Кислотные свойства наиболее выражены у каких спиртов

Кислотные свойства наиболее выражены у каких спиртов thumbnail

Гидроксисоединения – это органические вещества, молекулы которых содержат, помимо углеводородной цепи, одну или несколько гидроксильных групп ОН.

Гидроксисоединения делят на спирты и фенолы.

Строение, изомерия и гомологический ряд спиртов

Химические свойства спиртов

Способы получения спиртов

Кислотные свойства наиболее выражены у каких спиртов

Спиртыэто гидроксисоединения, в которых группа ОН соединена с алифатическим углеводородным радикалом R-OH.

Если гидроксогруппа ОН соединена с бензольным кольцом, то вещество относится к фенолам.

Общая формула предельных нециклических спиртов: CnH2n+2Om, где mn.

Спирты – органические вещества, молекулы которых содержат, помимо углеводородной цепи, одну или несколько гидроксильных групп ОН.

Химические реакции гидроксисоединений идут с разрывом одной из связей: либо С–ОН с отщеплением группы ОН, либо связи О–Н с отщеплением водорода. Это реакции замещения, либо реакции отщепления (элиминирования).

Свойства спиртов определяются строением связей С–О–Н. Связи С–О и О–Н — ковалентные полярные. При этом на атоме водорода образуется частичный положительный заряд δ+, на атоме углерода также частичный положительный заряд δ+, а на атоме кислорода — частичный отрицательный заряд δ–.

Такие связи разрываются по ионному механизму. Разрыв связи О–Н с отрывом иона Н+ соответствует кислотным свойствам гидроксисоединения. Разрыв связи С–О соответствует основным свойствам и реакциям нуклеофильного замещения.

С разрывом связи О–Н идут реакции окисления, а с разрывом связи С–О — реакции восстановления.

Таким образом, для спиртов характерны следующие свойства:

  • слабые кислотные свойства, замещение водорода на металл;
  • замещение группы ОН
  • отрыв воды (элиминирование) – дегидратация
  • окисление
  • образование сложных эфиров — этерификация


1. Кислотные свойства

Спирты – неэлектролиты, в водном растворе не диссоциируют на ионы; кислотные свойства у них выражены слабее, чем у воды.

1.1. Взаимодействие с раствором щелочей

При взаимодействии спиртов с  растворами щелочей реакция практически не идет, т. к. образующиеся алкоголяты почти полностью гидролизуются водой.

Кислотные свойства наиболее выражены у каких спиртов

Равновесие в этой реакции так сильно сдвинуто влево, что прямая реакция не идет. Поэтому спирты не взаимодействуют с растворами щелочей.

Многоатомные спирты также не реагируют с растворами щелочей.

1.2. Взаимодействие с металлами (щелочными и щелочноземельными)

Спирты взаимодействуют с активными металлами (щелочными и щелочноземельными). При этом образуются алкоголяты. При взаимодействии с металлами спирты ведут себя, как кислоты.

Кислотные свойства наиболее выражены у каких спиртов

Например, этанол взаимодействует с калием с образованием этилата калия и водорода.

Кислотные свойства наиболее выражены у каких спиртов

Видеоопыт взаимодействия спиртов (метанола, этанола и бутанола) с натрием можно посмотреть здесь.

Алкоголяты под действием воды полностью гидролизуются с выделением спирта и гидроксида металла.

Например, этилат калия разлагается водой:

Кислотные свойства наиболее выражены у каких спиртов

Кислотные свойства одноатомных спиртов уменьшаются в ряду:

CH3OH > первичные спирты > вторичные спирты > третичные спирты

Многоатомные спирты также реагируют с активными металлами:

Кислотные свойства наиболее выражены у каких спиртов

Видеоопыт взаимодействия глицерина с натрием можно посмотреть здесь.

1.3. Взаимодействие с гидроксидом меди (II)

Многоатомные спирты взаимодействуют с раствором гидроксида меди (II) в присутствии щелочи, образуя комплексные соли (качественная реакция на многоатомные спирты).

Например, при взаимодействии этиленгликоля со свежеосажденным гидроксидом меди (II) образуется  ярко-синий раствор гликолята меди:

Кислотные свойства наиболее выражены у каких спиртов

Видеоопыт взаимодействия этиленгликоля с гидроксидом меди (II) можно посмотреть здесь.

2. Реакции замещения группы ОН

2.1. Взаимодействие с галогеноводородами

При взаимодействии спиртов с галогеноводородами группа ОН замещается на галоген и образуется галогеналкан.

Например, этанол реагирует с бромоводородом.

Кислотные свойства наиболее выражены у каких спиртов

Видеоопыт взаимодействия этилового спирта с бромоводородом можно посмотреть здесь.

Реакционная способность одноатомных спиртов в реакциях с галогеноводородами уменьшается в ряду:

третичные > вторичные > первичные > CH3OH.

Многоатомные спирты также, как и одноатомные спирты, реагируют с галогеноводородами.

Например, этиленгликоль реагирует с бромоводородом:

Кислотные свойства наиболее выражены у каких спиртов

2.2. Взаимодействие с аммиаком

Гидроксогруппу спиртов можно заместить на аминогруппу при нагревании спирта с аммиаком на катализаторе.

Например, при взаимодействии этанола с аммиаком образуется этиламин.

Кислотные свойства наиболее выражены у каких спиртов

2.3. Этерификация (образование сложных эфиров)

Одноатомные и многоатомные спирты вступают в реакции с карбоновыми кислотами, образуя сложные эфиры.

Кислотные свойства наиболее выражены у каких спиртов

Например, этанол реагирует с уксусной кислотой с образованием этилацетата (этилового эфира уксусной кислоты):

Кислотные свойства наиболее выражены у каких спиртов

Многоатомные спирты вступают в реакции этерификации с органическими и неорганическими кислотами.

Например, этиленгликоль реагирует с уксусной кислотой с образованием ацетата этиленгликоля:

Кислотные свойства наиболее выражены у каких спиртов

2.4. Взаимодействие с кислотами-гидроксидами

Спирты взаимодействуют и с неорганическими кислотами, например, азотной или серной.

Например, при взаимодействии этанола с азотной кислотой образуется сложный эфир этилнитрат:

Кислотные свойства наиболее выражены у каких спиртов

Например, глицерин под действием азотной кислоты образует тринитрат глицерина (тринитроглицерин):

Кислотные свойства наиболее выражены у каких спиртов

3. Реакции замещения группы ОН

В присутствии концентрированной серной кислоты от спиртов отщепляется вода. Процесс дегидратации протекает по двум возможным направлениям: внутримолекулярная дегидратация и межмолекулярная дегидратация.

3.1. Внутримолекулярная дегидратация

При высокой температуре (больше 140оС) происходит внутримолекулярная дегидратация и образуется соответствующий алкен.

Например, из этанола под действием концентрированной серной кислоты при температуре выше 140 градусов образуется этилен:

Кислотные свойства наиболее выражены у каких спиртов

В качестве катализатора этой реакции также используют оксид алюминия.

Отщепление воды от несимметричных спиртов проходит в соответствии с правилом Зайцева: водород отщепляется от менее гидрогенизированного атома углерода.

Например, в присутствии концентрированной серной кислоты при нагревании выше 140оС из бутанола-2 в основном образуется бутен-2:

Кислотные свойства наиболее выражены у каких спиртов

3.2. Межмолекулярная дегидратация

При низкой температуре (меньше 140оС) происходит межмолекулярная дегидратация по механизму нуклеофильного замещения: ОН-группа в одной молекуле спирта замещается на группу OR другой молекулы. Продуктом реакции является простой эфир.

Например, при дегидратации этанола при температуре до 140оС образуется диэтиловый эфир:

Кислотные свойства наиболее выражены у каких спиртов

4. Окисление спиртов

Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).

В зависимости от интенсивности и условий окисление можно условно разделить на каталитическое, мягкое и жесткое.

При окислении первичных спиртов они последовательно превращаются сначала в альдегиды, а потом в карбоновые кислоты. Глубина окисления зависит от окислителя.

Первичный спирт → альдегид → карбоновая кислота

Метанол окисляется сначала в формальдегид, затем в углекислый газ:

Метанол → формальдегид → углекислый газ

Вторичные спирты окисляются в кетоны: вторичные спирты → кетоны

Типичные окислители — оксид меди (II), перманганат калия KMnO4, K2Cr2O7, кислород в присутствии катализатора.

Легкость окисления спиртов уменьшается в ряду:

метанол < первичные спирты < вторичные спирты < третичные спирты

Продукты окисления многоатомных спиртов зависят от их строения. При окислении оксидом меди многоатомные спирты образуют карбонильные соединения.

4.1. Окисление оксидом меди (II)

Cпирты можно окислить оксидом меди (II) при нагревании. При этом медь восстанавливается до простого вещества. Первичные спирты окисляются до альдегидов, вторичные до кетонов, а метанол окисляется до метаналя.

Например, этанол окисляется оксидом меди до уксусного альдегида

Кислотные свойства наиболее выражены у каких спиртов

Видеоопыт окисления этанола оксидом меди (II) можно посмотреть здесь.

Например, пропанол-2 окисляется оксидом меди (II) при нагревании до ацетона

Кислотные свойства наиболее выражены у каких спиртов

Третичные спирты окисляются только в жестких условиях.

4.2. Окисление кислородом в присутствии катализатора

Cпирты можно окислить кислородом в присутствии катализатора (медь, оксид хрома (III) и др.). Первичные спирты окисляются до альдегидов, вторичные до кетонов, а метанол окисляется до метаналя.

Например, при окислении пропанола-1 образуется пропаналь

Кислотные свойства наиболее выражены у каких спиртов

Видеоопыт каталитического окисления этанола кислородом можно посмотреть здесь.

Например, пропанол-2 окисляется кислородом при нагревании в присутствии меди до ацетона

Третичные спирты окисляются только в жестких условиях.

4.3. Жесткое окисление

При жестком окислении под действием перманганатов или соединений хрома (VI) первичные спирты окисляются до карбоновых кислот, вторичные спирты окисляются до кетонов, метанол окисляется до углекислого газа.

При нагревании первичного спирта с перманганатом или дихроматом калия в кислой среде может образоваться также альдегид, если его сразу удаляют из реакционной смеси.

Третичные спирты окисляются только в жестких условиях (в кислой среде при высокой температуре) под действием сильных окислителей: перманганатов или дихроматов. При этом происходит разрыв углеродной цепи и могут образоваться углекислый газ, карбоновая кислота или кетон, в зависимости от строения спирта.

Спирт/ ОкислительKMnO4, кислая средаKMnO4, H2O, t
Метанол СН3-ОНCO2K2CO3
Первичный спирт  R-СН2-ОНR-COOH/ R-CHOR-COOK/ R-CHO
Вторичный спирт  R1-СНОН-R2R1-СО-R2R1-СО-R2

Например, при взаимодействии метанола с перманганатом калия в серной кислоте образуется углекислый газ

Кислотные свойства наиболее выражены у каких спиртов

Например, при взаимодействии этанола с перманганатом калия в серной кислоте образуется уксусная кислота

Кислотные свойства наиболее выражены у каких спиртов

Например, при взаимодействии изопропанола с перманганатом калия в серной кислоте образуется ацетон

Кислотные свойства наиболее выражены у каких спиртов

4.4. Горение спиртов

Образуются углекислый газ и вода и выделяется большое количество теплоты.

CnH2n+1ОН + (3n+1)/2O2 → nCO2 + (n+1)H2O + Q

Например, уравнение сгорания метанола:

2CH3OH + 3O2 = 2CO2 + 4H2O

5. Дегидрирование спиртов 

При нагревании спиртов в присутствии медного катализатора протекает реакция дегидрирования. При дегидрировании метанола и первичных спиртов образуются альдегиды, при дегидрировании вторичных спиртов образуются кетоны. 

Например, при дегидрировании этанола образуется этаналь

Кислотные свойства наиболее выражены у каких спиртов

Например, при дегидрировании этиленгликоля образуется диальдегид (глиоксаль)

Кислотные свойства наиболее выражены у каких спиртов

Источник

    Как хорошо известно, в спиртах кислотные свойства гидроксильной группы выражены очень слабо в фенолах они [c.132]

    Чем объяснить, что функциональная группа спиртов у фенола обусловливает его кислотные свойства  [c.77]

    Итак, с увеличением атомности спиртов кислотные свойства их повышаются. [c.335]

    Когда атом водорода присоединен к атому углерода, он практически не может от него отделиться в виде иона. Но когда атом водорода присоединен к атому кислорода, как, например, в составе гидроксильной группы, такая возможность появляется, хотя и слабая. Поэтому этиловый спирт—очень слабая кислота настолько слабая, что ее кислотные свойства могут обнаружить только химики. [c.110]

    Ниже приведены в произвольном порядке константы кислотности (Ка). 1) феноля, 2) этилового спирта, 3) воды, 4) уксусной кислоты, 5) угольной кислоты 1,3-10- 0 1,8-10- б 4,9-10-7 1,76-10-5 1,0-10- 8. Какое значение Ка принадлежит каждому из этих соединений Чем обусловлены кислотные свойства фенола  [c.165]

    У таких очень слабых кислот, как этиловый спирт, кислотные свойства сильно маскируются преобладающим проявлением этого свойства воды. [c.503]

    Напишите уравнения реакции взаимодействия пропилового спирта 1) с металлическим натрием, 2) с магнием, 3) с бромоводородом. Охарактеризуйте основные и кислотные свойства спирта. [c.49]

    Для твердых кислот недостаточно выяснено различие и общность механизмов каталитического действия бренстедовских и льюисовских кислот. Так, по данным одних авторов [57 ] реакция дегидратации спиртов происходит только за счет апротонной кислотности Другие авторы [58] опровергают это утверждение. В ряде работ, например [59], указывается, что кислотные свойства гидратированной окиси алюминия и силикагеля не связаны с водородом их гидроксильных групп. [c.37]

    Как уже было указано, ароматическими спиртами называются производные бензола, имеющие гидроксильную группу в боковой цепи. По химическим свойствам эти соединения близки спиртам жирного ряда, а не фенолам. Они не растворяются в водных щелочах, и, следовательно, кислотные свойства у них выражены значительно слабее, чем у фенолов обычно они имеют приятный ароматический запах. Способы получения ароматических спиртов также аналогичны способам получения спиртов жирного ряда они получаются из соответствующих галоидпроизводных или путем восстановления альдегидов и эфиров кислот, а не из сульфокислот или солей диазония, подобно фенолам. [c.563]

    Свойства, связанные с гидроксильной группой. 1. Водород гидроксильной группы фенола весьма подвижен и легко отщепляется (происходит диссоциация гидроксила). Поэтому фенолы проявляют некоторые кислотные свойства (фенол даже называют карболовой кислотой ). Но фенолы более слабые кислоты, чем карбоновые. В то же время спирты кислотных свойств не проявляют и относятся к нейтральным соединениям. [c.183]

    Кислотными свойствами спиртов объясняется их взаимодействие с реактивами Гриньяра  [c.28]

    Вещества с кислотными свойствами Хлорпроизводные углеводородов (возможен взрыв ), спирты, кислоты Спирты, аммиак, альдегиды, кетоны [c.201]

    Из приведенного уравнения видно, что при гидролизе число концевых карбоксильных групп увеличивается, в то время как при термолизе оно остается почти неизменным. Это позволяет следить за ходом гидролиза посредством титрования растворов желатина щелочью. Но в водной среде кислотные свойства карбоксильных групп ослабляются присутствием основных аминогрупп, поэтому в водной среде титрование щелочью не идет до конца. Лучшие результаты дает титрование в спиртовой среде, так как в присутствии спирта кислотные свойства карбоксильных групп преобладают над основными свойствами аминогрупп. [c.36]

    Интересно, что при растворении гидридных комплексов в полярных растворителях (воде, спиртах, нитрилах, аминах) комплексы проявляют свойства растворов кислот. В неполярных же растворителях комплексы не диссоциируют и по спектроскопическим характеристикам и химическим свойствам подобны нейтральным а- и 1г-комплексам. Для иллюстрации кислотных свойств растворов гидридных комплексов приведена табл. 31. Видно, что сильные [c.111]

    В среде жидкого аммиака сильными кислотами будут СНзСООН, H2S, HF и т. д. Более того, в среде жидкого NH3 будут вести себя как кислоты такие вещества, которые в водном растворе не проявляют кислотных свойств, наприм ер спирты  [c.281]

    Раствор этилового спирта в жидком аммиаке можно титровать как кислоту амидом калия. Даже углеводороды, растворенные в жидком NH3, проявляют слабые кислотные свойства  [c.281]

    Соли органических оснований, например различных аминов в среде спиртов, ацетона, этилендиамина, уксусного ангидрида и некоторых других растворителей, проявляют кислотные свойства и также могут быть оттитрованы растворами различных оснований. [c.218]

    Более того, в среде жидкого NH3 будут вести себя как кислоты такие вещества, которые в водном растворе совершенно не проявляют кислотных свойств, например спирты  [c.247]

    В качестве катализаторов реакции ацетилена со спиртами можно использовать алкоголяты, с фенолом — феноляты и т, д., но чаще всего применяют гидроксиды щелочных металлов. Лучшие результаты дает едкое кали, образующее с органическим реагентом, обладающим кислотными свойствами, металлическое производное [c.302]

    Если же ввести в радикал электроноакцептор 1ые группы или атомы, то кислотные свойства спиртов значительно усиливаются. Например, спирт (СРз)зС—ОН за счет электронооттягивающего действия атомов фтора становится настолько кислым соединением, что способен даже вытеснять угольную кислоту из ее солей. В этом случае заметно индуктивное влияние атомов галогена на поведение водородного атома в гидроксильной группе. В данном случае это влияние является не непосредственным, а осуществляется через систему атомов С- -С-[c.108]

    Такое электронное смещение в фенолят-ионе объясняет и его повышенную устойчивость. Поэтому фенолы значительно превосходят по кислотным свойствам алифатические спирты (для фенола р/(а = = 9,99, а р/Са алифатических спиртов равно 16—18, т. е. на 6—8 порядков меньше). [c.311]

    Такие вещества могут проявлять в водных растворах кислотные свойства в зависимости от легкости отщепления протона от атома кислорода. Как правило, чем сильнее атом V притягивает электронную пару, которую он обобществляет с атомом кислорода, тем более полярна связь О—Н и более кислотными свойствами обладает вещество. В трех приведенных выше примерах центральный атом не сильно притягивает электронную пару, которую он обобществляет с атомом кислорода. Константа КИСЛОТНОСТИ ДЛЯ ортоборной кислоты имеет значение 6,5 -10 , для иодноватистой кислоты 2,3 10 а метиловый спирт в воде не обнаруживает ни кислотных, ни основных свойств. [c.97]

    Кислотные свойства у спиртов выражены несколько слабее, чем у воды. Алкильные группы отталкивают от себя электроны (I), снижая тем самым легкость отщепления протона по сравнению с водой. У третичных спиртов кислотные свойства выражены наиболее слабо, примером может служить триметилкарбинол И. Если же в радикал спирта ввести электроноакцепторный атом, то кислотные свойства усиливаются. Примером может служить перфторпроизводное триметилкарбинола (П1), кислотные свойства его заметно выражены (разлагает соли угольной кислоты). [c.157]

    Кислотные свойства спиртов, обусловленные подвижностью атома водорода гидроксильной группы, зависят от значения индуктивного влияния алкильного радикала, связанного с гидроксильной группой чем меньше электронодонорное влияние алкильного радикала на кислород гидроксильной группы, тем сильнее кислотные свойства спиртов. [c.229]

    Поляризация связи О-Н позволяет говорить о кислотных свойствах спиртов. Лтом водорода приобретает за счет поляризации подвижность и способен отрываться при взаимодействии спиртов с сильными основаниями, в том числе с активными металлами (Ыа, К). Поляризация связи О-Н также является причиной образования в спиртах и их водных растворах водородных связей. [c.340]

    Из этого следует, что в фенолах, благодаря влиянию ароматического ядра, водород гидроксила подвижнее, чем в спиртах, и они обладают большими, чем спирты, кислотными свойствами (поэтому простейший фенол и был назван карболовой кислотой Рунге, 1834). Константа диссоциации фенола Кс,н.он = 1,7-т. е. она больше, чем константа диссоциации воды (KhjO= 1,8-10 ). Спирты же менее диссоциированы, чем вода (стр. 108). [c.362]

    Подобно спиртам способны оксиэтилироваться и фенолы. Так как гидроксильная группа фенолов обладает более сильно выраженными кислотными свойствами, чем гидроксильные группы спиртов, то удается нагреванием в автоклаве до 200° 1 моля фенола с 1 молем окиси этилена получить этилен-гликольмонофенплопый эфир с 95%-ным выходом. Этот продукт, известный нод названием арозол , уже упоминался ранее (см. стр. 184). [c.193]

    Д1 нитридокарбонат водорода H2 N2 (цианамид) — бесцветные кристаллы (т. пл. +46°С), легко растворимые в воде, спирте и эфире. Цианамид проявляет слабовыраженные кислотные свойства. В органических растворителях вероятно равновесие таутомерных форм  [c.403]

    Если растворитель присоединяет протон, т, е. обладает свойствами основания, то он называется протофильным. Растворитель, отдающий протон, т, е. обладающий кислотными свойствами, называется протогенным. К первым относятся вода, спирты, ацетон, эфиры, жидкий аммиак, амины и до некоторой степенн муравьиная и уксусная кислоты. Ко вторым — тоже вода и спирты, ио наиболее типичными являются чистые кислоты (ук усная, серная, муравьиная), а также жидкие хлористый и фтористый водород. Растворители, способные как отдавать, так и присоединять протон, называются амфипротонными. Раство-ритзли, ие способные ни отдавать, ни присоединять протон (например, бензол), называются апротонными. [c.469]

    Фенол eHsOH — бесцветные кристаллы (темп, плавл. 41 °С). Обладает характерным запахом и антисептическими (обеззараживающими— подавляющими развитие вредных микроорганизмов) свойствами Как уже указывалось, кислотные свойства гидроксильного водорода выражены у фенола значительно сильнее, чем у спиртов замещение этого водорода металлом мо кет происходи г., не только при действии щелочных металлов, но и при действии щелочей. Г[оэтому фенол называют также карболовой кислотой. [c.483]

    Упаривание реакционной смеси досуха и экстрагирование остатка спиртом позволяет отделить это соединение от неорганических солей. Бариевая соль хлорметансульфокислоты получена окислением хлорметилтиоцианата дымящей азотной кислотой и последующей обработкой реакционной смеси едким барием. Натриевая соль очень легко растворима в воде, растворимость бариевой соли значительно меньще. Свободная кислота, повидимому, не выделена в чистом состоянии, но в виде очень концентрированного раствора она описана [68] как сиропообразная жидкость, обладающая сильно выраженными кислотными свойствами. При 200″ натриевая соль хлорметансульфокислоты реагирует с олеиновокислым натрием и другими солями жирных кислот [696], образуя продукт, пригодный для применения в качестве детергента или смачивающего агента  [c.118]

    Чистая метионовая кислота представляет собой гигроскопичное кристаллическое вещество [437в], обладающее в водных растворах сильно выраженными кислотными свойствами [445]. Она образует твердый гидрат, который выделяется из концентрированного водного раствора. Бариевая соль кислоты трудно растворима в спирте, вследствие чего она может быть исиользована для количественного определения кислоты [437в]. Довольно подробно изучены многие другие соли кислоты [446]. [c.176]

    В отличие от алкильных эфиров, арильные эфиры, синтезированные из фенолов и хлорангидрида кислоты, являются очень устойчивыми соединениями [4506]. Они легко растворяются в разбавленной щелочи, выпадая из раствора в неизмененном виде при действии кислот. Гидролиз их происходит только при нагревании с 50%-ным раствором едкого натра, тогда как алкильные эфиры полностью гидролизуются горячей водой, в которой метиловый эфир легко растворим. Арильные эфиры вследствие наличия достаточно подвижного водорода дают соли щелочных металлов в водном растворе, но алкильные эфиры образуют металлические соли только в безводном растворителе, например в бензоле при действии металла, причем получающиеся соли разлагаются спиртом или водой. Так, дифенилметионат содержит, очевидно, более подвижный водород, чем диэтилмалонат, кислотные свойства которого в свою очередь выражены сильнее, чем у диэтилме-тионата. Натриевые и калиевые производные алкильных и арильных эфиров легко алкилируются иодистыми алкилами или диметилсульфатом. На этой реакции основан метод синтеза гомологов метионовой кислоты, получение которых другими путями затруднительно. Представляется довольно интересным, что натрийалкил-эфиры, повидимому, не претерпевают внутримолекулярного алкилирования, которое, как можно было бы ожидать, будет происходить по схеме  [c.177]

    О кислотных свойствах спиртов свидетельствуют их реакции с активными (наприм ), щелочньгаи) металлами  [c.27]

    Кислотные свойства спиртов убывают при переходе от пфвичных к третичным СН,ОН > КСНрН > КрНОН > К,СОН. Это связано с усилением +1-эффекта, поскольку возрастает число алкильных групп у атома углерода, несущего гидроксил. [c.28]

    Свойства фенолов. 1. Фенолы имеют большую кислотность, чем спирты, уступая, однако, в этом отношении карбоновым кислотам. Они растворяются в водных растворах щелочей, причем их соли, феноляты, лишь слабо гидролизуются водой. Двуокись углерода осаждает 41Снолы из водных щелочных растворов, и таким способом они могут быть отделены от карбоновых кислот. Следовательно, ароматический остаток усиливает кислотные свойства гидроксилыюй группы. Это вызывается, по-видимому, той же причинои, которая обусловливает сильно кислотный характер енолов. Более же сильную кислотность енолов по сравнению с насыщенными спиртами мы объясняли тем, что в этих соединениях гидроксильная группа находится у двойной связи в фенолах гидроксильная группа также связана с ненасыщенным атомом углерода (по формуле бензола Кекуле она находится у двойной связи ).  [c.538]

    Расположите в ряд по уменьшению кислотных свойств следующие вещества уксусную кислоту, мети-ЛС1ВЫЙ спирт, муравьиную кислоту, триметилуксусную [c.67]

    Дано вещество, имеющее эмпирическую формулу С4Н6О4. Оно обладает кислотными свойствами. При взаимодействии его с этиловым спиртом в присутствии хлороводорода получается