Каков состав нефти какие физические свойства

Анонимный вопрос

7 декабря 2018  · 8,1 K

Мои интересы: разнообразны, но можно выделить следующие: литература, история…

По большей части нефть состоит из углеводородов (80%), 5% составляют сера, азот и кислород. В небольших количествах в нефти присутсвую различные металлы и другие химические элементы. Газообразные и твердые компоненты нефти растворены в ее жидких составляющих. Каждый компонент сохраняет в смеси свои индивидуальные свойства, в том числе и температуру кипения, что позволяет разделить нефть на составляющие методом фракционной перегонки.

Да, я знаю. Смогу поделится, но не сейчас. Чтобы определить экспортный потенциал(исключить продажу сырых нефтей на экспорт, продавать нефтепродукты с добавленной стоимостью) с месторождений Крайнего Севера, мне надо найти физико-химические свойства нефтей Таймыра.

Что делают из нефти?

Университет детей рассказывает об окружающем мире доступным научным языком.   · udetey.ru

Чтобы использовать нефть, для начала её нужно очистить. Поэтому сначала на нефтеперерабатывающих заводах из сырой нефти удаляют лишнюю воду и соли. Для этого через неё пропускают электрический ток.
Затем начинается процесс, который называется “перегонка”. Под действием разных температур нефть рассортировывают на различные фракции — проще говоря, на нефтепродукты, которые затем станут бензином, дизельным топливом, авиатопливом и пр.
Потом в огромных резервуарах происходит окончательная переработка и очистка нефти. В итоге получается бензин различных марок — 92, 95 и 98. В нефть добавляют компоненты, улучшающие качество бензина.
И только после всего этого проводят экспертизы и пробы.

Прочитать ещё 8 ответов

Как производится перегонка нефти?

Администратор общественно-образовательного портала SNEG5.COM

Одна из главных частей процесса переработки нефти — дистилляция, ректификация, или как ее чаще называют, перегонка нефти.

Цель любой системы ректификации заключается в разделении жидкости на несколько составляющих. Процесс происходит в специальной башне. В России ее называют ректификационной колонной.

Здесь исходное сырье разделяется на фракции. Сырье из специального резервуара с помощью помпы загоняется в нагревательный отсек (предварительный нагреватель), где температура доводится до уровня, близкого к точке кипения. Повышается и давление, что позволяет моментально «вскипятить» нефть, как только та попадет в башню дистилляции, где давление ниже. По мере кипения сырья, начинается процесс перехода в газообразное состояние. Более легкие компоненты поднимаются наверх, тяжелые остаются на дне башни. Оттуда они в итоге выкачиваются специальной помпой, но сначала нужно прогнать смесь через еще один нагревательный элемент и убедиться, что все легкие фракции высвобождены.

Итак, тяжелые фракции отделены. Теперь дело за более легкими. В верхней части башни располагается конденсатор. Он охлаждает и сжижает поднявшийся наверх газ. Часть получившегося сырья выкачивается из башни насосом, другая возвращается обратно для продолжения процесса перегонки. Еще одним неотъемлемым элементом процесса перегонки являются ректификационные тарелки, расположенные внутри колонны и разделяющие на разных уровнях газ и жидкость. В этих тарелках множество отверстий, через которые газ может подниматься наверх. Но жидкость не протекает вниз сквозь отверстия. Она накапливается в своеобразных поддонах. Если жидкости слишком много, она проливается вниз по специальным каналам. Газ проходит сквозь жидкое вещество, охлаждаясь, жидкость стекает вниз, нагреваясь. В результате повторения таких циклов все легкие фракции оказываются выше, тяжелые, внизу. Мы описали стандартное строение ректификационной колонны, но все они, даже самые современные, работают именно по такому принципу.

Подробнее в источнике: https://sneg5.com/nauka/himiya/pererabotka-nefti-v-rossii.html

Какой из вариантов гибели человеческой жизни на Земле наиболее вероятен?

Так вышло, что разбираюсь во многих областях.
Веду канал “Ходячая энциклопедия”…

Либо какая-то космическая катастрофа (вроде близкой гамма-вспышки), либо человеческие разборки: скорее война, чем случайная техногенная катастрофа. Но в случае войны человечество наверняка продолжит существование вне Земли.

Да и в случае техногенной катастрофы тоже: сейчас пока человечество такую катастрофу спровоцировать не может (только если целенаправленно будет стараться, но это уже не “катастрофа”). Наверняка сможет чуть позже, но к тому времени, скорее всего, уже начнётся активная космическая экспансия, на грани которой мы стоим сейчас.

Прочитать ещё 13 ответов

Источник

Физические свойства нефти, так же, как и её химические характеристики, изменяются в достаточно широком диапазоне, в зависимости от её состава. Например, консистенция этой жидкости меняется от легкой и газонасыщенной   до тяжелой и  густой, с высоким содержанием смол. Цвет этого полезного ископаемого также меняется от светлого, почти прозрачного,  до темно-коричневого, почти черного.

 Загрузка …

Эти нефтяные свойства определяет  преобладание в составе этой углеводородной смеси либо легких низкомолекулярных  соединений, либо сложно построенных тяжелых соединений с высокой молекулярной массой. Нефть и её применение для производства различных товаров, которые называются нефтепродукты, делают это полезное ископаемое важнейшим энергоносителем в современном мире.

Химический состав нефти

Химические свойства нефти и газа зависят от химической структуры их состава. Этот состав достаточно прост. Основные его элементы – это углерод (С) и водород (Н). Углерода в нефтях содержится от 83-х до 89-ти процентов, водорода – от 12-ти до   14-ти процентов.

Также в нефтях присутствует небольшое количество серы, азота и кислорода, а также примеси различных металлов. Соединения углерода и водорода называются углеводородами (СН).

Нефть – это  горючая маслянистая жидкость, цвет которой варьируется от светло-желтого до черного, состав которой в основном представлен  углеводородными соединениями.

Из курса школьной химии известно, что все химические элементы образуют между собой различные соединения, соотношения элементов в которых зависит от их валентности. К примеру, вода (Н2О) – это два одновалентых атома водорода и одни двухвалентный – кислорода.

Самый простой с химической точки зрения углеводород – это метан (СН4), который является горючим газообразным веществом, составляющим основу всех природных газов. Обычно в природном газе содержание метана составляет  от 90 до 95 процентов и более.

За метаном следуют: этан (С2Н6), пропан (С3Н8), бутан (С4Н10), пентан  (С5Н12), гексан (С6Н14) и так далее.

Начиная с пентана, углеводороды из газообразного состояния переходят в жидкое, то есть – в нефть.

Углерод при соединении с водородом образует огромное количество  соединений, различных по своему химическому строению и свойствам.

Для удобства все нефтяные углеводороды разделены на три группы:

  • Алканы (метановая группа) с общей формулой СnH2n+2. Эта группа представляет собой насыщенные углеводороды, поскольку все их валентные связи задействованы. С химической точки зрения они – самые  инертные, другими словами – не способны вступать в реакции с другими химическими соединениями. Структура  алканов может быть или линейной (нормальные алканы), или  разветвленной (изоалканы).
  • Цикланы (нафтеновая группа) с общей формулой СnH2n. Их главный признак –  пяти – или шестичленное кольцо, состоящее из атомов углерода. Другими словами, цикланы, в отличие от алканов, имеют  замкнутую в цепь циклическую структуру. Эта группа тоже представляет предельные (насыщенные) соединения и в реакции с другими химическими элементами они также почти не вступают.
  • Арены (ароматическая группа) с общей формулой СnH2n-6. Их структура – шестичленные циклы, в основе которых лежит ароматическое бензольное ядро (С6Н6). Их отличает  наличие между атомами двойных связей. Арены бывают моноциклическими (одно бензольное кольцо), бициклическими (сдвоенные кольца бензола) и полициклическими (кольца соединены по принципу пчелиных сот).
Читайте также:  Какое свойство углерода выделяет его

Нефть и природный газ  веществами с постоянным и строго определенным химсоставом не являются. Это сложные смеси  природных углеводородов, находящихся в газообразном, жидком и твердом состоянии. Однако эта смесь не является простой в привычном понимании. Ей ближе определение «сложный  раствор углеводородов», где в качестве  растворителя выступают   легкие соединения, а растворенные вещества – это высокомолекулярные углеводороды (в том числе асфальтены и  смолы).

Основное отличие раствора от простой смеси заключается в том, что компоненты, входящие его состав, могут  вступать во взаимодействие  друг с другом как с химической, так и с  физической точки зрения, и приобретать  в результате таких взаимодействий новые свойства, которых не было в первоначальных соединениях.

Основные физические характеристики нефти

Плотность

Физические свойства нефти достаточно разнообразны, но самым важным среди них является её плотность (по-другому – удельный вес). Этот параметр  зависит от молекулярных весов входящих в её состав  компонентов.

Значение плотности нефти варьируется от 0,71 до 1,04 грамм на кубический сантиметр.

В нефтеносных коллекторах в нефти много  растворенного газа, поэтому в природных условиях её плотность меньше (в 1,2 – 1,8 раза), нежели в добытом дегазированном сырье.

По значению этого параметра нефть делится на следующие классы:

  • класс очень легких нефтей (плотность – менее 0,8 грамм/см3);
  • легкие нефти (от 0,80 до 0,84 грамм/см3);
  • класс средних нефтей (от 0,84 до 0,88 грамм/см3);
  • тяжелые нефти (плотность – от 0,88 до 0,92 грамм/см3);
  • нефти очень тяжелого класса (> 0,92 грамм на кубический сантиметр).

Вязкость

Вязкость этого полезного ископаемого является свойством этого вещества оказывать сопротивление при перемещении относительно друг друга нефтяных частиц при движении нефти. Другими словами, этим параметром характеризуется подвижность этого углеводородного раствора.

Измеряют вязкость специальным прибором – вискозиметром. Единица  измерения в системе СИ – миллипаскаль в секунду,  в системе СГС  – грамм на сантиметр в секунду (Пуаз).

Вязкость бывает динамической и кинематической.

Динамическая показывает значение силы сопротивления перемещению жидкостного слоя,   площадь которого – один квадратный сантиметр, на 1 сантиметр  при скорости движения 1 сантиметр в секунду.  Кинематическая вязкость характеризует  свойство нефти сопротивляться перемещению одной жидкой части относительно другой, учитывая при этом силу тяжести.

Поднятая на поверхность нефть по этому параметру делится на:

Полезная информация
1маловязкую (вязкость –  менее 5 мПа/с)
2с повышенной вязкостью (от 5-ти  до 25-ти  мПа/с)
3высоковязкую  (большее 25-ти  мПа/с)

Чем легче углеводородная жидкость, тем меньше значение её вязкости. В пласте этот параметр нефти в меньше (причем – в десятки раз), чем вязкость этой же нефти, поднятой на поверхность и дегазированной.  Значение этого физического параметра велико, поскольку позволяет определить масштабы миграции в процессе формирования залежей.

Величину, обратную вязкости, называют текучестью.

Содержание серы в нефти

Это – весьма значимый параметр, который влияет на окислительные свойства этого полезного ископаемого. Чем больше в нем сернистых соединений – тем выше коррозионная агрессивность сырья и получаемых их него нефтепродуктов.

По этому показателю нефть бывает:

  • малосернистой  (до 0,5 процента);
  • сернистой  (от 0,5-ти до 2-х процентов);
  • высокосернистой (> 2-х процентов серы).

Парафинистость

Эта важная характеристика нефти, которая напрямую влияет на  технологии, применяемые при ее добыче, а также на её трубопроводную транспортировку. Парафинистость – это содержание в сырье твердых углеводородов, называемых   парафинами (формулы – от С17Н36  до С35Н72) и церезинами (от С36Н74 до С55Н112).

Их концентрация в некоторых случаях доходит до 13-14 процентов, а, к примеру, нефть казахского месторождения Узень вообще имеет этот показатель на уровне  35-ти процентов. Чем больше парафинистость, тем труднее добывать и транспортировать сырье. Парафины отличаются  способностью к кристаллизации, что приводит к их выпадению в твердый осадок, а это закупоривает поры в продуктивном пласте, появляются отложения на стенках НКТ, в задвижках и на прочем технологическом оборудовании.

По значению этого параметра нефть бывает:

  • малопарафинистая (< 1,5 процентов);
  • парафинистая  (от 1,5 до 6-ти процентов);
  • высокопарафинистая (> 6-ти процентов).

Газосодержание

Этот параметр по-другому называется  газовый фактор.

Он характеризует  количество кубометров газа в одной тонне дегазированной нефти. Другими словами, газосодержание – это количественная характеристика  того, сколько растворенного газа было в нефти, которая находилась в коллекторе,  и какое его количество перейдет  в свободное состояние в процессе извлечения сырья на поверхность.

Значение газового фактора может доходить до 300 – 500 кубометров на тонну, хотя среднее его значение варьируется от 30-ти до 100 кубометров на одну тонну.

Давление насыщения

Этот параметр (давление, при котором начинается  парообразование) является значение давления, по достижению которого из нефти начинает выделяться газ.

В естественных условиях продуктивного слоя это давление или равно внутрипластовому, иди меньше его. В первом газ полностью растворяется в жидкости, а во втором наблюдается газовая недонасыщенность.

Сжимаемость

Этот параметр обусловлен упругостью нефти и характеризуется коэффициентом сжимаемости  (βН). Этот параметр показывает величину изменения объема сырья в пласте в случае изменения давления на 0,1 МПа.

Коэффициент сжимаемости  учитывают на ранних этапах разработки, когда упругость газа и жидкости в пласте еще  растрачена , вследствие чего играет в энергетике пласта существенную роль.

Коэффициент теплового расширения

Этот параметр показывает, как изменяется первоначальный объем сырья в случае изменения температуры на 1 градус Цельсия.

Его используют в процессе проектирования и практического применения методов  теплового воздействия на продуктивные пласты.

Объемный коэффициент

Этот показатель характеризует – какой объем в коллекторе  занимает кубометр дегазированного сырья, пока оно насыщено газом.

Значение этого показателя, как правило, больше единицы. Средние значения колеблются от 1,2 до 1,8, хотя могут доходить и до двух-трех единиц. Объемный коэффициент применяется в расчетах для определения количества  запасов, а также при вычислении  коэффициента нефтеотдачи продуктивного слоя.

Температура застывания

Температура застывания показывает, при каком температурном значении в пробирке уровень охлажденной нефти не меняется при её наклоне на 45-ть градусов.

Чем больше в нефти твердых парафинов и чем меньше смол – тем выше этот показатель.

Читайте также:  Какие свойства у осины и липы

Оптические нефтяные свойства

Основным оптическим свойством этого вещества является его способность вращать вправо (изредка–влево) плоскость поляризованного светового луча.

Основные носители оптической активности в этом полезном ископаемом –  молекулы ископаемых животных и растений, которые называются  хемофоссилиями.

При облучении нефтей ультрафиолетом они начинают светиться, что говорит об их способности к люминесценции.

Легкие сорта «черного золота» люминесцируют в голубом и синем спектре, а тяжелые – в желтом и желтовато-буром.

YouTube responded with an error: The request cannot be completed because you have exceeded your <a href=”/youtube/v3/getting-started#quota”>quota</a>.

Список используемой литературы:

  • Нефть и Нефтепродукты – Википедия
  • Хаустов, А. П. Охрана окружающей среды при добыче нефти/ Хаустов, А. П., Редина, М. М. Издательство: «Дело», 2006. 552 с.
  • Алекперов, В.Ю. Нефть России: прошлое, настоящее и будущее /Алекперов В.Ю. М.: Креативная экономика, 2011. – 432 с.
  • Издательство: «Нефть и газ», 2006. 352 с. Сургутнефтегаз.
  • Экономидес, М. Цвет нефти. Крупнейший мировой бизнес: история, деньги и политика/ Экономидес М., Олини Р. Издательство: «Олимп-Бизнес», 2004. 256 с.
  • Эрих В.Н. Химия нефти и газа. — Л.: Химия, 1966. — 280 с. — 15 000 экз.

Источник

Энергия недр

Фото: ИТАР-ТАСС
Инфографика: Рамблер Инфографика / Алексей Столяров, Анна Деревяненко

Нефтяные месторождения — уникальное хранилище энергии, образованной и накопленной на протяжении миллионов лет в недрах нашей планеты. В этом материале — о том, какой путь проделала нефть, прежде чем там оказаться, из чего она состоит и какими свойствами обладает

Две гипотезы

У ученых до сих пор нет единого мнения о том, как образовалась нефть. Существуют две принципиально разные теории происхождения нефти. Согласно первой — органической, или биогенной, — из останков древних организмов и растений, которые на протяжении миллионов лет осаждались на дне морей или захоронялись в континентальных условиях. Затем перерабатывались сообществами микроорганизмов и преобразовывались под действием температуры и давлений в результате тектонического опускания вглубь недр, формируя богатые органическим веществом нефтематеринские породы.

Необходимые условия для превращения органики в нефть возникают на глубине 1,5–6 км в так называемом нефтяном окне — при температуре от 70 до 190°C. В верхней его части температура недостаточно высока — и нефть получается «тяжелой»: вязкой, густой, с высоким содержанием смол и асфальтенов. Внизу же температура пластов поднимается настолько, что молекулы органического вещества дробятся на самые простые углеводороды — образуется природный газ. Затем под воздействием различных сил, в том числе
градиента

характеризует степень изменения давления в пространстве, в данном случае — в зависимости от глубины пласта

давления, углеводороды мигрируют из нефтематеринского пласта в выше- или нижележащие породы.

60 млн лет может занимать природный процесс образования нефти из органических останков

Природный процесс образования нефти из органических останков занимает в среднем от 10 до 60 млн лет, но если для органического вещества искусственно создать соответствующий температурный режим, то на его переход в растворимое состояние с образованием всех основных классов углеводородов достаточно часа. Подобные опыты сторонники органической гипотезы толкуют в свою пользу: преобразование органики в нефть налицо. В пользу биогенного происхождения нефти есть и другие аргументы. Так, большинство промышленных скоплений нефти связано с осадочными породами. Мало того — живая материя и нефть сходны по элементному и изотопному составу. В частности, в большинстве нефтяных месторождений обнаруживаются биомаркеры, такие как порфирины — пигменты хлорофилла, широко распространенные в живой природе. Еще более убедительным можно считать совпадение изотопного состава углерода биомаркеров и других углеводородов нефти.

Состав и свойства нефти

ХАРАКТЕРИСТИКИ НЕФТИ МОГУТ ЗНАЧИТЕЛЬНО РАЗЛИЧАТЬСЯ ДЛЯ РАЗНЫХ МЕСТОРОЖДЕНИЙ

Основные химические элементы, из которых состоит нефть: углерод — 83–87%, водород — 12–14% и сера — до 7%. Последняя обычно присутствует в виде сероводорода или меркаптанов, которые могут вызывать коррозию оборудования. Также в нефтях присутствует до 1,7% азота и до 3,5% кислорода в виде разнообразных соединений. В очень небольших количествах в нефтях содержатся редкие металлы (например, V, Ni и др.).

От месторождения к месторождению характеристики и состав нефти могут различаться очень значительно. Ее плотность колеблется от 0,77 до 1,1 г/см³. Чаще всего встречаются нефти с плотностью 0,82–0,92 г/см³.Температура кипения варьирует от 30 до 600°C в зависимости от химического состава. На этом свойстве основана разгонка нефтей на фракции. Вязкость сильно меняется в зависимости от температуры. Поверхностное натяжение может быть различным, но всегда меньше, чем у воды: это свойство используется для вытеснения нефти водой из пор пород-коллекторов.

Большинство ученых сегодня объясняют происхождение нефти биогенной теорией. Однако и неорганики приводят ряд аргументов в пользу своей точки зрения. Есть различные версии возможного неорганического происхождения нефти в недрах земли и других космических тел, но все они опираются на одни и те же факты. Во-первых, многие, хотя и не все месторождения связаны с зонами разломов. Через эти разломы, по мнению сторонников неорганической концепции, нефть и поднимается с больших глубин ближе к поверхности Земли. Во-вторых, месторождения бывают не только в осадочных, но также в магматических и метаморфических горных породах (впрочем, они могли оказаться там и в результате миграции). Кроме того, углеводороды встречаются в веществе, извергающемся из вулканов. Наконец, третий, наиболее весомый аргумент в пользу неорганической теории состоит в том, что углеводороды есть не только на Земле, но и в метеоритах, хвостах комет, в атмосфере других планет и в рассеянном космическом веществе. Так, присутствие метана отмечено на Юпитере, Сатурне, Уране и Нептуне. На Титане, спутнике Сатурна, обнаружены реки и озера, состоящие из смеси метана, этана, пропана, этилена и ацетилена. Если на других планетах Солнечной системы эти вещества могут образовываться без участия биологических объектов, почему это невозможно на Земле?

С точки зрения современных сторонников неорганической, или минеральной, гипотезы, углеводороды образуются из содержащихся в мантии Земли воды и углекислого газа в присутствии закисных соединений металлов на глубинах 100–200 км. Высокое давление в недрах земли препятствует термической деструкции сложных молекул углеводородов. В свою очередь сторонники органики не отрицают, что простые углеводороды, например метан, могут иметь и неорганическое происхождение. Опыты, направленные на подтверждение абиогенной теории, показали, что получаемые углеводороды могут содержать не более пяти атомов углерода, а нефть представляет собой смесь более тяжелых соединений. Этому противоречию объяснений пока нет.

Этапы образования нефти

СТАДИИ ОБРАЗОВАНИЯ ОСАДОЧНЫХ ПОРОД И ПРЕОБРАЗОВАНИЯ НЕФТИ

  • осадконакопление (седиментогенез) — в процессе накопления осадка остатки живых организмов выпадают на дно водных бассейнов или захороняются в континентальной обстановке;
  • биохимическая (диагенез) — происходит уплотнение, обезвоживание осадка и биохимические процессы в условиях ограниченного доступа кислорода;
  • протокатагенез — опускание пласта органических остатков на глубину до 1,5–2 км при медленном подъеме температуры и давления;
  • мезокатагенез, или главная фаза нефтеобразования (ГФ Н), — опускание пласта органических остатков на глубину до 3–4 км при подъеме температуры до 150°C. При этом органические вещества подвергаются термокаталитической деструкции, в результате чего образуются битуминозные вещества, составляющие основную массу микронефти. Далее происходит «отжим» нефти за счет перепада давления и эмиграционный вынос микронефти в пласты-коллекторы, а по ним — в ловушки;
  • апокатагенез керогена, или главная фаза газообразования (ГФГ ), — опускание пласта органических остатков на глубину (как правило, более 4,5 км) при подъеме температуры до 180—250°C. При этом органическое вещество теряет нефтегенерирующий потенциал и генерирует газ.

В ловушке

Помимо чисто научного интереса гипотезы, объясняющие происхождение нефти и газа, имеют еще и политическое звучание. Действительно, раз уж нефть может получаться из неорганических веществ и темпы ее образования не десятки миллионов лет, как предполагает биогенная концепция, а во много тысяч раз выше, значит, проблема скорого исчерпания запасов становится как минимум не столь однозначной. Однако для нефтяников вопрос о том, откуда берется нефть, принципиален скорее с той точки зрения, может ли теория предсказать, где именно нужно искать месторождения. С этой задачей органики справляются лучше.

Читайте также:  Какими свойствами обладает репейное масло для волос

В сугубо прагматическом отношении для добычи важно знать даже не то, где нефть зародилась, а где она находится сейчас и откуда ее можно извлечь. Дело в том, что в земной коре большая часть нефти не остается в материнской породе, а перемещается и скапливается в особых геологических объектах, называемых ловушками. Даже если предположить, что нефть имеет неорганическое происхождение, ловушки для нее все равно за редким исключением находятся в осадочных бассейнах.

Под действием различных факторов углеводороды отжимаются из нефтематеринских пород в породы-коллекторы, способные вмещать флюиды (нефть, природный газ, воду). Таким образом, нефтяное месторождение — вовсе не подземное «озеро», заполненное жидкостью, а достаточно плотная структура. Коллекторы характеризуются пористостью (долей содержащихся в них пустот) и проницаемостью (способностью пропускать через себя флюид). Для эффективного извлечения нефти из коллектора важно благоприятное сочетание обоих этих параметров.

Типы коллекторов

БОЛЬШАЯ ЧАСТЬ ЗАПАСОВ НЕФТИ СОДЕРЖИТСЯ В ДВУХ ТИПАХ КОЛЛЕКТОРОВ

Терригенные (пески, песчаники, алевролиты, некоторые глинистые породы и др.) состоят из обломков горных пород и минералов. Этот тип коллекторов наиболее распространен: на них приходится 58% мировых запасов нефти и 77% газа. В качестве пустотного пространства, в котором накапливается нефть, в основном выступают поры — свободное пространство между зернами, из которых состоит коллектор.

Карбонатные (в основном известняки и доломиты) занимают второе место по распространенности (42% запасов нефти и 23% газа). Имеют сложную трещиноватую структуру. Нефть обычно содержится в кавернах, появившихся в результате выветривания и вымывания твердой породы, а также в трещинах. Наличие трещин влияет и на фильтрационные свойства коллектора, обеспечивая проводимость жидкости.

Вулканогенные и вулканогенно-осадочные (кислые эффузивы и интрузивы, пемзы, туфы, туфопесчаники и др.) коллекторы отличаются характером пустотного пространства — в основном это трещины, — резкой изменчивостью свойств в пределах месторождений.

Глинисто-кремнисто-битуминозные отличаются значительной изменчивостью состава, неодинаковой обогащенностью органическим веществом. Промышленная нефтеносность глинисто-кремнисто-битуминозных пород установлена в баженовской (Западная Сибирь) и пиленгской (Сахалин) свитах.

Двигаясь по коллектору, флюид в какой-то момент может упереться в непроницаемый для него экран — флюидоупор. Слои такой породы называют покрышками, а вместе с коллектором они формируют ловушки, удерживающие нефть и газ в месторождении. В классическом варианте в верхней части ловушки может присутствовать газ (он легче). Снизу залежь подстилается более плотной, чем нефть, водой.

Классификации ловушек чрезвычайно разнообразны (часть из них см. на рис.). Наиболее простая и с точки зрения геологоразведки, и для дальнейшей добычи — антиклинальная ловушка (сводовое поднятие), перекрытая сверху пластом флюидоупора. Такие ловушки образуются в результате изгибов пластов осадочного чехла. Однако помимо изгибов внутренние пласты претерпевают и множество других деформаций. В результате тектонических движений, например, пластколлектор может деформироваться и потерять свою однородность. В этом случае процессы геологоразведки и добычи оказываются намного сложнее. Еще одна неприятность, которая поджидает нефтяников со стороны ловушек, — замещение проницаемых пород, обладающих хорошими коллекторскими свойствами, например песчаников, непроницаемыми. Такие ловушки называются литологическими.

Антиклиналь. Инфографика: Рамблер Инфографика / Алексей Столяров

Антиклиналь

Тектоническая экранированная ловушка. Инфографика: Рамблер Инфографика / Алексей Столяров

Тектоническая экранированная ловушка

Соляной купол. Инфографика: Рамблер Инфографика / Алексей Столяров

Соляной купол

Стратиграфическая ловушка. Инфографика: Рамблер Инфографика / Алексей Столяров

Стратиграфическая ловушка

Ровесница динозавров

Когда же образовались те структуры, в которых сегодня находят нефть? Основные ее ресурсы сосредоточены в относительно молодых мезозойских и кайнозойских отложениях, сформировавшихся от нескольких десятков млн до 250 млн лет назад. Однако добыча нефти ведется и из палеозойских отложений (до 500 млн лет назад), а в Восточной Сибири — даже из отложений верхнего протерозоя, которым более полумиллиарда лет.

Инфографика: Рамблер Инфографика / Анна Деревяненко

Многочисленные нефтяные месторождения встречаются в отложениях девона (420–360 млн лет назад). В этот период на Земле появились насекомые и земноводные, в морях большого разнообразия достигли рыбы и кораллы. Во время пермского периода (300–250 млн лет назад) климат стал более засушливым, в результате чего высыхали моря и образовывались мощные соляные толщи, ставшие впоследствии идеальными флюидоупорами.

Эпоха господства динозавров — юрский (200–145 млн лет назад) и меловой (145–66 млн лет назад) периоды мезозоя — характеризуется максимальным расцветом жизни и связана с высоким осадконакоплением. Некоторые гигантские и крупные месторождения (Иран, Ирак) нефти находят в отложениях палеогена(66—23 млн лет назад). Известны месторождения нефти в четвертичных породах возрастом менее 2 млн лет (Азербайджан).

Впрочем, связь между возрастом пород-коллекторов и временем образования нефти не прямолинейна. Этот процесс может быть последовательным: в юрском или меловом периоде органический осадок начал опускаться вниз и преобразовываться в нефть, которая по прошествии нескольких десятков миллионов лет мигрировала в коллекторы, принадлежащие к более молодым комплексам пород. С другой стороны, древние нефтематеринские породы, образованные в палеозое, могли опуститься на достаточную для созревания нефти глубину намного позднее. Таким образом, в одних и тех же коллекторах можно найти и более молодую, и древнюю нефть, значительно различающиеся по своим свойствам.

Смешанные свойства

Между тем моментом, когда на дно морского бассейна опускается отмерший планктон, и тем, когда накопившийся слой органики, погрузившись на несколько километров вниз, отдает нефть, миллионы лет и целый ряд химических и физических преобразований. Поэтому нет ничего удивительного в том, что состав нефти крайне разнообразен и неоднороден. Именно поэтому сами нефтяники привыкли употреблять это слово во множественном числе — говоря о разведке или добыче нефтей и подразумевая, что каждый раз извлекаемая жидкость будет уникальной, отличающейся от всего, что было добыто ранее.

Инфографика: Рамблер Инфографика / Алексей Столяров

В своей основе нефть — сложная смесь углеводородов различной молекулярной массы. Преобладают в ней алканы, нафтены и арены. Наиболее простые из них — алканы (парафиновые углеводороды), у которых к атомам углерода присоединено максимальное количество атомов водорода. К алканам относятся метан, этан, пропан, бутан, пентан и т. д. Они могут быть представлены газами, жидкостями и твердыми кристаллическими веществами. Количество алканов в нефти колеблется от четверти до семидесяти процентов объема. При большом проценте алканов нефть считается парафинистой. С точки зрения добычи такое свойство считается проблемным — при подъеме нефти из скважины и соответственном уменьшении температуры парафины могут кристаллизоваться и выпадать на стенки скважин.

Нафтены — соединения, в которых атомы углерода соединяются в циклическое кольцо (циклопропан, циклобутан, циклопентан и др.). Все связи углерода и водорода здесь насыщены, поэтому нафтеновые нефти обладают устойчивыми свойствами. Нафтены могут иметь от 2 до 5 циклов в молекуле, по их составу химики пытаются определять зрелость и другие свойства нефти.

В составе аренов, или ароматических углеводородов, также есть циклические структуры — бензольные ядра. Для них характерны большая растворяемость, более высокая плотность и температура кипения. Обычно нефть содержит 10–20% аренов, а в ароматических нефтях их содержание доходит до 35%. Наиболее богаты аренами молодые нефти. Арены — ценное сырье при производстве синтетических каучуков, пластмасс, синтетических волокон, анилино-красочных и взрывчатых веществ, фармацевтических препаратов.

Нефть любят называть черным золотом, однако чистые углеводороды бесцветны. Цвет нефтям придают разнообразные примеси, в основном смолы. Асфальтосмолистая часть нефтей — вещество темного цвета. Входящие в ее состав асфальтены растворяются в бензине.

Нефтяные смолы, напротив, не растворяются. Они представляют собой вязкую или твердую, но легкоплавкую массу. Наибольшее количество смол отмечается в тяжелых темных нефтях, богатых ароматическими углеводородами. Такие нефти обладают повышенной вязкостью, что затрудняет их извлечение из пласта.

Источник