Каковы свойства протона ядром какого химического элемента

Изображение Rafael Zajczewski с сайта Pixabay

Когда где-то говорят о ядерной физике, воображение тут же рисует картины энергоблоков атомных станций или характерные облака ядерных взрывов на просторах военных полигонов. Эти грандиозные образы популярны, но за ними скрывается целый мир знаний о природе материи. Они позволили нам управлять процессами на уровне атомов и получать при этом огромное количество энергии. Сегодняшняя заметка для тех, кто хочет познакомиться с самыми базовыми понятиями ядерной физики.

Существование атомов, мельчайших частиц материи, предсказали ещё древнегреческие мыслители. Наблюдая за природой, они предположили – тела не могу бесконечно делиться. Скала станет грудой булыжников, булыжники превратятся в мелкие камни, затем на их месте окажется песок, который можно растолочь в пыль. Значит, есть предел при уменьшения масштабов?

В XIX веке стало понятно – он существует.Гипотетический атом наконец обнаружили и долгое время считали неделимым, состоящим из массивного ядра и электронов. Однако, до 1910х годов прошлого века оставались вопросы: есть ли частицы, меньшие, чем атомное ядро и точно ли оно является монолитным? Опыты Эрнеста Резерфорда показали, что внутри ядра находятся элементарные частицы,протоны. Они подобны кирпичикам, из которых складывается материя. Атомные ядра любого химического элемента всегда имеют внутри протоны, у водорода он всего один, у других веществ – больше. Протон заряжен положительно, таким образом в природе обеспечивается некоторое равновесие, ведь электроны в атоме обладают отрицательным зарядом.

Благодаря протонам, в ядерной физике существует величина, характеризующая заряд самого ядра – зарядовое число Z. Если вы где-то прочитали, что зарядовое число элемента равно 2, то число протонов в ядре тоже равно двум. Зарядовое число определяет положение элемента в таблице Менделева и его химические свойства.

Масса протона по привычным меркам незначительна и составляет 10 в минус 27-й степени килограмма, однако эта элементарная частица тяжелее электрона в 1836 раз.

Протон стабилен, то есть не способен самопроизвольно распадаться. По крайней мере, современные данные позволяют считать что  время существования частицы превышает миллиарды миллиардов лет.

Размеры протона лучше всего понять в сравнении. Представьте, что вам удалось увеличить атом до размеров однокомнатной квартиры. Тогда, если повезёт, вы сможете увидеть протон, потому что в таком состоянии он будет не больше пылинки. Но, увы, этот опыт невозможен, а устанавливать истинный размер протона не всегда целесообразно, ибо в мире элементарных частиц царят квантовые законы. Существуют специфические характеристики, по которым я могу лишь говорить о том, что в привычном понимании, протон занимает в пространстве примерно 10 в минус 15 степени метра.

Если вы хотите увидеть, за какие физические реакции отвечает протон, то просто дождитесь восхода Солнца. Именно слияние протонов обеспечивает звёзды энергией, часть из которых мы наблюдаем как видимый свет.

Было интересно? Посмотрите другие материалы канала и подпишитесь. А ещё я пишу книги про физику и астрономию, можете ознакомиться и совершенно бесплатно скачать одну из них

Уважаемые борцы со всемирным научным заговором и эмоционально несдержанные читатели, ваши комментарии неизбежно удаляются. Даже не тратьте время.

Источник

Основной структурной единицей веществ атомного строения является атом.

Атом – мельчайшая, электронейтральная, химически неделимая частица вещества, состоящая из положительно заряженного ядра и отрицательно заряженной электронной оболочки.

Электронная оболочка – совокупность группирующихся вокруг ядра электронов.

Электрон – одна из элементарных частиц материи, обладающая массой покоя и элементарным отрицательным зарядом.

Когда говорят о массе покоя, то подразумевают, что частица может находиться в состоянии покоя и иметь массу. Существуют частицы, которые не могут находиться в состоянии покоя, например частицы света – фотоны. В этом случае говорят, что фотон не имеет массы покоя.

Заряд электрона называется элементарным, так как это наименьший отрицательный заряд в природе. По этой причине заряд электрона условно принимают равным -1.

Атомное ядро – центральная, положительно заряженная, сложно организованная часть атома, состоящая из нуклонов, связанных между собой ядерными силами.

Нуклоны – общее название двух типов частиц, протонов и нейтронов.

С точки зрения атомной физики протон и нейтрон являются двумя состояниями одной и той же частицы – нуклона.

Нуклон – структурная единица ядра атома, которая может находиться в двух состояниях, протона и нейтрона.

Нуклоны (протоны и нейтроны) состоят из кварков.

Табл. Основные характеристики некоторых субатомных частиц

Заряд ядра атома соответствует атомному номеру (порядковому номеру) элемента в периодической системе (Z).

Заряд ядра определяется числом протонов, следовательно:

Так как атом – электронейтральная частица, то:

Массовое число (нуклонное число) – сумма числа протонов и нейтронов в ядре данного атома.

Если в условии задания не указано массовое число, то его можно взять из таблицы Д.И. Менделеева, округлив до целой величины относительную атомную массу.

О том, что такое относительная атомная масса мы поговорим чуть позже. Пока не заостряйте на этом внимание. Где её найти в таблице Д.И. Менделеева показано на рисунке ниже.

Для расчета числа нейтронов в ядре используется формула:

Для характеристик частицы (протона, нейтрона, атома) применяют следующую запись:

X – символ частицы. A – массовое (нуклонное число). Z – заряд

Определим состав атома хлора. Порядковый номер хлора в таблице Д. И. Менделеева равен 17, следовательно заряд ядра атома хлора равен +17. Если заряд ядра равен +17, то в ядре атома хлора 17 протонов, а в электронной оболочке 17 электронов.

Чтобы определить число нейтронов в ядре атома хлора, округлим до целой величины относительную атомную массу хлора, это значение равно 36. То есть, в ядре атома хлора 36 нуклонов, 17 из них являются протонами, тогда число нейтронов равно 36-17 = 19.

Кратко это можно записать следующим образом:

Атомы отличаются друг от друга радиусом, массой, зарядом ядра, количеством электронов и другими параметрами. Заряд ядра атома – это наиболее важная его характеристика. Поэтому все атомы можно условно разделить на группы (классифицировать) по заряду их ядер. Такие абстрактные группы принято называть химическими элементами.

Химический элемент – вид атомов, с определённым зарядом ядра.

Химический элемент – одно из центральных понятий науки химии.

По предложению шведского химика Й. Берцелиуса химические элементы обозначают начальной или начальной и одной из последующих букв латинского названия элемента (1813 г).

Водород на лат. Hydrogenium (H). Ртуть на лат. Hydrargyrum (Hg) Эти буквенные обозначения называются химическими знаками или химическими символами.

Символ отдельного атома совпадает с символом соответствующего ему химического элемента. К примеру, символ S обозначает химический элемент серу или же один атом этого элемента.

Читайте также:  Какими полезными или лечебными свойствами обладает сельдерей

Если требуется обозначить не один, а несколько атомов, то перед символом элемента ставят соответствующую цифру – коэффициент. 5S – пять атомов элемента серы.

Символы и русские названия химических элементов можно найти в таблице Д. И. Менделеева.

Несмотря на то что у ядер атомов одного и того же химического элемента одинаковый заряд, они могут отличаться друг от друга массовым (нуклонным) числом по причине разного количества нейтронов. Такие разновидности ядер атомов одного химического элемента называют изотопами.

Изотопы – ядра с одинаковым зарядом, но разным массовым числом, т.е разным числом нейтронов.

Отметим, что термин изотопы следует употреблять только во множественном числе. В единственном числе следует говорить – нуклид. Что такое нуклиды Вы узнаете чуть позже.

К примеру, химический элемент водород (H) представляет из себя смесь атомов с массовыми числами равными 1 и 2, это изотопы водорода – протий (H) и дейтерий (D). Нуклид водорода с массовым числом 3 в природе не встречается, так как его ядро чрезвычайно нестабильно и очень быстро подвергается ядерному распаду, это так называемый тритий (T).

Запишем состав изотопов водорода, пользуясь описанными выше правилами.

Мы убедились, что изотопы отличаются массовыми числами, а также количеством нейтронов в ядре. Заряд ядер изотопов одинаковый, так как они принадлежат одному химическому элементу.

Содержание изотопов в земной коре разное ввиду их разной стабильности. Чем устойчивее изотоп, тем выше его содержание.

Содержание изотопов элемента Х может быть оценено в массовых или мольных долях.

Доля – отношение части к целому.

Массовая доля (w или w%) – отношение массы части системы к массе всей системы.

О мольной доле мы поговорим позднее в соответствующей теме.

Массовая доля – величина безразмерная, её выражают в долях единицы или процентах. Для вычисления массовой доли применяются формулы:

Изотопный состав элемента водорода может быть представлен следующей схемой:

Задания по теме “Основные сведения о строении атома”

  • Ядро атома некоторого элемента содержит 16 нейтронов, а электронная оболочка этого атома – 15 электронов. Назвать элемент, изотопом которого является данный атом. Привести запись его символа с указанием заряда ядра и массового числа.
  • Массовое число атома некоторого элемента равно 181, в электронной оболочке атома содержится 73 электрона. Указать число протонов и нейтронов в ядре атома и название элемента.
  • Укажите число протонов, нейтронов и электронов в атоме циркония.
  • Укажите число протонов, нейтронов и электронов в атоме иттрия.
  • Укажите число протонов, нейтронов и электронов в атоме индия.
  • Укажите число протонов, нейтронов и электронов в атоме кадмия.
  • Сколько нейтронов содержит ядро атома 37Cl?
  • Сколько нейтронов содержит ядро атома 18O?
  • Сколько нейтронов содержит ядро атома 30Si?
  • Сколько нейтронов содержит ядро атома 19F?

Источник

Состав атома.

Атом состоит из атомного ядра и электронной оболочки.

Ядро атома состоит из протонов (p+) и нейтронов (n0). У большинства атомов водорода ядро состоит из одного протона.

Число протонов N(p+) равно заряду ядра (Z) и порядковому номеру элемента в естественном ряду элементов (и в периодической системе элементов).

N(p+) = Z

Сумма числа нейтронов N(n0), обозначаемого просто буквой N, и числа протонов Z называется массовым числом и обозначается буквой А.

A = Z + N

Электронная оболочка атома состоит из движущихся вокруг ядра электронов (е-).

Число электронов N(e-) в электронной оболочке нейтрального атома равно числу протонов Z в его ядре.

Масса протона примерно равна массе нейтрона и в 1840 раз больше массы электрона, поэтому масса атома практически равна массе ядра.

Форма атома – сферическая. Радиус ядра примерно в 100000 раз меньше радиуса атома.

Химический элемент – вид атомов (совокупность атомов) с одинаковым зарядом ядра (с одинаковым числом протонов в ядре).

Изотоп – совокупность атомов одного элемента с одинаковым числом нейтронов в ядре (или вид атомов с одинаковым числом протонов и одинаковым числом нейтронов в ядре).

Разные изотопы отличаются друг от друга числом нейтронов в ядрах их атомов.

Обозначение отдельного атома или изотопа: (Э – символ элемента), например: .

Строение электронной оболочки атома

Атомная орбиталь – состояние электрона в атоме. Условное обозначение орбитали – . Каждой орбитали соответствует электронное облако.

Орбитали реальных атомов в основном (невозбужденном) состоянии бывают четырех типов: s, p, d и f.

Электронное облако – часть пространства, в которой электрон можно обнаружить с вероятностью 90 (или более) процентов.

Примечание: иногда понятия “атомная орбиталь” и “электронное облако” не различают, называя и то, и другое “атомной орбиталью”.

Электронная оболочка атома слоистая. Электронный слой образован электронными облаками одинакового размера. Орбитали одного слоя образуют электронный (“энергетический”) уровень, их энергии одинаковы у атома водорода, но различаются у других атомов.

Однотипные орбитали одного уровня группируются в электронные (энергетические) подуровни:
s-подуровень (состоит из одной s-орбитали), условное обозначение – .
p-подуровень (состоит из трех p-орбиталей), условное обозначение – .
d-подуровень (состоит из пяти d-орбиталей), условное обозначение – .
f-подуровень (состоит из семи f-орбиталей), условное обозначение – .

Энергии орбиталей одного подуровня одинаковы.

При обозначении подуровней к символу подуровня добавляется номер слоя (электронного уровня), например: 2s, 3p, 5d означает s-подуровень второго уровня, p-подуровень третьего уровня, d-подуровень пятого уровня.

Общее число подуровней на одном уровне равно номеру уровня n. Общее число орбиталей на одном уровне равно n2. Соответственно этому, общее число облаков в одном слое равно также n2.

Обозначения: – свободная орбиталь (без электронов), – орбиталь с неспаренным электроном, – орбиталь с электронной парой (с двумя электронами).

Порядок заполнения электронами орбиталей атома определяется тремя законами природы (формулировки даны упрощенно):

1. Принцип наименьшей энергии – электроны заполняют орбитали в порядке возрастания энергии орбиталей.

2. Принцип Паули – на одной орбитали не может быть больше двух электронов.

3. Правило Хунда – в пределах подуровня электроны сначала заполняют свободные орбитали (по одному), и лишь после этого образуют электронные пары.

Общее число электронов на электронном уровне (или в электронном слое) равно 2n2.

Распределение подуровней по энергиям выражается рядом (в прядке увеличения энергии):

1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p

Наглядно эта последовательность выражается энергетической диаграммой:

Распределение электронов атома по уровням, подуровням и орбиталям (электронная конфигурация атома) может быть изображена в виде электронной формулы, энергетической диаграммы или, упрощенно, в виде схемы электронных слоев (“электронная схема”).

Примеры электронного строения атомов:

Валентные электроны – электроны атома, которые могут принимать участие в образовании химических связей. У любого атома это все внешние электроны плюс те предвнешние электроны, энергия которых больше, чем у внешних. Например: у атома Ca внешние электроны – 4s2, они же и валентные; у атома Fe внешние электроны – 4s2, но у него есть 3d6, следовательно у атома железа 8 валентных электронов. Валентная электронная формула атома кальция – 4s2, а атома железа – 4s23d6.

Читайте также:  Какие свойства должны быть для интернета

Периодическая система химических элементов Д. И. Менделеева
(естественная система химических элементов)

Периодический закон химических элементов (современная формулировка): свойства химических элементов, а также простых и сложных веществ, ими образуемых, находятся в периодической зависимости от значения заряда из атомных ядер.

Периодическая система – графическое выражение периодического закона.

Естественный ряд химических элементов – ряд химических элементов, выстроенных по возрастанию числа протонов в ядрах их атомов, или, что то же самое, по возрастанию зарядов ядер этих атомов. Порядковый номер элемента в этом ряду равен числу протонов в ядре любого атома этого элемента.

Таблица химических элементов строится путем “разрезания” естественного ряда химических элементов на периоды (горизонтальные строки таблицы) и объединения в группы (вертикальные столбцы таблицы) элементов, со сходным электронным строением атомов.

В зависимости от способа объединения элементов в группы таблица может быть длиннопериодной (в группы собраны элементы с одинаковым числом и типом валентных электронов) и короткопериодной (в группы собраны элементы с одинаковым числом валентных электронов).

Группы короткопериодной таблицы делятся на подгруппы (главные и побочные), совпадающие с группами длиннопериодной таблицы.

У всех атомов элементов одного периода одинаковое число электронных слоев, равное номеру периода.

Число элементов в периодах: 2, 8, 8, 18, 18, 32, 32. Большинство элементов восьмого периода получены искусственно, последние элементы этого периода еще не синтезированы. Все периоды, кроме первого начинаются с элемента, образующего щелочной металл (Li, Na, K и т. д.), а заканчиваются элементом, образующим благородный газ (He, Ne, Ar, Kr и т. д.).

В короткопериодной таблице – восемь групп, каждая из которых делится на две подгруппы (главную и побочную), в длиннопериодной таблице – шестнадцать групп, которые нумеруются римскими цифрами с буквами А или В, например: IA, IIIB, VIA, VIIB. Группа IA длиннопериодной таблицы соответствует главной подгруппе первой группы короткопериодной таблицы; группа VIIB – побочной подгруппе седьмой группы: остальные – аналогично.

Характеристики химических элементов закономерно изменяются в группах и периодах.

В периодах (с увеличением порядкового номера)

  • увеличивается заряд ядра,
  • увеличивается число внешних электронов,
  • уменьшается радиус атомов,
  • увеличивается прочность связи электронов с ядром (энергия ионизации),
  • увеличивается электроотрицательность,
  • усиливаются окислительные свойства простых веществ (“неметалличность”),
  • ослабевают восстановительные свойства простых веществ (“металличность”),
  • ослабевает основный характер гидроксидов и соответствующих оксидов,
  • возрастает кислотный характер гидроксидов и соответствующих оксидов.

В группах (с увеличением порядкового номера)

  • увеличивается заряд ядра,
  • увеличивается радиус атомов (только в А-группах),
  • уменьшается прочность связи электронов с ядром (энергия ионизации; только в А-группах),
  • уменьшается электроотрицательность (только в А-группах),
  • ослабевают окислительные свойства простых веществ (“неметалличность”; только в А-группах),
  • усиливаются восстановительные свойства простых веществ (“металличность”; только в А-группах),
  • возрастает основный характер гидроксидов и соответствующих оксидов (только в А-группах),
  • ослабевает кислотный характер гидроксидов и соответствующих оксидов (только в А-группах),
  • снижается устойчивость водородных соединений (повышается их восстановительная активность; только в А-группах).

Источник

«Другого ничего в природе нет….

Ни здесь, ни там – в космических глубинах.

Все: от песчинок малых до планет

из элементов состоит единых»

Степан Щипачёв

Ранее изучалось строение атома. С помощью опытов Резерфорда, было установлено, что почти вся масса и весь положительный заряд атома сосредоточены в атомном ядре, вокруг которого вращаются отрицательно заряженные электроны. После этого открытия возникал резонный вопрос: а из чего состоит ядро? Ещё в 1913 году, Резерфорд предположил, что в состав любого атомного ядра входит ядро атома водорода. Это предположение было обусловлено тем, что масса ядра любого химического элемента была в целое число раз больше массы ядра атома водорода. Это дало основание рассматривать ядро атома водорода как элементарную частицу. Такая частица была названа протоном.

В 1919 году Резерфорд провел следующий опыт: он обстреливал ядро атома азота a-частицами. При попадании a-частицы в ядро азота, образовались два совершенно новых ядра: по предварительным оценкам, это были ядра атомов кислорода и водорода.

Однако полной уверенности в этом не было до тех пор, пока эксперимент не был повторен в камере Вильсона. На фотографии видны расходящиеся прямые линии – это следы a-частиц, которые не испытали соударений с ядрами атомов азота.

Тем не менее, на фотографии ясно видно, что след одной a-частицы раздваивается. Это говорит о том, что именно эта a-частица столкнулась с ядром атома азота. По характеру искривления треков было установлено (на этот раз точно), что образовавшиеся ядра действительно являются ядрами атомов кислорода и водорода. Таким образом, Резерфордом фактически была получена первая искусственная ядерная реакция.

В уравнении, описывающем данную реакцию, символом

обозначено ядро атома водорода, масса которого составляет приблизительно одну атомную единицу массы (1 а.е.м.), а заряд равен модулю элементарного заряда. Ядро атома водорода также обозначается символом  

(то есть символом протона, поскольку это одно и то же). Впоследствии были проведены подобные эксперименты и с другими элементами, такими как натрий, алюминий, магний и многими другими. Из всех этих ядер a-частицы выбивали протоны, что подтверждало гипотезу Резерфорда.

Тем не менее, очень скоро стало ясно, что ядра не состоят только из протонов. Дело в том, что это противоречило опытным данным. Для примера возьмем ядро бериллия, заряд которого равен четырем элементарным зарядам . Это говорит нам о том, что в ядре бериллия находится 4 протона. Если бы ядро состояло только из протонов, то масса ядра бериллия была бы равна 4 а.е.м. В действительности же, масса ядра бериллия составляет 9 а.е.м. Следовательно, в ядро входят еще какие-то частицы, причем не обладающие электрическим зарядом. Именно на основании этого, в 1929 году Резерфорд высказал предположение о существовании электрически нейтральной частицы, масса которой приблизительно равна массе протона.

В 1930 году Вальтер Боте и его студент Герберт Беккер обнаружили следующее: при бомбардировке a-частицами ядра атома бериллия, из ядра исходит какое-то неизвестное излучение. Сначала было выдвинуто предположение о том, что это гамма-лучи, поскольку они имели высокую проникающую способность и никак не отклонялись в магнитном поле. Однако, от этой идеи пришлось отказаться, поскольку данное излучение обладало слишком большой энергией для гамма-лучей. В 1932 году изучением нового излучения занялся ученик Резерфорда – Джеймс Чедвик.

Он доказал, что неизвестное излучение – это на самом деле поток нейтральных частиц, масса которых приблизительно равна массе протона. Эту массу удалось определить по характеру взаимодействия с другими частицами. То, что частица электрически нейтральна, следовало из того, что она не отклонялась ни в электрическом, ни в магнитном поле. Такую частицу назвали нейтроном. Итак, нейтрон обозначается символом  

(поскольку не имеет заряда и обладает массой приблизительно равной 1 а.е.м.). Впоследствии точные измерения показали, что масса нейтрона чуть больше массы протона.

Читайте также:  Какие свойства волос учитываются при укладке

Практически сразу после открытия нейтрона физиками Дмитрием Иваненко и Вернером Гейзенбергом была предложена протонно-нейтронная модель строения ядра.

Работая независимо друг от друга, они пришли к выводу, что ядра атомов всех элементов состоят из двух видов частиц: протонов и нейтронов. Эти частицы стали называть нуклонами. Общее число нуклонов в ядре называется массовым числом (поскольку это число определяет массу ядра). Массовое число обозначается буквой А. Число протонов в ядре называется зарядовым числом (поскольку это число определяет заряд ядра). Зарядовое число обозначается буквой Z. Нетрудно догадаться, что число нейтронов в ядре равно разности общего числа нуклонов и числа протонов. То есть, чтобы найти число нейтронов, нужно из массового числа вычесть зарядовое число. Это число обозначается буквой N.

Итак, в общем случае, ядро любого химического элемента обозначается следующим образом:

где Х – это символ элемента, Z – зарядовое число и А – массовое число. Еще раз уточним, что массовое число равно массе, выраженной в атомных единицах и округленной до целых. Зарядовое число равно заряду, выраженному в единицах элементарного электрического заряда. Для примера рассмотрим ядро натрия.

В таблице Менделеева, натрий имеет порядковый номер 11 – это и есть зарядовое число. Значит, в ядре натрия содержится 11 протонов. Поскольку атом в целом электрически нейтрален, можно заключить, что в атоме содержится 11 электронов. В таблице Менделеева также указана масса натрия – 23. Значит, в ядре натрия содержится 12 нейтронов. Итак, чтобы определить количество протонов, нейтронов и электронов в атоме, нужно сделать следующее:

Посмотреть в таблице Менделеева порядковый номер интересующего вас элемента. Таким образом, определяется зарядовое число – то есть число протонов и число электронов.

Посмотреть массу этого элемента в таблице Менделеева и округлить её до целых (она почти всегда очень близка к целому числу). Таким образом, определяется массовое число, то есть общее число нуклонов. Для нахождения числа нейтронов, нужно из массового числа вычесть зарядовое число.

Необходимо отметить, что существуют атомы, которые ничем не отличаются друг от друга по своим химическим свойствам, но обладают различным массовым числом. Впервые, на существование таких атомов обратил внимание Фредерик Содди, который работал вместе с Резерфордом. Содди предложил называть такие атомы изотопами. С помощью опытов было установлено, что изотопы одинаково вступают в химические реакции и образуют одинаковые соединения. Это говорило о том, что число электронов в электронных оболочках (а, значит, и заряд ядра) у изотопов одинаковы. Стало быть, в ядрах изотопов содержалось различное число нейтронов.

На сегодняшний день найдены изотопы всех химических элементов. Например, водород имеет три изотопа: протий, дейтерий и тритий.

Ядро протия состоит только из одного протона (это самый распространенный изотоп водорода). То есть, заряд ядра протия равен элементарному заряду, а масса равна одной атомной единице. Ядро дейтерия включает в себя один протон и один нейтрон. Таким образом, заряд ядра дейтерия тоже равен элементарному, но масса уже равна двум атомным единицам. Наконец, ядро трития содержит один протон и два нейтрона. Заряд ядра трития опять-таки равен элементарному заряду, а вот масса равна трем массовым единицам.

Другие химические элементы могут иметь значительно больше изотопов: например у урана их насчитывается 26. Наиболее распространенные изотопы урана – это уран 235 и уран 238 (поскольку зарядовое число изотопов одинаковое, имеет смысл упоминать только массовое число, чтобы понять, о каком изотопе идет речь).

Надо сказать, что некоторые изотопы могут являться радиоактивными. В связи с этим, изотопы делятся на стабильные и нестабильные. Стабильные изотопы сохраняются неизменными сколь угодно долго, а нестабильные изотопы со временем превращаются в другие химические элементы в результате радиоактивного распада.

Именно из-за существования изотопов, для большинства элементов в таблице Менделеева указана дробная масса. Дело в том, что эта масса вычисляется как средняя масса всех изотопов с учетом степени распространения каждого изотопа. Например, как мы уже убедились, водород имеет три изотопа с массовыми числами один, два и три. Но протий распространен гораздо больше: его содержание в природе составляет почти 99,99%. Поэтому в таблице Менделеева масса водорода практически равна единице.

Возникает важнейший вопрос: как же ядра многих изотопов остаются стабильными? Что удерживает нуклоны в ядре? Ведь между положительно заряженными протонами должны возникать силы электростатического отталкивания. Силы, удерживающие протоны и нейтроны в ядре называются ядерными силами. Нетрудно догадаться, что раз протоны не разлетаются в разные стороны, значит, ядерные силы значительно мощнее, чем электростатические силы. Но ядерные силы действуют на очень малом расстоянии, то есть в пределах атомного ядра. Эти силы фундаментально отличаются от гравитационного или электромагнитного взаимодействия и относятся к сильному взаимодействию, о котором упоминалось в девятом и десятом классах. Также к свойствам ядерных сил можно отнести то, что они не являются центральными (то есть не действуют вдоль прямой, соединяющей частицы). Кроме того, ядерные силы не зависят от величины заряда частиц (поскольку они действуют и на незаряженные частицы – нейтроны).

Основные выводы:

– После открытия протона и нейтрона была предложена протонно-нейтронная модель ядра.

– Согласно этой модели все ядра атомов состоят из протонов и нейтронов. Частицы, входящие в состав ядра назвали нуклонами.

– Общее число нуклонов в ядре называется массовым числом, а число протонов в ядре называется зарядовым числом.

Массовое число А численно равно массе ядра данного химического элемента, выраженной в атомных единицах массы и округленной до целого.

Зарядовое число Z численно равно заряду ядра, выраженному в единицах элементарного электрического заряда.

Число нейтронов в ядре определяется как разность массового и зарядового чисел.

– В результате исследований было открыто существование разновидностей каких-либо химических элементов, которые обладали одинаковыми химическими свойствами, но имели различную массу. Такие разновидности назвали изотопами.

Ядерные силы – это силы, удерживающие нуклоны в ядре в течение длительного времени. Тем не менее, ядерные силы не распространяются за пределы атомных ядер.

Тест

Источник