Коррозийная стойкость какое свойство
Понятие «коррозионная стойкость стали» означает способность металла противостоять появлению ржавчины.
Скорость распространения коррозии зависит от многих факторов, в том числе от состава и технических характеристик стального сплава, а также качества окружающей среды.
Обычная сталь разрушается от коррозии за достаточно короткое время.
Одни из существующих методов применяют в процессе плавки. Другие используют в сборочных цехах, на конечной стадии изготовления металлоконструкций или их монтажа на строительной площадке.
Однако существуют различные способы, не только существенно повышающие коррозионную стойкость металла, но и придающие стальным конструкциям безусловную невосприимчивость к влажным и агрессивным воздействиям. Их можно разделить на две группы:
- Изменение химического состава стального сплава с введением легирующих добавок. В качестве таковых выступают элементы с положительным электрохимическим потенциалом или обладающие способностью к пассивации.
- Нанесение надежных защитных покрытий на готовые металлические изделия, конструкции, детали. Для этого используются различные способы и материалы: анодирование, пассивирование, окрашивание, эмалирование.
Легирование стали для повышения коррозионной стойкости
Металлургическая промышленность использует различные легирующие элементы, сообщающие стали коррозионную стойкость. При подборе состава особое внимание уделяется количеству углерода. Если этот показатель превышает 1,2 %, то металл существенно теряет прочностные показатели, становится менее пластичным. Сплавы с низким содержанием углерода, в химическом составе которых присутствуют хром, никель, молибден называются нержавеющими.
По требованиям ГОСТ 4553-71 в маркировке каждого типа стали четко обозначено, какие легирующие компоненты в ней присутствуют, а также их количественный показатель. Например, так:
Каждый легирующий элемент оказывает строго определенное влияние на технические характеристики стали:
- хром (Сг) повышает коррозионную стойкость, увеличивает прочностные качества, твердость;
- никель (Ni) повышает устойчивость к коррозии, улучшает пластические свойства металла;
- титан (Ti) положительно влияет на коррозионную стойкость стали, одновременно улучшая прочность, плотность и обрабатываемость металла;
- молибден (Mo) делает сталь особенно устойчивой не только к воздействию воды, но также кислот, щелочей, солевых растворов;
- вольфрам (W) делает металл более твердым и менее хрупким;
- кремний (Si) повышает коррозионную стойкость стали, делает ее магнитонепроницаемой, мало подверженной процессам окисления.
Стали, обладающие повышенной коррозионной стойкостью, носят название нержавеющих. Зависимо от процентного содержания и сочетания легирующих компонентов изменяется структура металла. В связи с этим стальной сплав может быть ферритным, мартенситным, аустенитным, ферритно-мартенситным, ферритно-аустенитным, аустенитно-мартенситным.
Критерии для классификации легированных сталей
Одни виды стальных сплавов от других различают по следующим признакам::
1. По содержанию углерода сталь бывает:
- низкоуглеродистой (менее 025% С);
- среднеуглеродистой (наличие С в диапазоне 0,25-0,65%);
- высокоуглеродистой, в которой углерода содержится свыше 0,65%.
2. По количеству легирующих элементов стальные сплавы делят на:
- низколегированные (менее 2,5%);
- среднелегированные (2,5-10%);
- высоколегированные (10-50%).
3. По предназначению отличают конструкционные и инструментальные легированные стали. Последние чаще всего применяют при изготовлении всевозможного инструментария. А вот конструкционные, в свою очередь, подразделяются на :
- машиностроительные, используемые для создания различных деталей в соответствующей отрасли;
- строительные, которые применяют во многих областях строительного производства, в том числе в мосто- и судостроении, авиационной отрасли.
Нержавеющие (легированные) стали широко используют производители крепежа и такелажной продукции. Компания «Трайв-Комплект» в своем каталоге представляет отдельный раздел, посвященный крепежным изделиям из легированных сталей.
Материалы подготовлены специалистами компании «Трайв-Комплект».
При копировании текстов и других материалов сайта – указание
ссылки на сайт www.traiv-komplekt.ru обязательно!
Просмотров: 3040
17.06.2020
Источник
Коррозионная стойкость — способность материалов сопротивляться коррозии, определяющаяся скоростью коррозии в данных условиях.
Для оценки скорости коррозии используются как качественные, так и количественные характеристики. Изменение внешнего вида поверхности металла, изменение его микроструктуры являются примерами качественной оценки скорости коррозии.
Для количественной оценки можно использовать:
- число коррозионных очагов, образовавшихся за определённый промежуток времени;
- время, истекшее до появления первого коррозионного очага;
- изменение массы металла на единице поверхности в единицу времени;
- уменьшение толщины материала в единицу времени;
- плотность тока, соответствующая скорости данного коррозионного процесса;
- объём газа, выделившегося (или поглощённого) в ходе коррозии единицы поверхности за единицу времени;
- изменение какого-либо свойства за определённое время коррозии (например, электросопротивления, отражательной способности материала, механических свойств)
Разные материалы имеют различную коррозионную стойкость, для повышения которой используются специальные методы. Повышение коррозионной стойкости возможно при помощи легирования (например, нержавеющие стали), нанесением защитных покрытий (хромирование, никелирование, алитирование, цинкование, окраска изделий), пассивацией и др. Устойчивость материалов к воздействию коррозии, характерной для морских условий, исследуется в камерах солевого тумана.
Наиболее лёгкой формой коррозионного воздействия является изменение цвета и потеря блеска, что в принципе мало заметно издалека. При помощи санации поверхности обычно можно вернуть стали прежний привлекательный вид.
Оспенная коррозия
Оспенная коррозия (питтинговая коррозия) — это вид коррозионного воздействия, вызываемого хлоридами.
Обычно сначала появляются маленькие точки тёмно-рыжего цвета и лишь в очень сложных случаях они могут разрастаться до такой степени, что коррозия переходит в новую стадию, сплошную поверхностную коррозию. Риск возникновения коррозии усиливается, если на поверхности после сваривания остаются инородные материалы (лак и т.п.), если на поверхность попадают частицы другого корродировавшего металла, если после термообработки не был удалён цвет побежалости.
Коррозионное растрескивание
Коррозионное растрескивание — это разрушение металла вследствие возникновения и развития трещин при одновременном воздействии растягивающих напряжений и коррозионной среды. Оно характеризуется почти полным отсутствием пластической деформации металла.
Такой вид коррозии появляется в средах с повышенным содержанием хлоридов, например, в бассейнах.
Щелевая коррозия
Щелевая коррозия — возникает в местах стыка, обусловленных конструктивными или эксплуатационными требованиями.
На степень коррозионного воздействия будет оказывать влияние геометрия стыка и тип соприкасающихся материалов. Наиболее опасны узкие стыки с малыми зазорами и соединение стали с пластиками. Если же избежать стыков не возможно, то рекомендуем использовать нержавеющие стали, легированные молибденом.
Межкристаллитная коррозия
Межкристаллитная коррозия — этот вид коррозии возникает в настоящее время на сталях после сенсибилизации в сочетании с использованием в кислых средах.
Во время сенсибилизации выделяются карбиды хрома, которые накапливаются по границам зёрен. Соответственно возникают области с пониженным содержанием хрома и более подверженные коррозии. Подобное происходит, например, во время сваривания в зоне теплового воздействия.
Все аустенитные стали обладают стойкостью к межкристаллитной коррозии. Их можно подвергать свариванию (лист до 6 мм, пруток до 40 мм) без риска возникновения МКК.
Биметаллическая или гальваническая коррозия
Биметаллическая коррозия — возникает при работе биметаллического коррозионного элемента, т.е. гальванического элемента, в котором электроды состоят из разных материалов.
Очень часто необходимо использовать неоднородные материалы, чьё сопряжение при определённых условиях может приводить к коррозии. При сопряжении двух металлов биметаллическая коррозия имеет гальваническое происхождение. При этом виде коррозии страдает менее легированный металл, который в обычных условиях, не находясь в контакте с более легированным металлом, не подвержен коррозии. Следствием биметаллической коррозии является как минимум изменение цвета и, например, потеря герметичности трубопроводов или отказ крепежа. В конечном итоге указанные проблемы могут приводить к резкому сокращению срока службы строения и необходимости преждевременного капитального ремонта. В случае с нержавеющими сталями биметаллической коррозии подвергается сопрягаемый с ними менее легированный металл.
Источник
Коррозионностойкая сталь (нержавеющая) – это сталь, стойкая по отношению к коррозии. Такое свойство приобретает железосодержащий металл, когда к основному химическому элементу – Fe добавляют хром в значительном количестве. Получают сплав, характеризующийся новыми качествами, главным из которых является повышенная коррозионностойкость, то есть невосприимчивость к окислительным процессам, происходящем на воздухе или в других средах.
Поиском способов защиты стального материала от коррозии занимались давно, покрывая его различными составами и красками. Действительно эффективный способ был найден в 1913 году англичанином Г. Бреарли, который получил патент на изобретение стали с высоким содержанием хрома, что позволяло материалу сопротивляться процессам коррозии.
Химическая основа коррозионностойких сплавов
Нержавеющие сплавы железа основаны на правиле, в соответствии с которым при добавлении к неустойчивому к коррозии металлу другой металл, который образует с ним твердый раствор, то стойкость к процессам ржавления возрастает скачкообразно, а не пропорционально.
Легирование стали хромом, то есть добавление порядка 12-30% этого элемента, значительным образом повышает защитные характеристики материала. Это выражается в характеристиках сопротивляемости различным средам:
- При наличии 13% хрома и выше сплавы не ржавеют в обычных условиях и в средах, которые принято относить к слабоагрессивными.
- Если в составе хрома 17% и больше, коррозионностойкие качества проявляются в агрессивных окислительных, щелочных и др. растворах.
Химическая основа сопротивляемости коррозии заключается в образовании на поверхности предмета из нержавеющей стали пассивирующей пленки окислов благодаря хрому. Эта пленка не пропускает кислород и останавливает окислительные процессы от проникновения внутрь. Эффективность защиты зависит от состояния поверхности металла, отсутствия дефектов и внутренних напряжений в материале.
Элементы., которые сопутствуют железу в стальных сплавах: С – углерод, Si – кремний, Mn – марганец, S – сера, P – фосфор и другие
Легирование стали, то есть улучшение её физико-механических характеристик, проводится и другими химическими элементами, помимо Cr. К таким элементам относятся металлы различных групп.
В нормативной документации условные обозначения элементов даются на русском языке: Ni – никель (Н), Mn – марганец (Г), Ti – титан (Т), Co – кобальт (К), Mo – молибден (М), Cu – медь (Д).
Для стабилизации аустенитной структуры стали, то есть укрепления кристаллической решетки железа, добавляется никель. Прочность закрепляется добавками углерода. Устойчивость к перепадам температуры обеспечивается присадками титана. В особенно агрессивных средах, к примеру – кислотных, действуют сложнолегированные сплавы с присадками никеля, молибдена, меди и других компонентов.
Маркировка нержавеющих видов стали
В маркировке металлов используются буквы и цифры.
Существует российская классификация марок стали, которая используется в технических и нормативных документах. Параллельно бытует распространенная в мире группа стандартов, разработанных институтом Американским институтом стали и сплавов – AISI (American Iron and Steel Institute) для легированных и нержавеющих сталей.
Российские стандарты используют следующую схему. Для примера приведена аустенитная сталь 12Х15Г9
Элемент маркировки | Двузначное число | Буквы | Цифры | Буквы | Цифры |
Что означает | Количество углерода – С в сотых долях процента | Легирующие элементы | Процентное содержание легирующих металлов (округленно до целого числа) | Легирующие элементы | Процентное содержание легирующих металлов (округленно до целого числа) |
Пример | 12 | Х (Хром) | 15 (15%) | Г (Марганец) | 9 (9%) |
В системе AISI материалы обозначаются тремя-четырьмя цифрами: две первые – группа сталей, две другие — среднее содержание углерода. Буквы могут находиться после второй цифры, впереди или за цифрами.
Примеры: 410, 410S, 1045.
Коррозионностойкая сталь — основные виды
Коррозионостойкие сплавы определяют по их способности противостоять под действием большого набора естественных и искусственных коррозионных сред: атмосферных, подводной, грунтовой (подземной), щелочной, кислотной, солевой, среды блуждающих токов.
Стойкость проявляется к воздействиям химической, электрохимической, межкристаллитной коррозии.
Классификация нержавеющих сплавов регулируется нормативными документами ГОСТ, в которых описывается сталь в соответствии с производственными процессами и применением.
Сплавы делятся на несколько групп по критерию структуры. Они различаются по процентному содержанию углерода и составу легирующих компонентов. Эти соотношения определяют, где и каким образом может применяться тот или иной тип стали.
Основные группы:
- Ферритные
- Мартенситные.
- Аустенитные.
- Комбинированные.
Ферритная группа
К группе ферритов относятся хромистые стали. Они маркируются литерой F. Стали с большим содержанием хрома — до 30%, и небольшим углерода – до 0,15%. Обладают ферромагнитными свойствами, то есть характеризуются намагниченностью за пределами магнитного поля при низкой критической температуре.
Для достижения оптимальных свойств регулируется и находится баланс между содержанием углерода и хрома.
Плюсы – высокая прочность и столь же высокая пластичность.
Другие характеристики:
- Хорошая деформируемость в условиях холодной деформации.
- Высокая коррозийная стойкость.
- Может подвергаться термообработке методом отжига.
Идет на производстве трубопроката, листовых и профилированных промежуточных и конечных изделий.
Отрасли, применяющие стали ферритной группы:
- Химическая и нефтехимическая промышленность. Оборудование и конструкции для работы в кислотной и щелочной среде.
- Тяжелое машиностроение.
- Энергетика.
- Приборостроение для промышленности.
- Производство бытовой аппаратуры и приборов.
- Пищевая промышленность.
- Медицинская промышленность.
Примеры марок сталей по ГОСТ и их применения:
Сталь 08Х13 – ферритный хромистый сплав. Применяется для производства столовых приборов.
Сталь 12Х13 – ферритный хромистый сплав. Используется для хранения алкогольсодержащих продуктов.
Сталь 12Х17– ферритный хромистый жаропрочный сплав. В емкостях из него проводится высокотемпературная обработка пищевых продуктов.
Мартенситная группа
Под мартенситом понимается структура, которая получается в результате закалки заготовки или слитка металла с последующим отпуском. Закалка заключается в нагреве до температуры, которая превышает критическую, отпуск – последующее быстрое охлаждение металла.
В результате этого процесса перестраивается кристаллическая решетка, делая материал более твердым. Но может повыситься и хрупкость.
Такая процедура дает сплавы, в которых сочетаются
- Высокая твердость.
- Высокая прочность.
- Хорошая упругость.
- Устойчивость к коррозии.
- Жаропрочность.
Если повысить содержание углерода в сплаве, увеличиваются качества твердости и устойчивости к изнашиванию.
Сталь предназначена для изготовления металлоизделий для функционирования в агрессивных средах средней и слабой интенсивности. Свойство упругости позволяет изготавливать такие компоненты оборудования, как пружины, фланцы, валы. Из мартенситной и мартенситно-ферритной комбинированной стали изготавливают режущие элементы — ножи для конструкций в химической промышленности, а также в пищевой.
Примеры марок сталей по ГОСТ и их применения:
Сталь 20Х13, 30Х13, 40Х13 – мартенситный сплав. Применяется в производстве кухонного оборудования.
Сталь 14Х17Н2 — мартенситно-ферритный комбинированный сплав, содержит никель. Используется для производства компрессоров, оборудования для эксплуатации в агрессивных средах и при пониженной температуре.
Аустенитная группа
Аустенитный класс нержавеющих сталей отличается химическим строением, внедрением атомов углерода в молекулярную решетку железа. Содержит большой процент хрома и никеля – до 33%. Это высоколегированные металлы. Немагнитность позволяет применять сплавы в широком спектре производственных процессов.
Это обуславливает такие свойства группы металлов, как
- Пластичность в холодном и горячем состоянии.
- Прочность.
- Свариваемость на высоте.
- Стойкость к агрессивным средам, пример которых — азотная кислота.
- Экологическая чистота.
- Устойчивость к электромагнитным излучениям.
Для получения стабильного аустенита, гранецентрированной кристаллической решетки железа, сталь легируют никелем, повышая его содержание до 9%. Легирование проводится титаном и ниобием для повышения устойчивости к межкристаллитной коррозии. Такие сплавы получили наименование стабилизированных.
Коррозионностойкие стали группы относятся к труднообрабатываемым металлам. Для облегчения работы с ними применяют методы термообработки: отжиг и двойную закалку.
Отжиг проводится нагреванием до 1200 гр. С около 3-х часов. Остывание проходит в воде или масляной жидкости, или на открытом воздухе. Таким способом повышается гибкость сплава за счет снижения твердости.
Двойная закалка предполагает процесс нормализации твердого раствора металла при температуре 1200 гр. С. Вторично закалка проходит при 1000 гр. С. Происходит увеличение пластичности и жаропрочности – устойчивости к высоким температурам.
Применение
Аустенитные металлы используются для производства конструкционных материалов под холодную штамповку и сварку. Из них изготавливают:
- Разнообразные емкости.
- Строительные конструкции.
- Трубы из коррозионностойкой стали.
- Агрегаты для нефтехимии и химического производства.
- Конструкции для нефтяных вышек, очистительных станций.
- Механизмы, работающие под водой, такие как, турбины.
- Силовые приборы в энергетической сфере.
- Компоненты и агрегаты для автомобилей, самолетов.
- Оборудование для продуктов питания.
- Медицинская, фармакологическая аппаратура.
- Элементы крепежа.
- Сварные конструкции.
- И другие виды продукции.
Примеры марок сталей по ГОСТ и их применения:
Сталь 12Х18Н10Т — высоколегированный хромистый сплав, с присадками никеля и титана. Из нее делают оборудование для нефтепереработки и химической промышленности.
Сталь 12Х18Н10Т — аустенитная хромистая сталь с присадкой никеля. Из нее изготавливаются трубопроводы для химической и пищевой индустрии с ограничениями по температуре.
Сталь 12Х15Г9НД — высоколегированный сплав, содержащий хром, марганец, никель, медь. Применяется в производстве трубопроводных систем и ёмкостей, работающих с органическими кислотами умеренной агрессивности
Комбинированные сплавы
Сочетают структуру и свойства аустенитно-мартенситной или аустенитно-ферритной категорий.
Аустенитно-ферритные стали содержат небольшое количество никеля, в них высокое содержание хрома (более 20%), легирование проводится ниобием, титаном, медью. После прохождения термической обработки отношение феррита и аустенита становится равновесным. Такие сплавы более прочные, чем аустенитные, отличаются пластичностью, устойчивостью к межкристаллической коррозии. Они хорошо выдерживают ударные нагрузки.
Аустенитно-мартенситная группа металлов с содержанием хрома в границах 12-18%, никеля в границах 3,7 -7,5%. Могут использоваться присадки алюминия. Упрочнение проводится закалкой при температуре более 975 гр. С, и последующим отпуском при температуре 450-500 гр. С. Они обладают повышенным показателем предела текучести: характеристики, которая указывает на напряжение, при котором рост деформации продолжается без роста нагрузки. Сплавы демонстрируют хорошую свариваемость и хорошие механические качества.
Типология сталей по хромовым и никелевым присадкам
Среди сталей коррозионностойкого ряда популярны хромистые и хромоникелевые.
Антикоррозионные железосодержащие материалы, в которых находится хром, иначе называют хромистыми сталями.
Градация присутствия этого элемента разделяет все хромистые сплавы на категории:
- Теплоустойчивые мартенситные хромистые (Cr менее 10%).
- Хромистые антикоррозийные. (Cr в составе не превышает 17%).
- Антикоррозионные и сложнолегированные (Наличие Cr в границах 12-17%).
- Хромо-азотистые и кислотоупорные ферритного типа (Состав Cr в границах между 16% и 17%).
- Жаростойкие легированные: с добавками алюминия, молибдена, кремния и иных металлов.
Для хромистых сплавов в целях усиления пластичности и стабилизации кристаллической решетки применяются стабилизирующие элементы, которые снижают содержание углеродной составляющей.
Хромоникелевые антикоррозионные сплавы по маркам делят на несколько групп:
- Аустенитные с низким процентным показателем углерода и стабилизирующими элементами.
- Кислотостойкие, содержащие присадочные металлы.
- Жаропрочные, в составе которых процент никеля и хрома – свыше 20%.
- Аустенитно-мартенситные и аустенитно-ферритные с показателями никеля и хрома на среднем уровне.
Особенности производства коррозионностойких сталей
Все производственные процессы в металлургии регулируются нормативными документами ГОСТ и ТУ.
Это касается и металлов с антикоррозийными свойствами.
Стандарты на изготовление прослеживаются по ряду параметров:
- Максимальная твердость по шкале Бринелля (НБ). Этот метод подразумевает испытание с помощью вдавливания с использованием способа восстановленного отпечатка или невосстановленного отпечатка и определяется по таблице.
- Относительное удлинение, измеряемое в %. Параметр определяет пластические свойства металла. Относительное удлинение – увеличение длины испытываемого образца после прохождения предела текучести до разрушения.
- Предел текучести в Н/м2. Характеристика механических особенностей материала, связанных с напряжением, при котором деформация увеличивается, когда нагрузка закончилась. Единица измерения – паскаль или ньютон на м квадратный.
- Сопротивление на разрыв или предел прочности в Н/м2. Максимальное значение напряжений материала перед тем, как он разрушится.
- Допуска по отклонениям процентного отношения химических элементов в готовой продукции
Помимо этих параметров в производстве нержавеющих сталей по запросу заказчика могут изменяться и контролироваться показатели:
- Пределы процентного содержания химических элементов.
- Нижний предел массовой доли отдельных легирующих компонентов, таких как марганец.
- Процентное отношение вредных примесей цветных металлов: олова, свинца, висмута, сурьмы, кадмия, мышьяка и других.
Магнитные характеристики антикоррозионных сплавов
Параметр магнитности характерен для некоторых металлов. Он зависит от таких характеристик, как основная структура металла, состав и особенности сплавов.
Комбинации этих переменных предопределяют уровень магнитных характеристик.
Ферриты и мартенситы задают ферромагнитные характеристики сплавов. Они настолько же магнитные, как и углеродистая сталь. Магнитные виды материалов легко подвергаются сварке и штамповке, годятся для изготовления р инструментов с режущими поверхностями и столовых приборов.
Немагнитные сплавы – аустенитные и аустенитно-ферритные хромистых и марганцевых марок.
Отличаясь большой прочностью и коррозийной устойчивостью, широко применяются в строительной сфере и в разнообразных производственных процессах.
Используемая литература и источники:
- Скороходов В. Н., Одесский П. Д., Рудченко А. В. «Строительная сталь».
- Л. Н. Паль-Валь, Ю. А. Семеренко, П. П. Паль-Валь, Л. В. Скибина, Г. Н. Грикуров. Исследование акустических и резистивных свойств перспективных хромо-марганцевых аустенитных сталей в области температур 5—300 К
- Нержавеющая сталь // Большая советская энциклопедия. — 3-е изд. — М.: Советская энциклопедия, 1974.
- British Stainless Steel Association
Источник