмаллой добавляют присадки железа. Для расширения работы в области низких температур железо-никелевые сплавы легируют хромом. Такие сплавы называют ком­пенсаторами.

Аморфные магнитные материалы (АММ). Такие материалы получаются при быстром охлаждении из расплавленного состояния без кристалли­зации со скоростью охлаждения до 106 °С/с. Эти материалы обладают высокими магнитными свойствами с повышенным сопротивлением. К ним относятся сплавы железа и никеля с добавками хрома, молибдена, бора, кремния, фосфора.

АММ можно использовать в различных типах специальных транс­форматоров, в магнитных усилителях, воспроизводящих и записы­вающих головках.

Магнитодиэлектрики –материалы, состоящие из конгломерата частиц низкокоэрцитивного магнитного материала, изолированных между собой органическим или неорганическим ди­электриком, который играет роль и связующего элемента. Так как частицы ферромагнитной фазы изолированы, то магнито­диэлектрики обладают высоким удельным сопротивлением и ма­лыми потерями на вихревые токи, но имеют пониженное значение магнитной проницаемости. Они харак­теризуются незначительными потерями на гистерезис и высокой ста­бильностью проницаемости.

Электрическая изоляция ферромагнитных частиц производится жидким стеклом, различными смолами (полистиролом, фенолформальдегидной смолой). Разме­ры ферромагнитных частиц составляют d=10-2-10-4см.

Наиболее широкое распространение получили магнитодиэлектрики на основе карбонильного железа, альсифера и молибденово­го пермаллоя.

Технология изготовления изделий из магнитодиэлектриков со­стоит из приготовления ферромагнитного порошка, прессования изделия и обработки.

Магнитодиэлектрики предназначаются для работы в слабых магнитных нолях, близких по значению к коэрцитивной силе, и ис­пользуются в высокочастотной проводной связи, радиоэлектронике, так как их магнитная проницаемость слабо зависит от частоты

Ферриты. Основным достоинством ферритов является сочетание высоких магнитных параметров с большим электрическим сопротив­лением в 103-1013 раз больше сопротивления ферромагнитных металлов.

Химический состав ферритов может быть записан химической формулой MeO-Fe203 или Me2+Fe23+O42-, где используются двухвалентные ионы металлов: Мn2+, Fе2+ , Co2+, Ni2+, Zn2+, Cd2

Название ферритов определяют по хорактеризующему металлическому иону, например NiFe204 – никелевый феррит, ZnFe204 – цинковый феррит. Структура феррита аналогична структуре природного минерала – благородной шпинели MgAl2O4, поэтому их называют феррошпинели. Такая структура представляет собой гранецентрированную плотноупакованную кубическую решетку, в которой плотнейшую упа­ковку образуют относительно большие ионы кислорода (ионный ра­диус 0,132нм). Металлические ионы с меньшим ионным радиусом (0,04-0,1нм), располагаются в промежутках меж­ду ионами кислорода. В структуре типа шпинели существует два типа промежутков: тетраэдрические – образованные четырьмя иона­ми кислорода, и октаэдрические, образованные шестью ионами кис­лорода. В центрах этих промежутков находятся ионы металла.

В элементарной кубической ячейке содержится 64 тетраэдрических и 32 октаэдрических промежутка. В структуре шпинели иона­ми металла занято восемь тетраэдрических (A-узлы), и 16 октаэд­рических (B-узлы) промежутка.

Распределение ионов двух- и трехвалентного металла по узлам кристаллической решетки оказывает существенное влияние на магнитные свойства ферритов. В зависимости от распределения ионов металла рассматривают три типа шпинелей:

а) нормальная шпинель – в А-узлах размещены ионы двухва­лентного металла, а в В-узлах – ионы трехвалентного железа. Хи­мическая формула:

Me2+[Fe23+]O42-

б) обращенная шпинель – A-узлах находится часть ионов трех­валентного железа, а в B-узлах – оставшаяся часть ионов трех­валентного железа и ионы двухвалентного металла, химическая формула:

Fe3+[Me2+Fe2-x3-]O42- ,

где х – доля ионов железа в А-узлах:

в) смешанная шпинель – ионы двух- и трехвалентного металла и железа одновременно появляются одновременно в A и B узлах:

Меx2-Fе1-x3+ [Ме1-x2+Fе1+x3+]О42-.

Распределение ионов по A– и B-узлам определяется следующими факторами: а) ионным радиусом; 6) конфигурацией электронных оболочек ионов; в) электростатической энергией.

Выше отмечалось, что в ферритах осуществляется косвенное об­менное взаимодействие, которое приводит к антипараллельной ори­ентации магнитных моментов соседних ионов. В феррошпинелях соседними ионами оказываются ионы, находящиеся в А– и В-узлах (А-В-взаимодействие), что можно представить решетку состоящую в магнитном отношении из двух подрешеток А и В. Причем внутри подрешеток магнитные моменты ионов оказываются параллельны друг другу и суммарная намагничен­ность феррита может быть представлена как разность намагниченностей подрешеток – октаэдрической Мв(В) и тетраэдрической Ма (А), т. е. Мs= |Мb-Ма|.

Если намагниченность неодинакова, как это на­блюдается в случае ферритов, возникает спонтанная намагничен­ность.

Цинковый и кадмиевый ферриты, которые обладают структурой нормальной шпинели, немагнитны, так как диамагнитные ионы Zn2+ и Cd2+ занимают A-узлы, тем самым взаимодействие А-В ликвидируется, взаимодействие в подрешетке В (ВВ-взаимодействие) мало и не в состоянии создать упорядочение магнит­ных моментов.

При повышении температуры магнитное упорядочение разруша­ется и спонтанная намагниченность уменьшается, что аналогич­но зависимости для металлических магнитных материалов.

Технология получения ферритов. Ферриты получают методом керамической технологии, т.е. смешивают оксиды и карбонаты нерастворимых в воде металлов и метод термического разложения солей различных металлов. Технология получения ферритов путем смешивания оксидов или карбонатов наиболее проста и заключается в следующем: исходные компоненты взвешивают и подвергают первому помолу и тщательному перемешиванию в шаровых или вибрацион­ных мельницах. Затем после сушки и прессования брикетов (или гранулирования) осуществляют предварительный обжиг при темпе­ратуре на несколько сотен градусов ниже температуры окончательного обжига. После этого следует второй помол и порошок исполь­зуют для получения изделий из ферритов путем прессования в стальных пресс-формах, выдавливания через мундштук, горячего литья под давлением. Для повышения пластичности в ферритовый порошок вводят пласти­фикаторы (поливиниловый спирт, парафин). Окончательный обжиг ферритового изделия проводят при температуре 1100-1400°С. Для спекания частиц и окончательной ферритизации в твердой фазе по типу:

МеО + Fe203→MeFe204

Ферритовые изделия отличаются высокой твердостью и хрупкостью, поэтому их обрабатывают алмазным инструментом путем резания, шлифования, полирования, пробивать отверстия ультразвуком и производить пайку ультразвуком ферритов между собой и с металлами. Ферритовые детали склеивают поли­стироловым и эпоксидным клеями.

Ферриты по своим свойствам делятся на магнитомягкие и магнитотвердые.

Магнитомягкими ферритами являются твердые растворы простых ферритов следую­щих видов:

а) никель-цинковые, представляющие твердые растворы ни­келевого феррита NiFe204, и феррита цинка ZnFe2О4:

Ni1-x ZnxFe204,

где х доля концент­рации цинка в феррите.

Увеличение концентрации цинка до некоторого предела (x=0,4-0,6) приводит к увеличению намагниченности насыщения, индукции и магнитной проницаемости и постоянному уменьшению температуры Кюри;

б) марганец-цинковые – твердые раство­ры марганцевого феррита MnFe204 и цинкового феррита ZnFe204. Такие ферриты имеют меньший тангенс угла потерь в области ча­стот 1 МГц;

в) литиевые типа Li0,5 Fe2,5 04 обладают струк­турой обращенной шпинели, имеют наиболее высокую индук­цию насыщения и используются на частотах до 200 МГц.

Магнитомягкие ферриты маркируются: на первом месте примерное значение магнитной проницаемости, а затем буквы, определяющие частотный диапазон: Н – низкочастотный диапазон (0,1-50МГц), ВЧ – высокочастотный (50-600МГц), а затем буквы, означающие состав материала: М – марганец-цинковые, Н – никель-цинковые, их маркируют также маркой ВЧ. Например, низкочастотные 20000НМ, высокочастотные 150ВЧ.

Ферриты с прямоугольной петлей гистерезиса. Магнитные материалы с прямоугольной пет­лей гистерезиса (ППГ) особенно важны в устройствах автома­тического управления аппара­туры телеграфной связи, вы­числительной техники, комму­тирующих дросселей.

Важным показателем свойств материалов с ППГ является коэффициент прямоугольности петли гистерезиса κпу, который определяется как отношение остаточной индукции к макси­мальной магнитной индукции:

κпу=Вr / Bmax<1

Материалы с ППГ должны обладать малым временем перемагничивания (время изменения знака индукции с +Вrна –Вr, которое должно быть примерно 10-7-10-9с), иметь высокую температурную стабильность маг­нитных параметров.

ППГ имеют некоторые металлические сплавы железа и никеля (пермаллои) и сплавы железо-никель-кабальт с содержанием ко­бальта от 30 до 55%, легированные медью или другими металла­ми. Они изготовляются в виде лент толщиной от единиц до нескольких сотен микрометров, их коэффициент прямоугольности от 0,85 до 0,98. Прокатка микронной ленты, ее термообработка и изготов­ление сердечников сложнее, чем производство изделий из ферритов, поэтому ферриты с ППГ находят более широкое применение. ППГ в ферритах реализуется при определенном составе и условиях их спекания.

Промышленностью освоен выпуск свыше 25 марок ферритов с ППГ. Широкое распространение получили магний-марганцевые и литиевые ферриты со структурой шпинели. Для улучшения свойств используются легирование их ионами цинка, кальция, меди, на­трия и др. Основные характеристики ферритов с ППГ следующие: коэффициент прямоугольности κпу=0,9-0,94; остаточная ин­дукция Br=0,15-0.25Тл, температура Кюри Tk=110-250°С (для магний-марганцевых ферритов); 550-630°С (для литиевых), коэрцитивная сила для ферритов, используемых в схе­мах автоматического управления, лежит в пределах 10-20А/м, для материалов, используемых в вычислительной технике, – 100-1200А/м.

Ферриты с ППГ выпускаются в виде кольцевых сердечников раз­личных типоразмеров или ферритовых пластин (плат) с большим количеством отверстий, выполняющих роль сердечников, например для запоминающих устройств выпускаются платы размером 15×15мм, которые содержат 16*16=256 отверстий.

К недостаткам ферритов с ППГ относится меньшая температур­ная стабильность параметров, чем металлических сплавов.

Источник

Стали и сплавы с магнитными свойствами. Магнитные стали и сплавы делятся на две группы: магнитотвердые и магнитомягкие.

Магнитотвердые стали и сплавы обладают высоким значением коэрцитивной силы Нси остаточной индукции Вr. Они применяются для изготовления постоянных магнитов. Постоянные магниты небольших размеров делают из углеродистых заэвтектоидных сталей УЮ-У12.

Коэрцитивная сила углеродистых сталей резко возрастает после закалки на мартенсит вследствие появления больших напряжений.

У стали У12 после закалки в воде Нс = 4800 А/м, Вr= 0,8 Тл. Однако низкая прокаливаемость, малая стабильность остаточной ин­дукции привели к вытеснению углеродистых сталей легированными.

Легирование металла вызывает повышение магнитной твердо­сти (т.е. коэрцитивной силы). Коэрцитивная сила возрастает при образовании в твердом растворе второй фазы, с повышением дис­кретности второй фазы, при возникновении напряжений в крис­таллической решетке, при из­мельчении зерна.

В настоящее время для из­готовления постоянных маг­нитов широко используют стали, легированные хромом, вольфрамом, кобальтом или совместно несколькими эле­ментами (ЕХЗ, ЕХ7В6, ЕХ5К5). Буквой Е обозначает­ся магнитная сталь.

Для получения высоких магнитных свойств стали подвергают сложной термической обработке, состоящей из нормализации, за­калки в масле или в воде и низкотемпературного отпуска (при 100°С в течение 10-24 ч).

Высокое содержание углерода и легирующих элементов в этих сталях придает им повышенную твердость, поэтому перед холодной механической обработкой их подвергают смягчающему отжигу при 700—850 °С. При отжиге происходит образование карбидов, что ухуд­шает магнитные свойства («магнитная порча»). Поэтому перед за­калкой для устранения «магнитной порчи» проводят нормализацию, при которой происходит растворение крупных карбидных фаз.

Во избежание «магнитной порчи» при закалке нагрев должен быть кратковременным (не более 15 мин). Охлаждение можно про­водить в воде или в масле, но обычно охлаждают в масле, чтобы избежать коробления и образования трещин, хотя при этом не­сколько снижаются магнитные свойства.

Обработка холодом повышает магнитные свойства, так как ус­траняет немагнитный (парамагнитный) аустенит.

Отпуск несколько снижает коэрцитивную силу, но обеспечива­ет стабильность магнитных свойств в процессе эксплуатации.

Высокие магнитные свойства имеют железоникелькобальтовые сплавы, в частности магнит (8% А1, 24% Со, 14% Ni, 3% Си, остальное железо).

Магниты из этого сплава получают литьем, так как сплав не под­дается деформации и обработке резанием. Сплав подвергают закалке в магнитном поле. Сущность закалки в следующем. Нагретый до 1300°С сплав помещают между полюсами электромагнита напряженностью 160 А/м и охлаждают до температуры ниже 500°С, дальнейшее ох­лаждение проводят на воздухе. После такой обработки сплав облада­ет анизотропией магнитных свойств.

Магнитные свойства достигают высокого уровня в том направ­лении, в котором действовало внешнее магнитное поле при закал­ке. Затем сплав подвергают отпуску при 600 °С. Магнитные свой­ства: Я = 40 000 А/м, Вг= 1,2 Тл.

Последнее время находят применение сплавы на основе кобаль­та (52% Со, 14% V, остальное железо). Сплав поставляется в виде лент, полос и т.д.

Магнитомягкие сплавы и стали имеют низкую коэрцитивную силу и высокую магнитную проницаемость. Их применя­ют для изготовления сердечников, магнитных устройств, работаю­щих в переменных магнитных полях. Магнитомягкие материалы дол­жны иметь однородную (гомогенную) структуру, крупное зерно.

Незначительный наклеп сильно снижает магнитную проницае­мость и повышает коэрцитивную силу. Поэтому магнитомягкие сплавы для снятия напряжений и искажений структуры подверга­ют рекристаллизационному отжигу.

Широкое применение получило чистое железо, в котором со­держание углерода и всех примесей строго ограничено. Железо при­меняют для изготовления сердечников реле, электромагнитов постоянного тока, полюсов электрических машин и др.

Широкое применение в промышленности нашла электротех­ническая сталь — сплав железа с кремнием (0,05—0,005% С, 1,0— 1,8% Si). Легирование кремнием повышает электросопротивление стали и тем самым уменьшает потери на вихревые токи, повыша­ет магнитную проницаемость, снижает коэрцитивную силу и по­тери на гистерезис, способствует росту зерна, улучшает магнит­ные свойства за счет графитизирующего действия.

Маркируют электротехнические стали следующим образом: пер­вая цифра означает вид проката и структурное состояние (1 — го­рячекатаная, 2 — холоднокатаная изотропная, 3 — холоднокатаная анизотропная); вторая — содержание кремния: 0 — до 0,4%; 1 — 0,4- 0,8%; 2 – 0,8-1,8%; 3 – 1,8-2,8%; 4 – 2,8-3,8%; 5 – 3,8-4,8%; третья — основную нормируемую характеристику (0, 1 и 2 — удельные потери при различных значениях магнитной индукции и частоты, 6 и 7 — магнитная индукция соответственно в слабых и средних полях). Вместе первые три цифры обозначают тип стали; четвертая — порядковый номер типа стали. Чем он выше, тем меньше удельные потери, тем больше магнитная индукция.

Электротехническую сталь для снятия наклепа после прокатки и для укрупнения зерна подвергают отжигу при 1100-1200 °С в атмосфере водорода.

При рубке листов, резке, штамповке, гибке магнитные свойства ухудшаются. Для восстановления магнитных свойств электротехни­ческой стали рекомендуется отжиг при 750—800 °С в течение 2 ч с медленным (- 50 град/ч) охлаждением до 400 °С. При этом необхо­димо исключить окисление и науглероживание стали.

Электротехническую сталь изготавливают в виде листов толщи­ной от 1 до 0,05 мм.

Железоникелевые сплавы (от 40 до 80% Ni) — пермаллои — имеют высокую магнитную проницаемость, что очень важно для прибо­ров, работающих в слабых полях (радио, телефон, телеграф). Маг­нитные свойства пермаллоя сильно зависят от термической обра­ботки.

Для улучшения магнитных свойств после механической обра­ботки пермаллои подвергают отжигу при 1100—1200 “С в вакууме или атмосфере водорода. При этом укрупняется зерно, устраняют­ся остаточные напряжения и удаляются примеси углерода.

Охлаждение в магнитном поле также ведет к повышению маг­нитных свойств.

Немагнитные стали. В электромашиностроении и приборост­роении многие детали изготавливают из немагнитных сталей. Рань­ше для этой цели применяли цветные металлы, а теперь широко используют немагнитные аустенитные стали. Применение этих сталей резко снижает стоимость деталей, а также повышает ме­ханические свойства и уменьшает потери на вихревые токи в элек­троаппаратуре.

Применение марганцовистой аустенитной износоустойчивой стали (11ОГ13Л) в качестве немагнитной ограничивается ее пло­хой обрабатываемостью резанием, что обусловлено высокой склон­ностью ее к наклепу, а также нестабильностью прочностных свойств.

Широкое применение находят аустенитные коррозионно-стой­кие стали 12Х18Н9, 12Х18Н9Т. Желательно, чтобы содержание ни­келя в них соответствовало верхнему пределу, так как в противном случае при больших степенях холодной деформации возможно ча­стичное протекание γ→α – превращения, ведущего к появлению фер­рита, обладающего ферромагнитными свойствами.

Кроме того, применяются более дешевые стали 55Г9Н9ХЗ и 45Г17ЮЗ, в которых никель частично или полностью заменен мар­ганцем.

Стали и сплавы с электрическими свойствами. Элементы электросопротивления должны иметь низкую электропроводность или вы­сокое электросопротивление. Так как образование твердых раство­ров при легировании сопровождается повышением электросопро­тивления, то все сплавы высокого сопротивления, как правило, представляют собой твердые растворы.

Различают сплавы реостатные (для изготовления реостатов) и окалиностойкие сплавы высокого электросопротивления (для нагре­вательных элементов печей и электроприборов).

Сплавы высокого электросопротивления должны удовлетворять следующим требованиям:

иметь большое удельное электросопротивление;

иметь малый температурный коэффициент электросопротивле­ния (т.е. электросопротивление должно мало изменяться при изме­нении температуры);

обладать высокой окалиностойкостью, т.е. способностью проти­востоять образованию окалины при высоких температурах.

В качестве реостатных сплавов широкое применение нашли спла­вы меди с никелем — константан и никелин. Константан содер­жит 40% Ni, 1—2% Мn, остальное медь; никелин — 45% Ni, ос­тальное медь.

В качестве сплавов высокого электросопротивления применяют сплавы Ni — Сг (нихромы), Fe — Ni — Cr (ферронихромы) и Fe — Cr — А1 (фехраль) и др.

На свойства сплавов высокого электросопротивления вредное влияние оказывают такие примеси, как углерод, сера, фосфор и т.д. Примеси способствуют окислению границ зерен и тем самым уменьшают окаливаемость и повышают хрупкость.

В приборостроении часто требуются сплавы с определенным ко­эффициентом линейного расширения, например таким же, как у стекла, равным нулю. Для удовлетворения этих требований в каж­дом конкретном случае изготавливают сплавы строго определен­ного состава.

Износостойкие стали. Износ деталей в процессе эксплуатации может быть вызван двумя причинами: трением деталей друг о друга и царапанием твердых частиц о поверхность деталей (абразивный износ).

При обычном трении поверхность металла наклёпывается и со­противление износу возрастает. Следовательно, износостойкость определяется способностью металла к наклепу.

В случае абразивного износа, когда твердые частицы, абразивы, вырывают мельчайшие кусочки металла, стойкость против износа определяется сопротивлением металла отрыву и твердостью.

Для изготовления деталей, работающих на износ в условиях тре­ния и высоких давлений и ударов, применяют высокомарганцовис­тую аустенитную сталь 110Г13Л, содержащую 1,0-1,3% С и 11,5-14,5% Мn. Сталь применяют в литом и реже в горячедеформированном состоянии. Структура литой стали состоит из аустенита и избыточных карбидов (Fe, Mn)3C, выделяющихся по границам зе­рен и снижающих прочность и вязкость стали. Для повышения проч­ности и вязкости сталь подвергают закалке с температуры 1050— 1100°С в воде. При такой температуре карбиды растворяются, а быс­трое охлаждение в воде полностью задерживает их выделение. После закалки сталь имеет аустенитную структуру и обладает следующими механическими свойствами: σв= 800-900 МПа, σ0,2 = 310…350 МПа, δ=15 … 25%, ψ= 20 … 30%, 180 … 220 НВ.

Высокая износостойкость стали 110Г13Л при трении с давлени­ем и ударами объясняется повышенной способностью к наклепу.

Если при эксплуатации наблюдается только абразивный износ без значительного давления и ударов, вызывающих наклеп, то сталь не обнаруживает повышенной износостойкости.

Таблица 8

Источник