Какому свойству твердых тел получают металлы

Какому свойству твердых тел получают металлы thumbnail

Barsk­o
[98.5K]

5 лет назад

Основное свойство, которое можно использовать для получения различных металлов из твердых тел – это плавкость. Под воздействием высоких температур можно расплавить твердое тело (к примеру руду содержащую железо), и в итоге получить металл.

модератор выбрал этот ответ лучшим

дольф­аника
[366K]

5 лет назад

Когда твердое тело переходит в жидкое, то это называется в металлургической промышленности плавкой, плавлением. В процессе плавления из руды получают металл через повышение температуры. А если при плавке к одному металлу добавить другой, то получаемый металл приобретает другие свойства. Так чугун отличается по свойствам от алюминия, а сталь от железа.

Свойства металлов позволяют их широко применять в производстве, а потребитель получает наиболее удобный для использования продукт. Например, консервная банка открывается легко, но в последние годы, видимо, в металл стали добавлять другое сырье, потому что открывашками некоторые банки не открываются. крышки гнутся.

Как известно в природе металлы находятся чаще всего в форме руды – полезного ископаемого в котором содержатся компоненты того или иного металла и минералы. Чистые металлы в природе встречаются редко и относятся к благородным. Из твердого же тела, руды, получить металл можно используя свойство такого тела при повышении температуры переходить из твердого состояния в жидкое, то есть плавление. При этом температура плавления входящих в руду минералов различная, так же как и их удельный вес. Поэтому в расплаве легко добиться отделения центрального компонента-металла от всевозможных примесей и таким образом получить чистый металл.

Колюч­ка 555
[58.5K]

4 года назад

Конечно же это плавкость. Для придания определенной формы металлу, будь то нож или мясорубка, его доводят до температуры плавления и выше. Можно жидкий металл залить в форму и получить изделие или нагреть до такого состояния, когда он становится поддатлив и его можно гнуть.

Вкус Лайма
[42.1K]

3 года назад

Речь идет о плавкости. Благодаря данному свойству, твердые тела при определенной температуре (высокой) могут менять состояние и становиться жидкостью. У разных твердых тел температура плавления различается. По этому критерию металлы делят на тугоплавкие и легкоплавкие.

Марле­на
[16K]

4 года назад

Есть такое свойство у твердых тел – плавкость. Они плавятся и с помощью этого свойства можно получать металлы. Причем разные металлы. Под воздействием температуры и получаются металлы, к примеру из руды.

Наверное прежде – это температура плавления, при которой металлы переходят в жидкое состояние, а примеси окисляются..

Для лучшего получения металлов применяют окислители примесей, в виде присадок и восстановители металла (например кокс).

Это относится для металлов, получаемых выплавлением из руды (например железа из чугуна).

Для некоторых металлов-это получение из расплава (алюминий из бокситов).

Металлы можно получить благодаря плавкости твёрдых тел, которые в своём составе содержат соединения компонентов этих металлов – полезные ископаемые или руда (железная руда, свинцовая руда, золотая руда, никелевая руда, цинковая руда и т. д).

Плавкость – способность элемента переходить из твёрдого состояния в жидкое под воздействием температуры.

Мой ответ: это свойство – плавкость.

storu­s
[72.4K]

2 года назад

Способность твердых тел, которая позволяет из руды получать металл, называется плавкостью. Благодаря ей наши далёкие предки научились делать различные прочные инструменты и оружие.

Плавкость позволяет металлу при определённой температуре переходить из твердого состояния в жидкое. Таким образом можно очистить его от примесей и получить чистый материал.

kacev­alova
[27.7K]

5 лет назад

Я не сильна в физике и химии но знаю точно что только благодаря такому свойству как “ПЛАВЛЕНИЯ”, проведя/пройдя процесс плавления металлов, по окончанию мы можем получить металл :

  • разной формы
  • смешанного/разного состава
  • разного веса
  • разного цвета.

Знаете ответ?

Источник

Электроны в атоме имеют определенные дискретные значения (уровни) энергии. При сближении атомов друг с другом и при образовании кристалла у электронов появляется возможность обмениваться местами, проходить через потенциальные барьеры. В результате таких переходов одинаковые уровни энергии расщепляются, причем разность соседних уровней энергии определяется энергией взаимодействия атомов друг с другом. Число атомов в одном кубическом сантиметре кристалла N ~ 1022. Каждый атомный уровень расщепляется на N уровней, расстояния между которыми тем меньше, чем больше N. В пределе $N to infty$ они сливаются, образуя зоны разрешенных значений энергии, ширина которых тем больше, чем больше взаимодействие между соседними атомами. На каждый уровень в зоне в соответствии с принципом Паули можно поместить два электрона с противоположными спинами, а всего в зону – 2N электронов. Зонное состояние электрона похоже и на состояние электрона в атоме, и на состояние свободного электрона, поскольку он может перемещаться от атома к атому.

Таким образом, состояние электрона в кристалле будет описываться заданием номера зоны, которой он принадлежит, и квазиимпульсом, определяющим его энергию в зоне. Выше уже отмечалось, что понятие квазиимпульса является важным и подчеркивает его отличие в твердом теле от импульса свободной частицы. Так как квазиимпульс – вектор, удобно говорить о пространстве квазиимпульсов, или p-пространстве (как для свободных электронов) . Если зона заполнена электронами, то это означает, что в р-пространстве данной зоны все места заняты электронами: в каждой точке пространства по два электрона.

Если зона заполнена частично, то в р-пространстве есть свободные от электронов области. Поверхность равных энергий, отделяющая занятые состояния от свободных, и есть поверхность Ферми. Электроны могут изменять свой квазиимпульс, если им есть куда перемещаться в р-пространстве. Если же все р-пространство занято электронами, то подобный процесс невозможен – принцип Паули это запрещает

. Поэтому кристаллы, у которых есть частично заполненные зоны, должны проводить электрический ток – это металлы. Металлическое состояние возникает и тогда, когда перекрываются заполненные и пустые зоны.

Кристаллы, у которых есть только полностью заполненные и полностью пустые зоны, являются изоляторами, или диэлектриками. Те из изоляторов, у которых при тепловом возбуждении заметное число электронов попадает в пустую зону, называются полупроводниками и могут проводить ток при конечных температурах. Возможна ситуация, когда при абсолютном нуле зоны незначительно перекрываются. Такого рода объекты называются полуметаллами (например, висмут, олово) и ведут себя при низких температурах как металлы, а при высоких как полупроводники. У полуметаллов объем, охватываемый поверхностью Ферми, мал по сравнению с объемом ячейки р-пространства, доступным для электронов. У бесщелевых полупроводников, у которых расстояние между заполненной и пустой зонами равно нулю, поверхность Ферми – линия или точка. У изоляторов площадь поверхности Ферми равна нулю – ее просто нет. Энергия электрона в кристалле уже не квадратичная функция импульса, как для свободных электронов.

Источник

Что такое металл? Казалось бы, а что тут думать и гадать? Металл – это что-то довольно тяжелое, прочное, с характерным металлическим блеском, хорошо проводит тепло и электричество, пластичное, можно ковать. Вот сталь, например.

Однако, оказывается, что все далеко не так просто, и металлы относятся именно к металлам только по некой совокупности характеристик и то, достаточно условно.

Когда мы говорим – «металл», то чаще всего подразумеваем достаточно узкую группу химических элементов, таких как: железо, медь, алюминий, золото и серебро. Можно сказать, что это – «классические металлы», но химики столкнулись с задачей классификации металлов достаточно давно и до сих пор прийти к единому мнению не могут. Все достаточно условно.

Возьмем, к примеру, обычную ртуть. По совокупности признаков ее принято считать металлом, но, простите, это – жидкость, а как же кристаллическая решетка, в которой появляются свободные электроны и на этом основана хорошая электропроводность и тому подобные свойства металлов?

Но идем далее, металл в нашем представлении, прежде всего, ассоциируется со сталью, материалом очень прочным, из которого делают ножи, применяемые на кухне. Но среди металлов есть не только жидкие, такие как ртуть, галлий или франций, а более похожие на пластилин, такие как калий, натрий и литий. И еще десяток металлов, которые сегодня можно получить не только в микроскопических дозах, в химической лаборатории и пригодных только для изучения химических же свойств этих металлов, а уже в качестве, условно говоря, слитков, но которые такие же мягкие, как пластилин.

Противоположное пластичности свойство – твердость и хрупкость так же в полной мере присутствуют среди свойств разнообразных металлов. Можно сослаться на чугун, но чугун – это сплав, сплав железа с углеродом, а если рассматривать «химически чистые» образцы, то среди металлов есть такие как вольфрам, известный не только тем, что из него делают нити накаливания в лампочках, но и применяют при изготовлении металлорежущего инструмента. К таким же абсолютно непластичным металлам относятся висмут и марганец.

Таким образом, получается, что всеобъемлющих характеристик химического элемента, по которым его можно отнести к металлам – не существует. Существует только совокупность характеристик, в том числе и химические свойства, по которым, с достаточной степенью условности, тот или иной химический элемент можно отнести к металлам. Существенно упрощает ситуацию только то, что в обыденной жизни мы сталкиваемся с достаточно ограниченным кругом веществ, которые относятся к металлам.

Тот же вольфрам мы можем встретить только в виде тончайшей нити в герметичной колбе электрической лампочки. А свинец и олово, в противоположность вольфраму, обладающие большой пластичностью и низкой температурой плавления, и, что немаловажно – почти нетоксичные, по большому счету, встречаются только у рыбаков и электриков, и так со всеми остальными металлами.

Единственными свойствами, объединяющими наибольшую группу химических элементов, являются высокая электропроводность, теплопроводность и характерный «металлический блеск». Но «разброс» значений весьма велик.

Но опять же этим металлическим блеском и хорошей электропроводностью обладает графит, одна из форм углерода.

Поэтому вывод может быть только один – не заморачиваться, да и в обыденной жизни это не нужно.

Источник

Положение металлов в периодической системе

В перечне простых веществ, составленном великим французским химиком Лавуазье в 1789 г. присутствует 17 металлов, в первом варианте периодической таблицы Д.И. Менделеева (1869) – их уже 47. Из 114 химических элементов 92 являются металлами. В традиционном варианте Периодической системе элементы-металлы расположены в начале периодов, а также в побочных подгруппах. Условной границей, отделяющей металлы от неметаллов, служит прямая, проведенная от бора до астата в длинном варианте периодической таблицы. Металлы оказываются левее и ниже этой прямой, неметаллы – правее и выше, а элементы, находящиеся вблизи прямой имеют двойственную природу, иногда их называют металлоидами. В Периодической системе, утвержденной ИЮПАК, металлы расположены в 1-12 группах.

Какому свойству твердых тел получают металлы

ОСОБЕННОСТИ СТРОЕНИЯ МЕТАЛЛОВ

Атомы металлов на внешнем уровне содержат не более четырех электронов, как правило, от одного до трех. Отдавая эти электроны, они приобретают устойчивую оболочку ближайшего инертного газа:

Какому свойству твердых тел получают металлы

$Ca^0 hspace{10pt}-2bar{e}rightarrow Ca^{+2}$

$overbrace{1s^22s^22p^63s^23p^64s^2}hspace{10pt}-2bar{e}rightarrowoverbrace{1s^22s^22p^63s^2 3p^6}$

Таким образом, металлы в химических реакциях являются восстановителями – они приобретают положительную степень окисления. В этом заключается их принципиальное отличие от элементов-неметаллов. 

Определение

Способность атома элемента смещать на себя электроны химической связи называют электроотрицательностью.

Вследствие низких значений электроотрицательности  металлы легче отдают электроны, чем притягивают их, и, следовательно проявляют восстановительные свойства.

Слова «металл» и «неметалл» применимы не только к химическим элементам, но и к простым веществам. Например, говоря, что простое вещество является металлом, мы подразумеваем не только что оно состоит из атомов элемента-металла, но и определенную общность физических (металлический блеск, пластичность) и химических (восстановитель) свойств. Металлические свойства простых веществ убывают при движении по периоду  слева направо, а по группе – снизу вверх. В наибольшей степени металлические свойства выражены у элементов главной подгруппы I группы Периодической системы – щелочных металлов. Их атомы настолько легко отдают валентный электрон, что в природе эти элементы встречаются исключительно в виде соединений.

Кристаллическая решетка и металлическая связь 

Металлы имеют металлическую кристаллическую решетку, в узлах которой расположены отдельные атомы. Они слабо удерживают валентные электроны, которые по этой причине свободно перемещаются по всему объему металла, формируя единое электронное облако и в равной степени притягиваются всеми атомами. Такая связь называется металлической.

Общие свойства металлов – пластичность, способность отражать свет, тепло- и электропроводность – объясняются особенностями их строения.  При сильном надавливании кусок металла изменяет форму – часть атомов смещается, но не рассыпается: общее электронное облако прочно удерживает все атомы вместе. В электрическом поле свободные электроны начинают двигаться в определенном направлении, такое упорядоченное движение электронов называют электрическим током. 

Чем больше в металле свободных электронов и чем сильнее колебания атомов, находящихся в узлах решетки, тем быстрее происходит выравнивание температуры во всем куске металла, то есть тем больше его теплопроводность. Поэтому относительные значения тепло- и электропроводности для многих металлов близки.

Физические свойства металлов

Агрегатное состояние и температуры плавления. Температуры плавления металлов меняются в очень широких пределах. Самый легкоплавкий из металлов – ртуть – при комнатной температуре является жидкостью. Металл галлий плавится от теплоты человеческого тела. Из металлов широко применяемых в технике, наиболее легкоплавкие – олово и свинец. Наибольшую температуру плавления имеет вольфрам, из которого изготавливают нити накаливания лампочек. Металлы с температурой плавления выше $1000^oC$ принято называть тугоплавкими.

Какому свойству твердых тел получают металлыКакому свойству твердых тел получают металлыКакому свойству твердых тел получают металлы

                  ртуть                                                   галлий                                             вольфрам

Окраска. Среди металлов немногие обладают характерной окраской. «Золото через свой изрядно желтый цвет и блещущую светлость от прочих металлов отлично», – писал Михаил Васильевич Ломоносов. Медь имеет розово-красный цвет, серебро и платина – белый, щелочной металл цезий – бледно-желтый. Для описания цвета других металлов трудно подобрать слова. Все они кажутся нам серыми с тем или иным едва заметным оттенком.

Какому свойству твердых тел получают металлыКакому свойству твердых тел получают металлы

медь                                                     литий

Плотность. Металлы сильно различаются по плотности. Наиболее легкими являются щелочные металлы литий, натрий и калий. Литий плавает даже на поверхности керосина – жидкости с плотностью меньшей плотности воды. Металлы с плотностью ниже 5 г/см$^3$ называют легкими. К ним, помимо щелочных и щелочно-земельных металлов, принадлежат магний, алюминий и другие. В число наиболее тяжелых входят переходные металлы, расположенные в шестом периоде, а также актиноиды. Ртуть, например, имеет плотность 13,6 г/см$^3$, то есть литровая банка, заполненная ртутью, весит 13,6 кг!

Твердость вещества оценивают по его способности оставлять царапину на другом веществе. Наиболее твердым веществом является алмаз – он оставляет след на любых поверхностях. Из металлов по твердости к алмазу приближается хром – он царапает стекло. Наиболее мягкие металлы – щелочные. Они легко режутся ножом. Мягкими являются также свинец, олово, цинк, серебро.

Какому свойству твердых тел получают металлы

Электро- и теплопроводность. Все без исключения металлы хорошо проводят электрический ток. Наибольшей электропроводностью обладает серебро, немного уступают ему медь и золото. Серебро – очень дорогой металл. Его используют в электротехнике при изготовлении высокоточных дорогостоящих приборов. Самые хорошие провода, применяемые в быту, медные. Они во много раз превосходят по самим характеристикам провода, изготовленные из алюминия. При прохождении через металл электрического тока часть электрической энергии преобразуется в тепловую – металл нагревается. Использование алюминиевых проводов при больших нагрузках на электрическую сеть может привести к их плавлению. Особенно опасны места стыка алюминиевых и медных проводов – они нагреваются намного быстрее. Неисправная электропроводка является причиной многих пожаров.

Пластичность. Многие металлы пластичны, то есть обладают способностью изменять форму, например, расплющиваться при ударе молотком. Наибольшей пластичностью обладают золото, серебро, медь, олово. Их можно раскатывать в фольгу.

Какому свойству твердых тел получают металлыКакому свойству твердых тел получают металлыКакому свойству твердых тел получают металлы

                                              Фольга из меди                                                        Фольга из золота

Источник