Какой тип пластид содержится в клетках лука
Пластиды являются основными цитоплазматическими органеллами клеток автотрофных растений. Название происходит от греческого слова «plastos», что в переводе означает «вылепленный».
Строение
Главная функция пластид – синтез органических веществ, благодаря наличию собственных ДНК и РНК и структур белкового синтеза. В пластидах также содержатся пигменты, обусловливающие их цвет. Все виды данных органелл имеют сложное внутреннее строение. Снаружи пластиду покрывают две элементарные мембраны, имеется система внутренних мембран, погруженных в строму или матрикс.
Классификация пластид по окраске и выполняемой функции подразумевает деление этих органоидов на три типа: хлоропласты, лейкопласты и хромопласты. Пластиды водорослей именуются хроматофорами.
Хлоропласты
Хлоропласты – это зеленые пластиды высших растений, содержащие хлорофилл – фотосинтезирующий пигмент. Представляют собой тельца округлой формы размерами от 4 до 10 мкм.
Химический состав хлоропласта: примерно 50% белка, 35% жиров, 7% пигментов, малое количество ДНК и РНК.
У представителей разных групп растений комплекс пигментов, определяющих окраску и принимающих участие в фотосинтезе, отличается. Это подтипы хлорофилла и каротиноиды (ксантофилл и каротин). При рассматривании под световым микроскопом видна зернистая структура пластид – это граны.
Под электронным микроскопом наблюдаются небольшие прозрачные уплощенные мешочки (цистерны, или граны), образованные белково-липидной мембраной и располагающиеся в непосредственно в строме. Причем некоторые из них сгруппированы в пачки, похожие на столбики монет (тилакоиды гран), другие, более крупные находятся между тилакоидами. Благодаря такому строению, увеличивается активная синтезирующая поверхность липидно-белково-пигментного комплекса гран, в котором на свету происходит фотосинтез.
Хромопласты
Хромопласты – пластиды, окраска которых бывает желтого, оранжевого или красного цвета, что обусловлено накоплением в них каротиноидов. Благодаря наличию хромопластов, характерную окраску имеют осенние листья, лепестки цветов, созревшие плоды (помидоры, яблоки). Данные органоиды могут быть различной формы – округлой, многоугольной, иногда игольчатой.
Лейкопласты
Лейкопласты представляют собой бесцветные пластиды, основная функция которых обычно запасающая. Размеры этих органелл относительно небольшие. Они округлой либо слегка продолговатой формы, характерны для всех живых клеток растений. В лейкопластах осуществляется синтез из простых соединений более сложных – крахмала, жиров, белков, которые сохраняются про запас в клубнях, корнях, семенах, плодах. Под электронным микроскопом заметно, что каждый лейкопласт покрыт двухслойной мембраной, в строме есть только один или небольшое число выростов мембраны, основное пространство заполнено органическими веществами. В зависимости от того, какие вещества накапливаются в строме, лейкопласты делят на амилопласты, протеинопласты и элеопласты.
Все виды пластид имеют общее происхождение и способны переходить из одного вида в другой. Так, превращение лейкопластов в хлоропласты наблюдается при позеленении картофельных клубней на свету, а в осенний период в хлоропластах зеленых листьев разрушается хлорофилл, и они трансформируются в хромопласты, что проявляется пожелтением листьев. В каждой определенной клетке растения может быть только один вид пластид.
Источник
Пластиды — органоиды, специфичные для клеток растений (они имеются в клетках всех растений, за исключением большинства бактерий, грибов и некоторых водорослей).
В клетках высших растений находится обычно от 10 до 200 пластид размером 3-10мкм, чаще всего имеющих форму двояковыпуклой линзы. У водорослей зеленые пластиды, называемые хроматофорами, очень разнообразны по форме и величине. Они могут иметь звездчатую, лентовидную, сетчатую и другие формы.
Различают 3 вида пластид:
- Бесцветные пластиды — лейкопласты;
- окрашенные — хлоропласты (зеленого цвета);
- окрашенные — хромопласты (желтого, красного и других цветов).
Эти виды пластид до известной степени способны превращаться друг в друга — лейкопласты при накоплении хлорофилла переходят в хлоропласты, а последние при появлении красных, бурых и других пигментов — в хромопласты.
Строение и функции хлоропластов
Хлоропласты — зеленые пластиды, содержащие зеленый пигмент — хлорофилл.
Основная функция хлоропласт — фотосинтез.
В хлоропластах есть свои рибосомы, ДНК, РНК, включения жира, зерна крахмала. Снаружи хлоропласта покрыты двумя белково-липидными мембранами, а в их полужидкую строму (основное вещество) погружены мелкие тельца — граны и мембранные каналы.
Строение хлоропласта
Граны (размером около 1мкм) — пакеты круглых плоских мешочков (тилакоидов), сложенных подобно столбику монет. Располагаются они перпендикулярно поверхности хлоропласта. Тилакоиды соседних гран соединены между собой мембранными каналами, образуя единую систему. Число гран в хлоропластах различно. Например, в клетках шпината каждый хлоропласт содержит 40-60 гран.
Хлоропласты внутри клетки могут двигаться пассивно, увлекаемые током цитоплазмы, либо активно перемещаться с места на место.
- Если свет очень интенсивен, они поворачиваются ребром к ярким лучам солнца и выстраиваются вдоль стенок, параллельных свету.
- При слабом освещении, хлоропласты перемещаются на стенки клетки, обращенные к свету, и поворачиваются к нему своей большой поверхностью.
- При средней освещенности они занимают среднее положение.
Этим достигаются наиболее благоприятные для процесса фотосинтеза условия освещения.
Хлорофилл
В гранах пластид растительной клетки содержится хлорофилл, упакованный с белковыми и фосфолипидными молекулами так, чтобы обеспечить способность улавливать световую энергию.
Молекула хлорофилла очень сходна с молекулой гемоглобина и отличается главным образом тем, что расположенный в центре молекулы гемоглобина атом железа заменен в хлорофилле на атом магния.
Сходство молекулы хлорофилла и молекулы гемоглобина
В природе встречается четыре типа хлорофилла: a, b, c, d.
Хлорофиллы a и b содержат высшие растения и зеленые водоросли, диатомовые водоросли содержат a и c, красные — a и d.
Лучше других изучены хлорофиллы a и b (их впервые разделил русский ученый М.С.Цвет в начале XXв.). Кроме них существуют четыре вида бактериохлорофиллов — зеленых пигментов пурпурных и зеленых бактерий: a, b, c, d.
Большинство фотосинтезирующих бактерий содержат бактериохлорофилл a, некоторые — бактериохлорофилл b, зеленые бактерии — c и d.
Хлорофилл обладает способностью очень эффективно поглощать солнечную энергию и передавать ее другим молекулам, что является его главной функцией. Благодаря этой способности хлорофилл — единственная структура на Земле, которая обеспечивает процесс фотосинтеза.
Главная функция хлорофилла в растениях — поглощение энергии света и передача ее другим клеткам.
Пластидам, так же, как и митохондриям, свойственна до некоторой степени автономность внутри клетки. Они размножаются путем деления.
Наряду с фотосинтезом, в пластидах происходит процесс биосинтеза белка. Благодаря содержанию ДНК пластиды играют определенную роль в передаче признаков по наследству (цитоплазматическая наследственность).
Строение и функции хромопластов
Хромопласты относятся к одному из трех видов пластид высших растений. Это небольших размеров, внутриклеточные органеллы.
Хромопласты имеют различный окрас: желтый, красный, коричневый. Они придают характерный цвет созревшим плодам, цветкам, осенней листве. Это необходимо для привлечения насекомых-опылителей и животных, которые питаются плодами и разносят семена на дальние расстояния.
Строение хромопласта
Структура хромопласта похожа на другие пластиды. Их двух оболочек внутренняя развита слабо, иногда вовсе отсутствует. В ограниченном пространстве расположена белковая строма, ДНК и пигментные вещества (каротиноиды).
Каротиноиды – это жирорастворимые пигменты, которые накапливаются в виде кристаллов.
Форма хромопластов очень разнообразна: овальная, многоугольная, игольчатая, серповидная.
Роль хромопластов в жизни растительной клетки до конца не выяснена. Исследователи предполагают, что пигментные вещества играют важную роль в окислительно-восстановительных процессах, необходимы для размножения и физиологичного развития клетки.
Строение и функции лейкопластов
Лейкопласты — это органоиды клетки, в которых накапливаются питательные вещества. Органеллы имеют две оболочки: гладкую наружную и внутреннюю с несколькими выступами.
Лейкопласты на свету превращаются в хлоропласты (к примеру зеленые клубни картофеля), в обычном состоянии они бесцветны.
Форма лейкопластов шаровидная, правильная. Они находятся в запасающей ткани растений, которая заполняет мягкие части: сердцевину стебля, корня, луковиц, листьев.
Строение лейкопласта
Функции лейкопластов зависят от их вида (в зависимости от накапливаемого питательного вещества).
Разновидности лейкопластов:
- Амилопласты накапливают крахмал, встречаются во всех растениях, так как углеводы основной продукт питания растительной клетки. Некоторые лейкопласты полностью наполнены крахмалом, их называют крахмальными зернами.
- Элайопласты продуцируют и запасают жиры.
- Протеинопласты содержат белковые вещества.
Лейкопласты также служат ферментной субстанцией. Под действием ферментов быстрее протекают химические реакции. А в неблагоприятный жизненный период, когда процессы фотосинтеза не осуществляются, они расщепляют полисахариды до простых углеводов, которые необходимы растениям для выживания.
В лейкопластах не может происходить фотосинтез, потому что они не содержат гран и пигментов.
Луковицы растений, в которых содержится много лейкопластов, могут переносить длительные периоды засухи, низкую температуру, жару. Это связано с большими запасами воды и питательных веществ в органеллах.
Предшественниками всех пластид является пропластиды, небольшие органоиды. Допускают, что лейко — и хлоропласты способны трансформироваться в другие виды. В конечном итоге после выполнения своих функций хлоропласты и лейкопласты становятся хромопластами — это последняя стадия развития пластид.
Важно знать! Одновременно в клетке растения может находиться только один вид пластид.
Сводная таблица строения и функций пластид
Свойства | Хлоропласты | Хромопласты | Лейкопласты |
---|---|---|---|
Строение | Двухмембранная органелла, с гранами и мембранными канальцами | Органелла с не развитой внутренней мембранной системой | Мелкие органеллы, находятся в частях растения, скрытых от света |
Окрас | Зеленые | Разноцветные | Бесцветные |
Пигмент | Хлорофилл | Каротиноид | Отсутствует |
Форма | Округлая | Многоугольная | Шаровидная |
Функции | Фотосинтез | Привлечение потенциальных распространителей растений | Запас питательных веществ |
Заменимость | Переходят в хромопласты | Не изменяются, это последняя стадия развития пластид | Превращаются в хлоропласты и хромопласты |
Источник
Тема: Пластиды и их типы
Материалы. Листья традесканции виргинской (Tradescantia virginica), зрелые плоды рябины обыкновенной (Sorbus aucuparia), шиповника собачьего (Rosa canina), ландыша майского (Convallaria majalis), боярышника кроваво-красного (Crataegus sanguinea); постоянные микропрепараты “Спирогира (Spirogyra)”, “Улотрикс (Ulothrix)”, “Кладофора (Cladophora)”, “Зигнема (Zygnema)”.
Пластиды это органеллы протопласта, характерные только для растительных клеток. Они выполняют различные функции, связанные, главным образом, с синтезом органических веществ. В зависимости от окраски, обусловленной наличием пигментов, различают три основных типа пластид: хлоропласты, хромопласты и лейкопласты.
Хлоропласты – зеленые пластиды, содержащие зеленый пигмент хлорофилл и небольшое количество каротина и ксантофилла. Главная функция хлоропластов – фотосинтез, в результате которого происходит образование богатых энергией органических веществ. Синтез хлорофилла обычно происходит только на свету, поэтому растения, выращенные в темноте или при недостатке света, становятся бледно-желтыми и называются этиолированными. Вместо типичных хлоропластов в них образуются этиопласты.
В клетках низших растений (водорослей) хлоропласты крупные и немногочисленные (один или несколько). Они имеют разнообразную форму (пластинчатую, звездчатую, ленточную и др.). Такие хлоропласты называются хроматофорами.
Хромопласты представляют собой пластиды, содержащие пигменты из группы каротиноидов, имеют желтую, оранжевую или красную окраску. К каротиноидам относят широко распространенные каротины (оранжевые) и ксантофиллы (желтые). Хромопласты имеют разнообразную форму. Они образуются в осенних листьях, корнеплодах (морковь), зрелых плодах и т.д. В отличие от хлоропластов, форма хромопластов очень изменчива, но видоспецифична, что объясняется их происхождением и состоянием в них пигментов.
Лейкопласты это мелкие бесцветные пластиды шаровидной, яйцевидной или веретеновидной формы. Они обычно встречаются в клетках органов, скрытых от солнечного света: в корневищах, клубнях, корнях, семенах, сердцевине стеблей и очень редко – в клетках освещенных частей растения (в клетках эпидермы). Часто лейкопласты собираются вокруг ядра, окружая его со всех сторон.
Деятельность лейкопластов специализирована и связана с образованием запасных веществ. Одни из них накапливают преимущественно крахмал (амилопласты), другие – белки (протеопласты или алейронопласты), а третьи – масла (олеопласты).
Ход работы
Задание 1. Рассмотреть хроматофоры водорослей на постоянных микропрепаратах: “Спирогира (Spirogyra)”, “Улотрикс (Ulothrix)”, “Кладофора (Cladophora)”, “Зигнема ( Zygnema )”. Обратить внимание на размеры, форму и количество хроматофоров в клетке (рис. 17).
Последовательность работы. Рассмотреть последовательно постоянные микропрепараты водорослей. В клетке улотрикса хроматофор занимает постенное положение, у спирогиры – в виде одной или многих идущих по спирали лент. У кладофоры постенный сетчатый хроматофор со многими пиреноидами (белковые тельца). Реже хроматофор в клетке занимает центральное положение. В таком случае он состоит из центральной части, от которой к периферии клетки отходят лопасти или гребни (звездчатый хроматофор зигнемы).
Рис. 17. Хроматофоры в клетках:
А – улотрикс (Ulothrix); Б – кладофора (Cladophora); В – спирогира (Spirogyra); Г – зигнема (Zygnema).
1 – ядро, 2 – хроматофор.
Задание 2. Приготовить временный микропрепарат парадермального среза эпидермы с нижней стороны листа традесканции виргинской (Tradescantia virginica) в капле воды. Рассмотреть хлоропласты в замыкающих клетках устьиц. Обратить внимание на их форму, размеры и количество (рис. 18).
Последовательность работы. Найти тонкий участок на срезе. Хлоропласты содержатся только в замыкающих клетках устьиц. Устьица очень хорошо выделяются на фоне прозрачных клеток эпидермы. Замыкающие клетки имеют бобовидную форму, они обращены друг к другу своими вогнутыми сторонами и соединены лишь концами. Между ними остается межклетник – устьичная щель. При большом увеличении микроскопа рассмотреть хлоропласты в замыкающих клетках, имеющие форму мелких овальных зеленых телец. Обратить внимание на их количество в клетке.
Задание 3. Рассмотреть лейкопласты, используя временный микропрепарат из задания 2. Сделать рисунок.
Рис. 18. Хлоропласты и лейкопласты в клетках эпидермы листа традесканции виргинской (Tradescantia virginica) :
1 – ядро, 2 – лейкопласты, 3 – хлоропласты, 4 – замыкающие клетки устьиц, 5 – цитоплазматические тяжи.
Последовательность работы. Найти клетку эпидермы, не содержащую хлоропластов. Обратить внимание на крупное ядро, расположенное в центре клетки, вокруг которого цитоплазмой образован ядерный кармашек, соединенный с ее постенным слоем тонкими тяжами. Рассмотреть лейкопласты (мелкие шаровидные тельца, сильно преломляющие свет), расположенные в ядерном кармашке и в тяжах цитоплазмы. Зарисовать при большом увеличении несколько клеток эпидермы с ядром, цитоплазматическими тяжами и лейкопластами, а также замыкающие клетки устьица с хлоропластами (рис. 18).
Задание 4. Приготовить и рассмотреть микропрепараты из мякоти зрелых плодов рябины обыкновенной (Sorbus aucuparia), шиповника собачьего (Rosa canina), ландыша майского (Convallaria majalis), боярышника кроваво-красного (Crataegus sanguinea) в каплях воды. Зарисовать хромопласты в клетках.
Последовательность работы. Для приготовления препарата извлечь небольшой кусочек мякоти из зрелого плода, поместить его в центр предметного стекла в каплю воды, осторожно разрыхлить и накрыть покровным стеклом. При малом увеличении найти участок со свободно лежащими клетками и при большом увеличении исследовать их. Клетки имеют округлую форму. Стенки их очень тонкие. Внутри клеток хорошо видны скопления хромопластов. В плодах рябины хромопласты имеют вытянутую, заостренную, слегка изогнутую форму, в клетках плодов шиповника – овальную, в клетках плода ландыша более или менее шаровидную, в клетках плодов боярышника – треугольную, ромбическую. Зарисовать по одной клетке изучаемых объектов, обозначив оболочку клетки, ядро и хромопласты (рис. 19).
Рис. 19. Хромопласты в клетках мякоти зрелых плодов:
А – шиповник (Rosa canina); Б – ландыш (Convallaria majalis); В – рябина (Sorbus aucuparia) ; Г – боярышник (Crataegus sanguinea).
1 – хромопласты, 2 – ядро, 3 – оболочка клетки.
Контрольные вопросы
1. Назвать основные типы пластид. Какое они имеют строение?
2. Какие пластиды имеются в клетках зеленых растений?
3. В клетках каких органов растений чаще всего можно встретить хромопласты?
4. Какие пигменты имеются в хромопластах?
5. Какие функции выполняют лейкопласты?
6. Какие взаимные превращения возможны между пластидами?
Источник
Пластиды: виды, строение и роль в клетке
Пластиды – это мембранные органоиды, встречающиеся у фотосинтезирующих эукариотических организмов (высшие растения, низшие водоросли, некоторые одноклеточные организмы).
Они имеют оболочку, образованную двумя мембранами: наружной и внутренней. Внутренняя мембрана вдается в полость хлоропласта немногочисленными выростами. Мембранная оболочка отграничивает от гиалоплазмы клетки матрикс хлоропласта, так называемую строму. Как строма, так и выросты внутренней мембраны формируют в полости хлоропласта сложную систему мембранных поверхностей, отграничивающих особые плоские мешки, называемые тилакоидами, или ламеллами . Группы дисковидных тилакоидов связаны друг с другом таким образом, что их полости оказываются непрерывными. Эти тилакоиды образуют стопки (наподобие стопки монет), или граны . Тилакоиды стромы объединяют граны между собой. В мембранах тилакоидов сосредоточен главнейший пигмент зеленых растений — хлорофилл и вспомогательные пигменты — каротиноиды . Внутренняя структура хромопластов и лейкопластов проще. Граны в них отсутствуют.
Пластиды высших растений бывают трех видов: хлоропласты, хромопласты и лейкопласты. Они различаются по окраске, строению и выполняемым функциям.
Хлоропласты зеленого цвета, из-за пигмента зеленого цвета – хлорофилла, играющего важную роль в процессах фотосинтеза. Кроме хлорофиллов хлоропласты содержат и каротиноиды, но их гораздо меньше, поэтому они малозаметны на фоне хлорофилла. Больше всего хлоропластов находится в клетках листьев, молодых побегов и незрелых плодов.
Хлоропласты имеют постоянную линзовидную форму. Внутренняя мембрана хлоропластов образует плоские мешочки — тилакоиды (ламеллы). Тилакоиды могут собираться в стопочки – граны. Хлорофилл сосредоточен, главным образом, в тилакоидах гран. В гранах осуществляется световая часть фотосинтеза. Таковая слоистая структура обеспечивает максимальную площадь поверхности мембран и упрощает захват и перенос энергии в процессе фотосинтеза.
Темновая фаза протекает в матриксе хлоропластов, где находятся ферменты, участвующие в этом процессе. Также как и митохондрии, пластиды полуавтономные структуры, имеют свои рибосомы и ДНК.
В хлоропластах может откладываться первичных крахмал, если по каким либо причинам продукты фотосинтеза моносахара длительное время не затребованы клеткой и не удаляются из него.
Характерны для растительных клеток органеллы фотосинтеза, способные создавать из неорганических веществ (CO2 и H2O) при наличии световой энергии и пигмента хлорофилла органические вещества – углеводы и свободный кислород. Синтез собственных белков. Могут образовываться из пластид или лейкопластов, а осенью перейти в хлоропласты (красные и оранжевые плоды, красные и желтые листья).
Хромопласты сосредоточены в цитоплазме клеток плодов, листьев растений и придают им подобающую окраску. Хромопласты образуются из лейкопластов, либо хлоропластов в итоге скопления пигментов каротиноидов. Хромопласты имеют окраску от желтого до оранжевого из-за того, что накапливают пигменты каротиноиды. Также как и у лейкопластов у хлоропластов внутренняя мембрана не развита. Форма хромопластов может быть самой разнообразной: от сферической (каротиноиды откладываются в виде жировых капель) до многогранной (пигменты откладываются в виде кристаллов). Считается, что хромопласты – это конечный этап развития пластид. Они встречаются в клетках созревших плодов, стареющих листьев, т.е. в таких органах, где снижена активность жизнедеятельности органа. Однако они обнаруживаются и в вполне функционирующих частях, таких как корнеплоды моркови. Функция хромопластов пока не установлена.
Характерны для растительных клеток. Придают лепесткам цветков окраску, привлекательную для насекомых-опылителей. В осенних листьях и зрелых плодах отделяющихся от растений, содержатся кристаллические каротиноиды ?– конечные продукты обмена.
Лейкопласты — бесцветные пластиды, располагающиеся в неокрашенных частях растений: в стеблях, корнях, луковицах и др. Основная функция лейкопластов – накопление запасных веществ, поэтому у них слабо развита внутренняя мембрана, она почти не образует тилакоидов. Чаще всего в лейкопластах накапливаются зерна вторичного крахмала, такие пластиды называются амилопластами. В них могут также откладываться масла (элайопласты) и простые белки (протеинопласты). Форма лейкопластов непостоянна и зависит от вида накапливаемых веществ. Лейкопласты могут образовываться из хлоропластов при значительном снижении интенсивности освещения.
Характерны для растительных клеток. Служат местом отложения запасных питательных веществ, главным образом крахмальных зерен.
Лейкопласты могут образовываться из хлоропластов при значительном снижении интенсивности освещения.
Характерны для растительных клеток. Служат местом отложения запасных питательных веществ, главным образом крахмальных зерен.
Пластиды – это мембранные органоиды, встречающиеся у фотосинтезирующих эукариотических организмов (высшие растения, низшие водоросли, некоторые одноклеточные организмы).
Они имеют оболочку, образованную двумя мембранами: наружной и внутренней. Внутренняя мембрана вдается в полость хлоропласта немногочисленными выростами. Мембранная оболочка отграничивает от гиалоплазмы клетки матрикс хлоропласта, так называемую строму.
Как строма, так и выросты внутренней мембраны формируют в полости хлоропласта сложную систему мембранных поверхностей, отграничивающих особые плоские мешки, называемые тилакоидами, или ламеллами . Группы дисковидных тилакоидов связаны друг с другом таким образом, что их полости оказываются непрерывными.
Эти тилакоиды образуют стопки (наподобие стопки монет), или граны . Тилакоиды стромы объединяют граны между собой. В мембранах тилакоидов сосредоточен главнейший пигмент зеленых растений — хлорофилл и вспомогательные пигменты — каротиноиды . Внутренняя структура хромопластов и лейкопластов проще. Граны в них отсутствуют.
Пластиды высших растений бывают трех видов: хлоропласты, хромопласты и лейкопласты.
Они различаются по окраске, строению и выполняемым функциям.
Хлоропласты зеленого цвета, из-за пигмента зеленого цвета – хлорофилла, играющего важную роль в процессах фотосинтеза. Кроме хлорофиллов хлоропласты содержат и каротиноиды, но их гораздо меньше, поэтому они малозаметны на фоне хлорофилла. Больше всего хлоропластов находится в клетках листьев, молодых побегов и незрелых плодов.
Хлоропласты имеют постоянную линзовидную форму.
Внутренняя мембрана хлоропластов образует плоские мешочки — тилакоиды (ламеллы). Тилакоиды могут собираться в стопочки – граны. Хлорофилл сосредоточен, главным образом, в тилакоидах гран. В гранах осуществляется световая часть фотосинтеза. Таковая слоистая структура обеспечивает максимальную площадь поверхности мембран и упрощает захват и перенос энергии в процессе фотосинтеза.
Темновая фаза протекает в матриксе хлоропластов, где находятся ферменты, участвующие в этом процессе.
Также как и митохондрии, пластиды полуавтономные структуры, имеют свои рибосомы и ДНК.
В хлоропластах может откладываться первичных крахмал, если по каким либо причинам продукты фотосинтеза моносахара длительное время не затребованы клеткой и не удаляются из него.
Характерны для растительных клеток органеллы фотосинтеза, способные создавать из неорганических веществ (CO2 и H2O) при наличии световой энергии и пигмента хлорофилла органические вещества – углеводы и свободный кислород.
Cтроение растительной клетки
Синтез собственных белков. Могут образовываться из пластид или лейкопластов, а осенью перейти в хлоропласты (красные и оранжевые плоды, красные и желтые листья).
Хромопласты сосредоточены в цитоплазме клеток плодов, листьев растений и придают им подобающую окраску. Хромопласты образуются из лейкопластов, либо хлоропластов в итоге скопления пигментов каротиноидов. Хромопласты имеют окраску от желтого до оранжевого из-за того, что накапливают пигменты каротиноиды.
Также как и у лейкопластов у хлоропластов внутренняя мембрана не развита. Форма хромопластов может быть самой разнообразной: от сферической (каротиноиды откладываются в виде жировых капель) до многогранной (пигменты откладываются в виде кристаллов).
Считается, что хромопласты – это конечный этап развития пластид. Они встречаются в клетках созревших плодов, стареющих листьев, т.е. в таких органах, где снижена активность жизнедеятельности органа. Однако они обнаруживаются и в вполне функционирующих частях, таких как корнеплоды моркови.
Функция хромопластов пока не установлена.
Характерны для растительных клеток. Придают лепесткам цветков окраску, привлекательную для насекомых-опылителей. В осенних листьях и зрелых плодах отделяющихся от растений, содержатся кристаллические каротиноиды ?– конечные продукты обмена.
Лейкопласты — бесцветные пластиды, располагающиеся в неокрашенных частях растений: в стеблях, корнях, луковицах и др. Основная функция лейкопластов – накопление запасных веществ, поэтому у них слабо развита внутренняя мембрана, она почти не образует тилакоидов.
Чаще всего в лейкопластах накапливаются зерна вторичного крахмала, такие пластиды называются амилопластами. В них могут также откладываться масла (элайопласты) и простые белки (протеинопласты). Форма лейкопластов непостоянна и зависит от вида накапливаемых веществ. Лейкопласты могут образовываться из хлоропластов при значительном снижении интенсивности освещения.
Характерны для растительных клеток.
Служат местом отложения запасных питательных веществ, главным образом крахмальных зерен.
Пластиды (хлоропласты, хромопласты, лейкопласты)
В растениях встречается три типа пластид, которые делятся в зависимости от типа пигментов, входящих в их состав на:
хлоропласты, хромопласты, лейкопласты.
Хлоропласты встречаются во всех зеленых органах растений.
У высших растений пластид в клетках несколько десятков, у низших (водорослей) – 1-5. Они крупные, разнообразны по форме.
В хлоропластах содержится до 75 % воды, белки, липиды, нуклеиновые кислоты, ферменты и красящие вещества – пигменты. От цитоплазмы хлоропласт отделен двойной мембранной оболочкой; тело его состоит из бесцветной мелкозернистой стромы. Строма пронизана параллельно расположенными пластинками – ламеллами, дисками. Диски собраны в стопки – граны. Основная функция хлоропластов – фотосинтез.
Хромопластывстречаются в корнеплодах моркови, плодах многих растений (облепиха, шиповник, рябина и др.), в зеленых листьях шпината, крапивы, в цветках (розы, гладиолусы, календула), окраска которых зависит от присутствия в них пигментов каротиноидов: каротина – оранжево-красного цвета и ксантофилла – желтого цвета.
Лейкопласты – бесцветные пластиды, пигменты отсутствуют.
Они представляют собой белковые вещества в виде шаровидных, веретонообразных зернышек, концентрирующихся вокруг ядра. В них осуществляется синтез и накопление запасных питательных веществ, в основном крахмала, белков и жиров.
Лейкопласты находятся в цитоплазме, эпидерме, молодых волосках, подземных органах растений и в тканях зародыша семени.
Пластиды могут переходить из одного вида в другой.
Внутренняя мембрана хлоропластов образует плоские мешочки — тилакоиды (ламеллы). Тилакоиды могут собираться в стопочки – граны. Хлорофилл сосредоточен, главным образом, в тилакоидах гран. В гранах осуществляется световая часть фотосинтеза. Таковая слоистая структура обеспечивает максимальную площадь поверхности мембран и упрощает захват и перенос энергии в процессе фотосинтеза.
Темновая фаза протекает в матриксе хлоропластов, где находятся ферменты, участвующие в этом процессе.
Также как и митохондрии, пластиды полуавтономные структуры, имеют свои рибосомы и ДНК.
В хлоропластах может откладываться первичных крахмал, если по каким либо причинам продукты фотосинтеза моносахара длительное время не затребованы клеткой и не удаляются из него.
Характерны для растительных клеток органеллы фотосинтеза, способные создавать из неорганических веществ (CO2 и H2O) при наличии световой энергии и пигмента хлорофилла органические вещества – углеводы и свободный кислород.
Синтез собственных белков. Могут образовываться из пластид или лейкопластов, а осенью перейти в хлоропласты (красные и оранжевые плоды, красные и желтые листья).
Хромопласты сосредоточены в цитоплазме клеток плодов, листьев растений и придают им подобающую окраску. Хромопласты образуются из лейкопластов, либо хлоропластов в итоге скопления пигментов каротиноидов. Хромопласты имеют окраску от желтого до оранжевого из-за того, что накапливают пигменты каротиноиды.
Также как и у лейкопластов у хлоропластов внутренняя мембрана не развита. Форма хромопластов может быть самой разнообразной: от сферической (каротиноиды откладываются в виде жировых капель) до многогранной (пигменты откладываются в виде кристаллов).
Считается, что хромопласты – это конечный этап развития пластид. Они встречаются в клетках созревших плодов, стареющих листьев, т.е. в таких органах, где снижена активность жизнедеятельности органа. Однако они обнаруживаются и в вполне функционирующих частях, таких как корнеплоды моркови.
Функция хромопластов пока не установлена.
Характерны для растительных клеток. Придают лепесткам цветков окраску, привлекательную для насекомых-опылителей. В осенних листьях и зрелых плодах отделяющихся от растений, содержатся кристаллические каротиноиды ?– конечные продукты обмена.
Лейкопласты — бесцветные пластиды, располагающиеся в неокрашенных частях растений: в стеблях, корнях, луковицах и др.
Основная функция лейкопластов – накопление запасных веществ, поэтому у них слабо развита внутренняя мембрана, она почти не образует тилакоидов. Чаще всего в лейкопластах накапливаются зерна вторичного крахмала, такие пластиды называются амилопластами.
В них могут также откладываться масла (элайопласты) и простые белки (протеинопласты). Форма лейкопластов непостоянна и зависит от вида накапливаемых веществ. Лейкопласты могут образовываться из хлоропластов при значительном снижении интенсивности освещения.
Характерны для растительных клеток. Служат местом отложения запасных питательных веществ, главным образом крахмальных зерен.
Вопрос 1. Где формируется лизосома?
Лизосомы — мембранные структуры, содержащие множество активных ферментов, участвующих в расщеплении высокомолекулярных соединений: белков, липидов, углеводов. Лизосомы образуются в комплексе Гольджи, куда поступают и где накапливаются ферменты.
Вопрос 2. Какова функция митохондрий?
Митохондрии — клеточные структуры, покрытые двойной мембраной. На внутренней мембране, имеющей многочисленные выросты, расположено огромное количество ферментов, принимающих участие в синтезе АТФ.
Следовательно, главная функция митохондрий — обеспечение клетки энергией за счет синтеза АТФ.
Вопрос 3. Какие виды пластид вы знаете?
Различают три вида пластид — лейкопласты, хромопласты и хлоропласты.
Лейкопласты — бесцветные пластиды, которые располагаются в органах растений, недосту