Каталитическими свойствами обладают какие вещества

Каталитическими свойствами обладают какие вещества thumbnail

Каталитические свойства вещества проявляются сильнее всего в условиях наибольшего затруднения его кристаллизации. [1]

Важнейшие каталитические свойства веществ – каталитическая активность и селективность – являются кинетическими величинами. Для решения проблемы научного предвидения каталитического действия необходимо установить связь между этими величинами и определенными физико-химическими свойствами веществ. [2]

При этом каталитические свойства вещества проявляются сильнее всего в условиях наибольшего затруднения его кристаллизации. [3]

Распространено мнение, что каталитические свойства веществ одинакового химического состава могут изменяться в очень широких пределах в зависимости от способа получения. По нашим данным, образцы серебра, полученные разными способами, значительно отличаются по величине удельной активности в реакции окисления этилена лишь вследствие неконтролируемого захвата микропримесей, имеющихся в исходных реактивах. После удаления случайных микрозагрязнений удельная активность серебра разных способов приготовления становится постоянной. Следовательно, удельная активность веществ одинакового химического состава существенно не зависит от способа приготовления. Этот вывод должен быть положен в основу теории приготовления катализаторов. [4]

Анализ огромного материала по каталитическим свойствам веществ, собранного в трех томах справочника Каталитические свойства веществ, показал, что каталитические свойства в отношении реакции гидрогенизации проявляются главным образом у элементов ( и их соединений) длинных периодов периодической системы Д. И. Менделеева, преимущественно у металлов VI, VII, VIII и 16 групп. [5]

Рассмотренные опытные данные по каталитическим свойствам веществ в отношении окисления органических соединений указывают на существование определенной взаимосвязи между типом катализируемой реакции и положением в таблице Менделеева элементов, входящих в состав соответствующих оптимальных катализаторов. Неполное окисление различных соединений в органические кислоты или их ангидриды, а также ароматических веществ и спиртов в карбонильные соединения лучше всего катализируют окисные контакты на основе ванадия и молибдена – переходных элементов V и VI групп. [6]

Второй раздел выпуска содержит работы по каталитическим свойствам веществ в отношении реакций с участием молекулярного кислорода. Группа статей посвящена мягкому окислению органических веществ. Оказалось, что контакты, богатые висмутом и содержащие равные количества висмута и сурьмы, ускоряют только глубокое окисление, а катализаторы, богатые сурьмой, обладают высокой селективностью ( но малой активностью) при окислении пропилена в акролеин. Методом ИКС найдено, что в процессе окисления нафталина на обычном окиснованадиевом катализаторе без подложки и на катализаторе, нанесенном на NaCl, образуются солеобразные соединения типа малеатов ванадия. [7]

В 1968 г. издательством Наукова думка выпущен справочник Каталитические свойства веществ, в котором систематизированы сведения о катализаторах и каталитических реакциях за период 1940 – 1962 гг. Его следует рассматривать как первый том многотомного издания Справочника.

Источник

Катализатор, их виды и свойства.

Каталитическими свойствами обладают какие веществаКаталитическими свойствами обладают какие веществаКаталитическими свойствами обладают какие веществаКаталитическими свойствами обладают какие веществаКаталитическими свойствами обладают какие веществаКаталитическими свойствами обладают какие веществаКаталитическими свойствами обладают какие веществаКаталитическими свойствами обладают какие веществаКаталитическими свойствами обладают какие веществаКаталитическими свойствами обладают какие вещества

Катализатор – это химическое вещество, ускоряющее реакцию, но не расходующееся в процессе реакции, и действующее повторно (неоднократно).

Катализатор (понятие и сущность)

Типы и виды катализаторов

Свойства катализаторов

Каталитические системы на основе катализаторов

Катализатор (понятие и сущность):

Катализатор – это химическое вещество, ускоряющее реакцию, но не расходующееся в процессе реакции, и действующее повторно (неоднократно).

Катализаторы – это вещества, которые ускоряют химические реакции, но не входят в состав их конечных продуктов.

Катализаторы – это вещества, ускоряющие скорость химической реакции, которые могут участвовать в реакции, входить в состав промежуточных продуктов, но не входят в состав конечных продуктов реакции и после окончания реакции остаются неизменными.

Термин катализатор (от греч. katalysis – «ослабление», «разрушение») впервые ввел в 1835 г. шведский химик И. Берцелиус, который установил, что в присутствии определенных веществ скорость некоторых химических реакций существенно возрастает.

Соответственно химические реакции, протекающие в присутствии катализаторов, именуются каталитическими реакциями. А процесс, заключающийся в изменении скорости химических реакций в присутствии веществ, называемых катализаторами, именуется катализом.

Различают положительный катализ и отрицательный катализ. Положительным называют катализ, при котором скорость реакции возрастает, отрицательным (ингибированием) – при котором она убывает.

Вещества, замедляющие химическую реакцию, именуются ингибиторами. Однако ингибиторы в отличие от катализаторов могут расходоваться в процессе химической реакции.

Все химические реакции в присутствии катализатора протекают быстрее, поскольку катализатор снижает энергию активации реакции.

В некоторых химических реакциях катализатор реагирует с одним или несколькими реагентами с образованием временного промежуточного продукта, который затем регенерирует исходный катализатор в циклическом процессе. Химическая реакция в таких случаях состоит из нескольких стадий:

X + K → XK,

Y + XK → XYK,

XYKKZ,

KZ → K + Z,

где

X и Y – реагенты,

Читайте также:  Какие свойства яблока и тюльпана

Z – конечный продукт химической реакции X и Y,

K – катализатор.

При этом общее уравнение реакции записывается как:

X + Y → Z.

В современном химическом производстве часто применяют каталитические системы из нескольких катализаторов, каждый из которых ускоряет разные стадии химической реакции. 

Катализатор также может увеличивать скорость одной из стадий каталитического цикла, осуществляемого другим катализатором. Здесь имеет место «катализ катализа», или катализ второго уровня.

В настоящее время многие важнейшие химические производства, такие, как получение серной кислоты, аммиака, азотной кислоты, синтетического каучука, ряда полимеров и др., проводятся в присутствии катализаторов. Согласно оценкам, для производства 90 % всех коммерчески производимых химических продуктов на той или иной стадии процесса их изготовления использовались катализаторы.

Типы и виды катализаторов:

Катализаторы, как правило, подразделяются на гомогенные и гетерогенные.

Гомогенный катализатор – это катализатор, молекулы которого диспергированы (т.е. находятся) в одной и той же фазе (обычно в газообразной или жидкой), что и молекулы реагента.

Гетерогенный катализатор – это катализатор, молекулы которого находятся не в той же фазе, что и реагенты (которые обычно представляют собой газы или жидкости, адсорбированные на поверхности твердого катализатора). Гетерогенный катализатор образует самостоятельную фазу, отделённую границей раздела от фазы, в которой находятся реагирующие вещества – реагенты.

Действие гомогенного катализатора, как правило, связано с тем, что он вступает во взаимодействие с реагирующими веществами с образованием промежуточных соединений, что приводит к снижению энергии активации химической реакции. Впоследствии промежуточные вещества регенерируют исходный катализатор.

Гетерогенные катализаторы имеют, как правило, сильно развитую твердую поверхность, для чего их распределяют на инертном носителе (силикагель, оксид алюминия, активированный уголь и др.). Их действие основано на ускорении химической реакции на своей твердой поверхности (либо на плоской открытой поверхности, либо на краях кристалла, либо вследствие сочетания этих двух факторов). Поэтому активность гетерогенного катализатора зависит от величины и свойств его поверхности.

Типичными гомогенными катализаторами являются кислоты и основания. В качестве гетерогенных катализаторов применяются металлы, их оксиды и сульфиды.

Одни и те же химические реакции могут протекать как с гомогенными, так и с гетерогенными катализаторами. Для определенных химических реакций эффективны только определённые катализаторы.

В биохимических реакциях роль катализаторов выполняют ферменты, которые часто рассматриваются как третья – отдельная категория.

Соответственно классификации катализаторов положительный катализ подразделяют на три типа:

а) гомогенный катализ, когда реакционная смесь и катализатор находятся или в жидком или в газообразном состоянии;

б) гетерогенный катализ, когда катализатор находится в виде твердого вещества, а реагирующие соединения в виде раствора или газообразной смеси. Это наиболее распространенный тип катализа, осуществляемого, таким образом, на границе раздела двух фаз;

в) ферментативный катализ, когда катализатором служат сложные белковые образования, ускоряющие течение биологически важных реакций в организмах растительного и животного мира. Ферментативный катализ может быть как гомогенным, так и гетерогенным, но из-за специфических особенностей действия ферментов целесообразно выделение этого вида катализа в самостоятельную область.

Свойства катализаторов:

Катализаторы как вещества, ускоряющие химические реакции, обладают следующими свойствами:

– каталитической активностью. Каталитическая активность – это свойство катализатора ускорять химическую реакцию. Формально каталитическую активность можно определить как скорость каталитической реакции в данных условиях за вычетом скорости той же реакции в отсутствие катализатора или как соотношение скоростей каталитической и некаталитической реакций;

селективностью. Селективность – это способность протекания химической реакции в определённом направлении, то есть свойство получать те продукты реакции, на которые направлена химическая реакция;

– неизменностью. Неизменность означает, что после участия в химической реакции они (катализаторы) остаются химически неизменными;

– активностью. Активность катализатора в процессе реакции может понижаться вследствие воздействия на катализатор вредных примесей. К последним относятся каталитические яды и ингибиторы. Каталитические яды – это вещества, вызывающие «отравление» катализатора, т. е. снижающие его каталитическую активность или полностью прекращающие каталитическое действие. Поэтому важно в процессе реакции исключить воздействие на катализатор вредных факторов.

Другими немаловажными свойствами катализаторов являются твердость, механическая прочность, устойчивость к истиранию и дроблению, срок службы, устойчивость к отравлению каталитическими ядами, размер и форма, масса единицы объема, пористость, удельная поверхность, термостойкость и стабильность.

Каталитические системы на основе катализаторов:

Современные промышленные твердые катализаторы обычно представляют собой сложные смеси, называемые контактными массами. В состав контактных масс входят прежде всего вещества, являющиеся собственно катализаторами, а также носители и активаторы.

Читайте также:  Какое основное свойство обыкновенной дроби

Активаторы (промоторы) – это вещества, добавляемые к катализатору в небольших количествах с целью улучшения его свойств, таких, как активность, селективность или стабильность, которые сами по себе могут быть неактивными для данной реакции, но значительно улучшают свойства катализатора. Поэтому деление на сложные и активированные катализаторы носит лишь ориентировочный характер.

Улучшение свойств катализатора при добавлении промотора (активатора) значительно превосходит тот эффект, который можно было бы получить в результате независимого действия самого промотора, т.к. сам промотор может и не обладать каталитической активностью.

В общем случае по своему целевому назначению промоторы могут быть разделены на две группы:

– способствующие протеканию целевой реакции, т. е. увеличивающие активность катализатора;

– подавляющие нежелательные процессы, т. е. увеличивающие селективность катализатора.

Среди промоторов первой группы различают структурообразующие и активирующие. Структурообразующие промоторы, как правило, представляют собой инертные вещества, присутствующие в катализаторе в виде мелких частиц, препятствующих спеканию частиц активной каталитической фазы, что предотвращает уменьшение активной поверхности во время работы катализатора. Активирующие промоторы могут создавать дополнительные активные центры, воздействовать на электронную структуру активной фазы и т.п.

Носители – это прочные пористые термостойкие материалы, на которые осаждением, пропитыванием или другими методами наносят катализатор. При нанесении каталитических веществ на пористый носитель достигается их тонкое диспергирование, создаются большие удельные поверхности при размерах пор, близких к оптимальным, и увеличивается термостойкость катализатора, поскольку затруднено спекание его кристалликов, разобщенных на поверхности носителя. При таком методе нанесения достигается экономия дорогих катализаторов, например платины, палладия, серебра. Носитель, как правило, влияет на активность катализатора, таким образом, нет точной границы между понятием активатор и носитель. Наиболее часто в качестве носителей применяют оксид алюминия, силикагель, синтетические алюмосиликаты, каолин, пемзу, асбест, различные соли, уголь.

Примечание: © Фото https://www.pexels.com, https://pixabay.com

карта сайта

Коэффициент востребованности
684

Источник

Явление катализа широко распространено в природе: почти все процессы, происходящие в живых организмах, являются каталитическими. Наверное, нет ни одного человека, который не слышал бы слова «катализ» или «катализаторы».

Сейчас, если спросить любого человека на улице: «Что такое катализатор?», вам ответят: «Это то, что используют в автомобилях для нейтрализации (очистки) выхлопных газов».

А современную промышленность нельзя представить себе без использования катализаторов. Только в химической промышленности каталитические процессы обеспечивают более 80% продукции и около 20% ВВП развитых стран. Не менее 90-95% промышленных реакций – это каталитические процессы в химических и нефтехимических производствах,

Каталитические процессы применяются не только в химических и нефтехимических производствах, но и в пищевой, фармацевтической, металлургической, строительной и многих других отраслях промышленности. А что касается биотехнологии, которая в настоящее время бурно развивается, – там все процессы каталитические.

Где используются катализаторы?

Катализаторы незаменимы в следующих областях:

  • производство топлива для транспорта (во всем мире работают 440 нефтеперерабатывающих заводов);
  • крупнотоннажной и тонкой химической технологии во всех отраслях химической индустрии; только крупнотоннажной химической продукции в мире производится почти на 700 млрд. долл. США (рис. 1);
  • предотвращение загрязнения среды через создание малоотходных технологий;
  • снижение уровня загрязнения сточных вод, промышленных выбросов и выхлопных газов транспорта.

Производство крупнотоннажной химической продукции

Рис. 1.1. Производство крупнотоннажной химической продукции в 2005 г.

Следует также отметить, что ежегодно на заводах всего мира производится примерно 200 тыс. тонн катализаторов общей стоимостью около ~15 млрд. долл. США. Это гигантский рынок.

Предметом каталитической химии являются явления катализа методы подбора катализаторов, их синтеза и применения в различных областях науки, технологии и техники.

Катализ – явление, которое в настоящее время достаточно хорошо осмыслено на концептуальном уровне.

Каталитическая химия – раздел химии, изучающий явление катализа, методы подбора катализаторов, их синтеза и применения в различных областях науки, технологии и техники.

Катализаторы и реагенты могут быть как неорганическими, так и органическими, поэтому каталитическая химия – междисциплинарная область (рис. 1.2). Она использует представления неорганической, органической, физической химии.

Для подбора эффективных катализаторов учѐные и инженеры пользуются также методами электрохимии, квантовой химии, химии металлоорганических соединений. Для исследования катализаторов применяются разнообразные физические методы и приборы. Поэтому можно с полным правом утверждать, что каталитическая химия находится «на стыке наук», т.е. это интенсивно развивающаяся область химии.

Читайте также:  Какие основные свойства соответствуют магнитному полю

Производство крупнотоннажной химической продукции

Рис. 1.2. Междисциплинарные связи каталитической химии

Часто говорят об органическом катализе. Что подразумевают под этим термином? Органический катализ является той областью катализа, когда либо реагент, либо катализатор являются органическими соединениями.

Какие же задачи стоят перед каталитической химией?

  • теоретические (попытки создания теории предвидения каталитического действия и теории приготовления катализаторов, углубление знаний о механизмах катализа),
  • практические (подбор и совершенствование катализаторов промышленных реакций).

Открытие явления катализа

Ещѐ в XV в. алхимики обнаружили, что в присутствии серной кислоты, которая при этом не расходуется, этиловый спирт превращается в диэтиловый эфир (в гомогенной системе):

2C2H5OH (H2SO4) → (C2H5)2O + H2O

Тем не менее, первые научные сведения о катализе относятся к началу XIX в. В 1806 г. французские учѐные Н. Клеман и Ш. Дезорм открыли реакцию окисления сернистого ангидрида до серного под действием диоксида азота, который в процессе не расходовался:

SO2 + NO2 = SO3 + NO

NO + 0,5O2 = NO2

SO2 + 0,5O2 = SO3

Это открытие было использовано для промышленного способа получения серной кислоты (так называемый камерный способ).

В 1811 г. петербуржский академик К.С. Кирхгоф открыл, что разбавленные кислоты способны вызывать превращение крахмала в сахар (глюкозу). И в этом случае кислота не расходовалась. В 1814 г. им же было установлено, что эту реакцию также может катализировать фермент диастаза из ячменного солода. Так было положено начало применению биологических катализаторов – ферментов.

Французский химик Л. Тенар в 1813 г. установил, что аммиак при нагревании разлагается на азот и водород под влиянием некоторых металлов (железо, медь, серебро, платина):

NH3 (Fe,Cu, Pt,Pd) ↔ N2 + H2

В 1818 г. он же показал, что большое число твѐрдых тел оказывает ускоряющее действие на разложение растворов перекиси водорода, а английский химик Г. Дэви открыл способность паров спирта и эфира окисляться кислородом на поверхности платины. В 1822 г. немецкий химик И. Дѐберейнер установил, что водород и кислород соединяются на платине при обычной температуре. За этим последовало открытие и других фактов сильного положительного воздействия веществ на скорость химических реакций.

Все это привело к выделению особой группы явлений, названных немецким химиком Э. Митчерлихом контактными (1833 г.). Термин катализ (от греч. καταλύειν — разрушение) для таких явлений был введѐн только в 1835 г. великим шведским химиком Й. Берцелиусом, который систематизировал и обобщил все известные к тому времени сведения об ускорении химических реакций под действием катализаторов. В.Ф. Оствальд (1909 г.) показал, что катализатор ускоряет только термодинамически разрешенные процессы. За нахождение связи катализа с термодинамикой ему была присуждена Нобелевская премия.

Развитие понимания явления катализа отставало от его практического применения (рис. 1.3).

К истории гетерогенного катализа

Рис. 1.3. К истории гетерогенного катализа

Лишь в начале XX в. стали появляться работы, посвященные попыткам объяснения явления катализа. Так, П. Сабатье (1912 г.) предложил теорию промежуточных соединений и показал, что в присутствии катализаторов реакция идет по иному маршруту, чем в отсутствие катализатора. В 1912 г. он получил Нобелевскую премию за метод гидрогенизации органических соединений в присутствии мелкодисперсных металлов, который резко стимулировал развитие органической химии.

В 1910-1920 гг. практическое применение катализа было развито в работах В.Н. Ипатьева, который ввел в практику катализ при высоком давлении. В 1913 г. впервые был получен в промышленном масштабе аммиак каталитическим синтезом из азота и водорода. Автором каталитического синтеза аммиака является немецкий ученый Ф. Габер. За разработку научных основ процесса синтеза аммиака и за промышленное оформление его Ф. Габеру и К. Бошу в 1918 г. была присуждена Нобелевская премия.

Исследования механизма каталитических реакций стали возможны после работ И. Ленгмюра и С.Н. Хиншельвуда, посвященных изучению процессов адсорбции и созданию кинетической теории. Развитие теоретических представлений (например, теория переходного состояния) и приход в эту область спектральных методов (ИК спектроскопия) открыли новые возможности в установлении связи между каталитическими свойствами и составом и структурой материала. Современное состояние науки о поверхности позволяет выявить структуру адсорбционных центров и их реакционную способность. Разработанная в конце ХХ в. туннельная микроскопия позволяет изучать структуру поверхности и адсорбционных слоев на атомном уровне; некоторые современные методы позволяют изучать катализаторы в процессе их работы (in situ). Развитие получили и численные методы.

Источник